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Weak-coupling expansions and an effective Lagrangian for compact U(1) lattice gauge
theory in D+1 dimensions
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Weak-coupling perturbation series are calculated for the Hamiltonian version of compact U(1)
lattice gauge theory in D + I dimensions. Expansions are obtained for the ground-state energy
density and its finite-size corrections, the dispersion relation and photon velocity, and the axial
string tension on a finite lattice. The finite-size scaling behavior can be simply understood on the
basis of an effective Lagrangian which is that of free electromagnetic theory.
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I. INTRO DU CTION

There has been renewed interest recently in the finite-
size scaling properties of lattice models, aroused by the
efFective Lagrangian approach of Leutwyler and Hasen-
fratz and their collaborators [1—3]. A system with a con-
tinuous symmetry which undergoes spontaneous break-
down develops Goldstone bosons, and the massless Gold-
stone bosons then control the behavior of the system at
low energies or temperatures, and large distances. One
may write down a continuum "efFective Lagrangian" for
the Goldstone bosons, and hence obtain a systematic
large volume expansion, which gives universal formulas
for the leading finite-size corrections in the theory (as
well as low-temperature and other efFects) in terms of
just two or three parameters. In a simple spin model,
for instance, these parameters are the helicity modulus
or spin-wave stifFness, the spin-wave velocity, and the
spontaneous magnetization. The values of these param-
eters may then be determined from the amplitudes of
the finite-size corrections, in much the same way that
the Rnite-size amplitudes are related to the critical expo-
nents at a second-order transition in two dimensions, by
the theory of conformal invariance [4].

This approach was first applied in connection with chi-
ral symmetry breaking in @CD by Gasser and I eutwyler,
in a series of papers summarized in Ref. [1]. It has since
been generalized to lattice spin models by Hasenfratz and
I eutwyler [2] and Hasenfratz and Niedermayer [3]. A
parallel development was meanwhile being carried out in
connection with spin models having O(%) symmetry by
other authors [5], though in a less systematic way.

Here, we argue that a similar approach can be used
for the compact U(1) lattice gauge model. First, we

study the Hamiltonian version of this model in 2+1 and
3+1 dimensions, using weak-coupling perturbation the-
ory. This is the analogue of spin-wave perturbation the-
ory for a spin model, and produces a "low-temperature"

series expansion for the physical observables in powers
of x f, where x is the lattice strong-coupling parame-
ter. We extend the series obtained for the ground-state
energy by Hofsass and Horsley [6], and show that it
agrees rather well with numerical calculations. The dis-
persion relation and photon velocity are also calculated,
as well as the finite-size corrections to the ground-state
energy, and the finite-size behavior of the axial string
tension. These results are also found to be in reason-
able agreement with numerical calculations [7], for the
(3+1)-dimensional [(3+1)D] model in the weak-coupling
region. The weak-coupling results imply a remarkable
relationship:

ep(L) —ep(oo) =—,n, )i (1) + 2—

+O(L ' ), (1.1)

where ep(L) is the ground-state energy density on a lat-

tice of L sites, n i&2(1) is a geometric "shape factor, "
v is the photon velocity or "speed of light, " and n~ is
the number of massless boson degrees of freedom (1 for
D = 2, 2 for D = 3). This universal relationship is ex-
actly the same as that holding in the O(IV) Heisenberg
spin model [3,8]. Thus the amplitude of the correction to
the ground-state energy provides a measure of the photon
velocity, as advertised above.

The relationship (1.1) cries out for an explanation in
terms of an efFective Lagrangian theory. Indeed we show,
using the techniques of Hasenfratz and Niedermayer [3],
that one can obtain this result if one postulates a contin-
uum efFective Lagrangian whose leading term is simply
that of free electromagnetic theory. There are only two
parameters at leading order, an "efFective coupling" p,
(denoted by analogy with the spin model), and the speed
of light v; and in fact for the particular lattice model we
have chosen there is an exact relationship between the
two:

(1 2)
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which again is precisely the same as a relationship holding
in the O(2) Heisenberg model [8].
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The question then arises, of course, as to whether such
an e6'ective Lagrangian approach is really valid in this
context. The weak-coupling limit is not a first-order tran-
sition: there is no spontaneous breaking of a local gauge
symmetry, according to Elitzur's theorem [9]. On the
other hand, the treatment is at least internally consis-
tent in that the interaction between the massless modes
is weak at low energies (see Sec. III), just as in the spin
model case: this is the requirement for a large-volume
expansion to hold. For the (3+1)D model, it is known
that there is a critical line at weak couplings where the
system is in a massless Coulomb phase, and one may nat-
urally expect the free electromagnetic Lagrangian eKec-
tive theory to apply. The behavior of the fine-structure
constant o. in this phase has been discussed by Cardy [10]
and Luck [11],who suggest that it may reach a universal
maximum value at the end point of the critical line: we
analyze our results along these lines in the concluding
section.

For the (2+1)D model, the situation is more problem-
atical. Gopfert and Mack [12) have shown that there
is no massless phase at finite coupling, and that in the
weak-coupling continuum limit the model reduces to a
confining theory of free, massive scalar bosons, on a mass
scale that decreases exponentially as the lattice spacing
a goes to zero. On the other hand, Gross [13] has proved
that in the "naive" continuum limit where one keeps the
coupling fixed as the lattice spacing approaches zero, the
U(1) model with Villain action does converge to the free
electromagnetic theory, at the level of E„or the Wilson
loops. Our results on the finite-lattice behavior would
seem to fit with this conclusion. It would thus seem that
the same lattice model can give rise to either a massive
or a massless continuum theory in the continuum limit,
depending on the energy scale at which one approaches
the limit.

0„(n', k) = e;zq[A~(n, i) —A~(n+ j,i) + A~(n+i, j)
—Ai(n, j)], (2.2)

n' = n+ (i+ j)/2 . (2.3)

For the two-dimensional lattice, of course, the
plaquettes have only a single possible orientation. The
commutation relations are

[Zi(n, p), A, (rn, v)] = —iS„ (2.4)

Perform Fourier transformations:

0i, (p) = ) e '""0„(n', p),
N

Ai, (p,) = ) e '"'"Ai(n, p,),
N

@i (P) = ).e'""@(n p)
n

(2.5)

where N is the number of sites; then

Ai, (p) = A &(p), Ei, (p) = E „(p) . (2.6)

From Eq. (2.2), we find

0i, (p) = ) Gi, (p, , v)Ai, (v), (2.7)

where

Gi, (p, , v) = —2ie~ e '"" sin(k /2) . (2.S)

where (n', k) denotes a plaquette centered at coordinates
n and oriented in direction k, while (n, i) denotes a link

starting at site n and oriented in the i direction, with

II. WEAK-COUPLING EXPANSION
At weak coupling the cosine in Eq. (2.1) may be ex-

panded in powers of 0„:

The Hamiltonian formulation of compact U(l) gauge
theory on a lattice has been discussed by Banks et al. [14]
and Drell et al. [15], following the general approach of
Kogut and Susskind [16]. After choosing the temporal
gauge A = 0, the canonically conjugate vector fields E
and A are defined by placing them on links of the spatial
lattice. After appropriate rescalings, one finishes up with
a quantum Hamiltonian

H = ) E, —ND(D —1)x+x) 0„

)- (—1)™)-0.
(2m)!m=2 p

The quadratic term

(2.9)

H = ) Z,' —2x) cos0p,
p

(2.1) ) 0„=) 0~t(p)0i, (p, ) = ) A„"Ri,Ai, ,
p k, P, k

(2.10)

where l denotes links and p denotes plaquettes of the D-
dimensional spatial lattice. The strong-coupling param-
eter x = 1/(e a 2 ), where e is the electric charge and
a is the lattice spacing (taken equal to unity hereafter).
Periodic boundary conditions will be assumed through-
out.

The relation between the plaquette angles Op and link
angles A~ can be written

where the D-dimensional vector Ak is formed from the
directional components of Ak, and the D x D matrix Rk
is

Rk —Gk+ (2.11)

with the components of Gi, given by (2.8). The matrix
Rk is Hermitian, and has eigenvalues:
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a=2. Ak(1) = 4) sin (k„/2)—:Ak ——z(1 —pi, ),
P,=1

A, (2) =0;

(2.12a)

D = 3: Ai, (1) = Ai, (2) = 4) sin (Ic„-/2) = Ai, = z(1 —pi ),
@=1

Ai, (3) = 0

(2.12b)

) exp(ik. jc) .
z

P1~ ~ ~ ~ )P»

(2.13)

A unitary transformation can be found:

(see Appendix A), where z is the "coordination number"
of the lattice (4 for a square lattice and 6 for a cubic
lattice), and pk is the "structure factor" defined by

corresponding electric Beld component Ig transforms in
position space to the lattice version of V'. E: this is iden-
tically zero by Gauss' law, since there are no charges in
the pure gauge theory.

The remaining quadratic terms in Eq. (2.16) now cor-
respond to a many-vanable harmonic oscillator problem,
and can be diagonalized by a "Bogoliubov transforma-
tion":

~ = UkAg, (2.i4a)
(2.14b)

ni, (p) = [Lg(p, ) tan Pk —iwi, (p) cot Pi,),-=1
2

where

k(&) —L-i (p) ~ ~i, (p) = ~-k(p) ~ where

(p = 1, . . . , D —1), (2.20)

H = ND(D —l)x-

+). ).L~(p)Lk(p)
k @=1

D —1

+»~ ).~k(p)~k(p) + 0 ~ ~ (2.16)

The commutation relations among the new variables
are simply

(2.is)
which diagonalizes Bg, so that in terms of these new vari-
ables the Hamiltonian becomes (up to terms quadratic in
the fields)

co«k = [»kl'", (2.21)

and P k = Pg. Then one finds that nk(p), nk(p) obey
the commutation relation of Bose creation and destruc-
tion operators:

I~~(p) ~k (~)] = ~~,~ 4,= .

After normal ordering, the Hamiltonian becomes

(2.22)

H = N[ D(D —1)x—+ (D —1)gzxCI ]
D —1

+2~x) ) Ai, nk(p) + (higher-order terms),
k @=1

(2.23)

[Lk(p), ~i, (~)] = —~~i, ,i, ~-,; . (2 17) where

We note that the component of wg corresponding to
the zero eigenvalue has vanished from the Hamiltonian at
this order. In fact it vanishes at all orders (see Appendix
A), and is an "ignorable" or nondynamical variable. De-
note this variable by ug, then it turns out that

"k(&) = cii, (&)c"i (&)

is the boson number operator, and

Ci = —) (1 —pk) ~

k

(2.24)

(2.2s)

D

~i, oc ) (1 —e * ~)Ai, (p),

so that, in position space,
D

~(n) oc ) [A(n, p, ) —A(n —j», p,)],

(2.i8)

(2.19)

Note that the number of independent boson degrees of
freedom per site has been reduced to one for D = 2, and
two for D = 3, as we expect for the U(l) gauge theory.

To carry the weak-coupling expansion to higher orders,
one needs to include higher-order terms in the Hamilto-
nian H. Inverting Eq. (2.20), one finds

which is just the lattice version of V - A. One can al-
ways make use of the residual symmetry under time-
independent gauge transformations to fix V'. A = 0. The

~~(p) = — l»~] '"[~~(p) —~-~(p)l
2

(2.26)

while the relationship between the plaquette angle and
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the w~ is given by inverting Eqs. (2.14) and (2.7). For
D = 2 the relationship is particularly simple, since there
is only one component remaining per site for both O„and
~k, and one finds

the relation is a little more complex. :

0~(~) = ) .B~() ~)~k(~) (2.27b)

Ok ——Ak
1j2 (2.27a)

(dropping the "direction" indices). For the D = 3 case,

where the components Bg(p, , v) are listed in Appendix
A. Using (2.26) and (2.27), the higher-order terms in the
Hamiltonian can be written out explicitly.

D = 2 square lattice:

H = N[ 2x—+ 2~xC1] + 2~x) Ak nk
k

1 1 (2m ) 2m

—2Nx),) Sii ) k, , o (6„'i (nt —n g, )j . (2.28)

D = 3 cubic lattice:

H = N[—6x+2~6xC, ]+2~x) a„"') n, (~)
k V

2Nx l, , o- (2N~x)m (2m)! (
"

)

3 2m 2

).(~!.(~ )
—~- ("|')I& ( k~1)*)

)
(1 ~9)

P.=l i=1 v;=1

After normal ordering the boson operators, the first few terms of the Hamiltonian take the following form.
D = 2 square lattice:

H=N —2x+2x i C1—
4

~4 i —c, +
k

1 —Pk 0.'ko.' k + 0.'ko.'

4
t t t+ + 1i2 81+2+3+4 ~ 1 —Pg. W IA g& 3A 4 + AiA2A3 412Ã 24Ãx ~ 4 ~ I

k,.

—4( + )+6
6.4+2+6+4+5+6, p (1 —

Wa, ) (n —1n—2n —sn —4n sn —6360¹x'i' 1 4 ~

k, i=1

+nln2 s 4 5 6) L 1 —2 —s —4 —5 —6 + 2 s 4 5 6 1)t t t t

15(n1n2n —sn 4n —5n —6 + nsn4nsnsn —1n—2 j 20n1n2nsn —4n —5n —6 (2.30)

D = 3 cubic lattice:

H = N —6x+ 2/6xC1—
Q2 2

2~6x —C1 + ' ) (1 —pw) ) na (v)
6 6x 2 Gx

) 1'|~~~a~~,o(V|A, (1)+V2A, (2)+VaA~+V4As(1)[a ~(1) —n4(2))
k.

+V.& (1)(~-4(1) —~'(1)l) + (2.31)

where we adopt the convention of writing 1 instead of k1, etc. , and

A1(&)= n 1(@)n 2()")n s(&)n 4(&) + n1(&)n2()")ns(&)n4(&)

1() ) -2(~) -s(~)n-4(v) + n2(~) s(~) 4(~)n-1(~)]
+6 (&n) 1z(&n) s(nP)n 4(y) —6h1+2 p[n s(p)n 4(p) + ns(y)n4()(()] 1 (2.32a)
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V, (1,2, 3, 4) = c, (t)c, (t)
i=1

4 1/2
V (1 2 3 4) = ~*='"

c, (i) + s (i)s, (i) + sv(i)s, (i)

*(') + "(')
i=1

A2 ——n i(1)n g(1)n s(2)n 4(2) + ni(1)nz(1)ns(2)n4(2) + n i(l)n z(l)ns(2)n4(2)
+ni(l)n2(1)n s(2)n 4(2) —2[n i(1)n 2(1)nt(2)n 4(2) + ni(l)n~(1)ns(2)n 4(2)
+ni(l)n 2(1)n s(2)n 4(2) + ntq(l)n 2(1)nst(2)n4(2)] + 4ni(l)a 2(l)ns(2)n 4(2)

Ss+4 p[n i (1)n g ( 1) + cl!i (1)n2 (1)] Bi+2 p [n s (2)n 4 (2) + ns (2)n4 (2))
As(V)= n i(&)n 2(&)n s(p) —ni(p)n~(V)ns(&)+3ni(&)n~(&)n s(&)

—3ns(V) n-i(C )n-2(V) + 3bi+2, p[ns(i) —n-s(&)]
1 4

(2.32b)

(2.32c)

(2.32d)

(2.32e)

Vs(1, 2, 3, 4) = —
4 . [su(1)sv(2)s (3) ( ) +6 .(1)"(2) II;=,[" (')]

c.(1)c2(2) II;=i ci(')
(2.32f)

V, (1,2, 3, 4) = ' ', , [s*(1)s*(2)s*(3)sw(4)—'*( )s~( )'~( )'~( )]
4ic2(4)s, (1)s,(2)s, (3)

1 C1 Z C2 2

(2.32g)

V(1, 2, 3, 4) = — '
[ ( ),( ),( ),( ) — *( ) *( ) *( ) (4)1

4 "(4)II;'=
c2(4) II,'=i ci(i) (2.32h)

8, 8„, 8, c1, and c2 are de6ned in Appendix A.
It can be seen that the weak-coupling expansion is ef-

fectively an expansion in powers of x / . It is expected
to be an asymptotic expansion, and does not reproduce
(for instance) the nonperturbative effects discussed by
Polyakov [17] which are responsible for "linear confine-
ment" in 2+1 dimensions.

A. Ground-state energy

Using Rayleigh-Schrodinger perturbation theory, we
can treat the ofF-diagonal terms in the above Hamilto-
nian as perturbations. Up to the order 1/z, there are
six perturbation diagrams shown in Fig. 1 contributing
to the ground-state energy in 2+1 dimensions; the con-
tribution of each diagram is

(b) (c)

C3
16&1/2

1
24&1/2

4
1

128x '

~4
AEg ——

128x

AE = — C2
C1
24x

~4
64x

l/
1—3Ci l

4x'~')

1
AEf ——— C3,

16m

(2.33a)

(2.33b)

(2.33c)

(2.33d)

(2.33e)

(2.33f)

where we denote the contribution from Fig. 1(a) as AE,
etc. , and C2 and C3 are defined by

FIG. 1. The perturbation diagrams that contribute to the
ground-state energy Ep/N The points represen. t interaction
vertices; the lines represent boson excitations in the interme-
diate states. To save space, we have not dift'erentiated be-
tween n(1) and n(2) bosons, and difFerent time orderings of
the vertices in the diagrams.
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1

k , k , k , k

I1,'=i (1 —~')"
(I . )1/2

(2.34a)

kl )k2 )k3 )k4 )k5 &kg ][&~„k„A:.,~, (1 &')'~ )

(2.34b)

For 3+1 dimensions, there are two perturbation diagrams [Fig. 1(a) and Fig. 1(b)] contributing up to order x
to the ground-state energy; the contribution of each diagram is

1 1 9) —[V4(l, —1, 3, —3) + V5 (1, —1, —3, 3)][V4(2, —2, —3, 3)
288+6x ~' „„-„

+Vs (2, —2) 3, —3)] + [6Vi (1, —1, 3) —3) + Vs (3, —3, 1, —1)][6Vi (2, —2, 3, —3)
+Vs (3, —3, 2, —2)] + [6'�(1,—1,3, —3) + Vs (1, —1, 3, —3)][6V2 (2, —2) 3, —3)

+Vs]2, —2, 3, —8]]j (1-»)", (2.35a)

1 1 ) ~1+2+3+4 0 6V1(1~ 2~ 3i 4)V1( l~ 2~ 3~ 4)
72 6x~' „-

+6V2 (1,2, 3, 4) V2 (—1,—2, —3, —4) + Vs (1,2, 3, 4) V3 ( 1, —2, —3, —4)
3

+—V4 (1,2, 3, 4) V4 (—1,—2, —3, —4)

3+—Vs (1,2, 3, 4)Vs (—1, —2, —3, —4) (2.35b)

After some calculation, we can get

Q3
AE (2.36)

Using the value given for various lattice sums in Appendix B, one finds, for a D = 2 square lattice of N = L x L
sites

E'o(%): Eo/N = —2x + 1.916183x —0.2294848 —0.0268602x —0.009315x + O(x ~ )

[1.4376x ~ —0.34434 —0.07533x ~ —0.0421x + O(x ~ )] +1
(2.37a)

where the leading finite-size corrections listed here arise
from corrections to the lattice sums, as discussed in Ap-
pendix B.

This prediction may be compared with the numerical
results of Hamer, Oitmaa, and Zheng [19],who computed
strong-coupling series approximants to the ground-state
energy, and matched them at intermediate coupling to a
weak-coupling form:

eo(oo) = —2x + 1.916183x ~ —0.28,
where the first two coefBcients were fixed a priori, while
the constant term was chosen to provide the best 6t. The
agreement with the prediction above is quite good. No
numerical data are available to test the fi.nite-size correc-
tions, as far as we are aware.

For the D = 3 cubic lattice of N = L sites, the weak-
coupling prediction is

eo(N)—:Ep/1V = —6x + 4.77520x —0.475054 —0.04182x i + O(x )

[3.349x' ' —0.6664+ O(x '~')] +1
L4 (2.37b)

This prediction may be compared with the Monte
Carlo results of Hamer and Aydin [7], who matched their
estimated bulk limit at intermediate coupling (x 0.8)
to a weak-coupling form:

eo(oo) = —6x + 4.755x 'i —0.535, (2.38)
where, again, the constant term was chosen to provide
the best fit. It agrees quite well with (2.37b) above.

The data of Hamer and Aydin [7] can also be used
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to estimate the finite-size corrections. Figure 2 graphs
eo(%) against 1/I at x = 0.7 and x = 0.8, where data
exist. Although these couplings are only just inside the
weak-coupling region, it can be seen that the data are well
fitted by a straight line, in accordance with (2.37b). The
magnitude of the gradient of these lines will be considered
later.

B. Dispersion re1ation

The energy E(k) of a single-boson state with momen-
tuin k (that is, the energy gap between this state and
the ground state) can be derived from the Hamiltonians
(2.30) and (2.31) as follows.

D = 2 square lattice:

Q2
E(k) = /1 —q, 4x'~' —C, —

8~&/'2

D = 3 cubic lattice:

c,' & c, l c. c,1+
24x

I,
4x' ') 3x'~' 48x

C6
2x (2.39)

Q2
E(k) = Ql —pk 2V6x —Ci-

4i/6x
AE '~2(k)

~X/2 (2.40)

where

(2.41a)

II,'=i (1 —~*)"
[E;= (1 *) ~ )[X „„,(1 *) ~ j

H,'=i(1 —~*)"
'

[&.'=i(1 —~')"f[Z.„.„., (1 —~')'")

c, =, )
kl, k2, k3, k4, k5

1

kl, k2, ks, k4, ks

b.E '~ (k) =— 2
6&~2m2

+Vs(l, 2,

+V4(1, 2, k, 3)V4(—1, —2, —k, —3)/16]

). ~i+~+s, o[Vi(1, 2, 3, k)Vi( —1, —2, —3, —k)/3
kl, k2, k3

3, k) Vs (—1, —2, —3, —k) /48 +. Vs (1,k, 2, 3)Vs (—1, —k, —2, —3)/36
3

) (1-~')'"

(2.41b)

(2.41c)

(2.41d)

—0.8

—0.9

Besides diagonal terms, the twenty perturbation dia-
grams shown in Fig. 3 for 2+1 dimensions and four
perturbation diagrams shown in Fig. 3(a) for 3+1 di-
mensions contribute to this result.

Now at small k (for D+ 1 dimensions),

gl —pi, as k ~ 0,
z

(2.42)

and using the results in Appendix 8, one finds a linear
dispersion relation at low momentum,

E(k) v(x) [k[ as k m 0, (2.43)

—1.2

1.3
0

I

0.02
I

0.04 0.06

corresponding to a massless boson field. The factor v(x)
is the boson velocity or "speed of light" in the model,
which is then the following.

D = 2 square lattice:

v(x) = 2x —0.479046 —0.104783x
—0.05847x + O(x i ) . (2.44a)

D = 3 cubic lattice:

FIG. 2. Graph of ss(N) vs 1/L for the (3+1)D U(1)
model, taken from the results of Hamer and Aydin [7]. Error
bars for the Monte Carlo data are within the circles.

v(x) = 2x —0.3979337 —0.0619x i + O(x ) .

(2.44b)
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Now upon comparing Eqs. (2.37) and (2.44), one finds
a remarkable connection between the finite-size correc-
tions to the ground-state energy density, and the boson
velocity v(x). It is exactly the same relationship as that
predicted by efFective Lagrangian theory [3] for the O(K)
lattice spin model: namely,

where nI3 is the number of independent, massless boson
fields in the effective Lagrangian, and n i&2(1) is a geo-
metric "shape factor" given by [2]

( ) (1)+2 D+1
'~/3 (D=1),

1.43775 (D = 2), (2.46)

, 1.67507 (D = 3).

This universal relation is satisfied order by order in the
weak-coupling expansion for the present model, as far as
we have computed, with

0.7188v(x)D = 2: nIi = 1, eo(N) —eo(oo)

D = 3: n~ = 2, eo(K) —co(oo) -—
(2.47a)

1.675v(x)
L4

(2.47b)

We expect that Eq. (2.47) could be proved to hold to
all orders in the weak-coupling expansion on the basis
of a diagrammatic identity, although we do not attempt
such a task here.

Using (2.47b) and (2.44b) we predict that for D = 3
the slope of the graph of [eo(K) —eo(oo)] against 1/I
should be —2.01 at x = 0.7 and —2.21 at x = 0.8. The
measured values from Fig. 2 are —2.77 and —3.16, respec-
tively, which are about 30/0 greater than the predictions.
It must be recalled, however, that these x values are only
just within the weak-coupling regime, and not far from
the critical point x, = 0.675(25), so that higher-order
perturbation terms and nonperturbative eKects may be
significant. In these circumstances, the agreement is
probably as good as could be expected.

C. String tension

(b)

The finite-size scaling behavior of the string tension
in this model is another interesting feature, to which we
now turn. The "zero modes, " which we have neglected
hitherto, play a crucial role in this regard.

Separate out the k = 0 terms from the Hamiltonian
(2.9); then one finds no term involving Ap(p, ): this is
an "ignorable" coordinate, and its conjugate Eo(p) is
conserved. Thus

FIG. 3. The perturbation diagrams that contribute to the
energy E(k) of a single-boson state. Conventions as in Fig.
1.

H~=o = ) &oQ)&o(~) (2.48)
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where

Eo(p) = ).E(n p) (2.49)

tion. The first translation-invariant excited state there-
fore consists, at leading order, of a pair of bosons with
equal and opposite momenta ~k~ = 27r/L; and hence the
energy gap in the ground-state sector is

Since the eigenvalues of E(n, p) are integers, it is easily
seen that the eigenvalues of Eo(p, ) are

4~~~
L (2.54)

Eot(p) = Eo(p) =, l(p) = integer,~(p)
~i@'

and thus the zero-mode energy eigenvalues are

(2.50)
at leading order. The predicted 1/L dependence is again
characteristic of a critical point. There are no numerical
data presently available to test this prediction.

Eg o ———) t2(P), t(p) = integer,
N

(2.51) III. EFFECTIVE LACR.ANGIAN THEORY

EstringL (2.52)

exact to all orders in the weak-coupling expansion.
One must then take care in enumerating which states

are physically allowed. This is easily done by considering
the strong-coupling limit of the model, where the basis
states are eigenstates of the electric field. The ground
state has I (p)—:0. Most nonzero values of l are forbidden
by the requirement that % . E = 0; i.e. , there are no
"sources" of electric flux on the lattice. The exceptions
to this rule are the "string" states, in which a string of
electric flux wraps around the entire periodic lattice. The
minimum eigenvalue for such a state is L = L; and thus
the string tension, or energy per link of an axial string
state, is

In view particularly of the relation (2.45), which ap-
pears to hold in weak-coupling perturbation theory, it is
natural to ask whether the weak-coupling limit of these
models can be described by an effective Lagrangian ap-
proach. Leaving aside for the moment the question as
to whether such an approach is valid or not, let us pro-
ceed along the lines laid out by Hasenfratz and Nieder-
mayer [3].

We are interested primarily in the finite-size behavior
of the model. We begin by choosing units h = v = 1,
where v is the "speed of light, " and defining the system
in a Euclidean box L& x L, interpreting Lq ——T where
T is the temperature. To begin with, we shall assume

L, ("cubic" geometry), but we shall eventually be
interested in the T ~ 0 or Lq ~ oo limit ("cylinder"
geometry).

i.e. )

LD —i (2.53)

D. Mass gap

In the ground-state sector, the zero-mode eigenval-
ues l(y, ) are strictly zero, as noted in the previous sec-

exact to all orders in the weak-coupling expansion (but
not accounting, of course, for nonperturbative effects).

For the D = 3 case, the behavior cr 1/L (x ~ oo)
was already derived, and demonstrated numerically, by
Hamer and Aydin [7]. There is a phase transition at
x* 0.675, and beyond that point the finite-lattice
string tension drops sharply and then levels oR' at the
value 1/L . This behavior is characteristic of a critical
point [7], and provides very clear evidence of the line of
fixed points running from x* to oo, which is expected to
occur in this model. For the D = 2 case, the behav-
ior a 1/L (which is again characteristic of a critical
point) would only be expected to occur asymptotically
as x ~ oo. There are no numerical data available to
check this point. There have been many calculations of
the bulk behavior of the (2+1)D model (for recent exam-
ples see Refs. [18—20]), but to our knowledge there are no
reliable Monte Carlo calculations of the finite-size scaling
behavior in the weak-coupling regime.

A. EfFective Lagrangian

In this method one starts by writing down the most
general local Lagrangian L ~ which respects the sym-
metries of the underlying model. The different terms
in the effective Lagrangian are multiplied by unknown
couplings. Accordingly, we assume that an effective La-
grangian can be written in terms of a massless gauge field
A~, and that the leading term in the Euclidean efFective
action takes the form

L
g7 X Ps +gv I"~v (3 1)

where

pv = gAv —vA

In other words, the leading term is assumed to be
simply the same as a free photon field, with unknown
coupling p, . This respects the gauge symmetry of the
original model, whereas pure polynomials in A~ do not.
In general, the eR'ective Lagrangian may be expected to
include other terms as well, which contain higher-order
derivatives of the field. The coupling p, is independent
of T and L [3].

The low-energy excitations carry momenta p
T. Then every derivative in the effective Lagrangian is
counted as p. The field A„should be counted as
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p~ 1~/2, since Auctuations of this size have a Boltzmann
factor of order 1: the leading term in the Lagrangian
density then is

where

, (k;&
Ak = 4) sin (3.8)

1 D+1
4
—p,F„F„p (3.3)

as before. Therefore the action can be rewritten

which is integrated over a region L /T 1/p + .
Higher-order terms in the effective Lagrangian, contain-
ing more fields and/or more derivatives, will therefore be
higher order in p. This forms the basis for a systematic,
low-energy or large-volume expansion, as in the case dis-
cussed by Hasenfratz and Niedermayer [3]. Only two un-
known parameters, p, and v (after restoring diinensions),
enter up to this order.

One can argue, following Hasenfratz and Nieder-
mayer [3], that a finite cutoff will not affect the leading-
order contributions to the free energy density, once one
allows for renormalization of the couplings.

B. Volume dependence of
the ground-state energy

Now we consider a Euclidean cylinder Lq x L in the
Lq ~ oo limit. We use a (hyper)cubic lattice to regu-
larize the effective theory. Put the lattice unit a = 1,
and denote the lattice points by x = (t, x) where t =
1, 2, . . . , Lq, etc. The Fourier transform is de6ned as

D —1

~(~) = -p. ) ) ~~(~)~k(~)d(k)
k v=1

where

d(k) = 4 ) sin , fk„)
&2r

The Euclidean partition function is

D —1

du)i, (v) exp [
—S(~)],

v=1 r

leading to a free energy density

(D —1)
~ (

d(k)
)

k

after integrating the Gaussian form (3.9).
In the Lq ~ oo limit one obtains

(3.9)

(3.10)

(3.ii)

(3.12)

A(x, p, ) = ) e'"'"Ai, (p,), V = L Lg (3.4)
(3.13)

[where A(x, p) is defined on the link starting at x and
pointing in direction p, as in Sec. II]. The action has the
regularized form

S(A) = —p. ) [A(x + p, v) —A(x, y) —A(x + y, p, )

where o.„are the "shape coefficients" referred to ear-(D)

lier [3]. The terms shown here are only the leading finite-
size corrections, which should be universal; bulk terms
which are nonuniversal have been omitted.

The ground-state energy then is simply

+A(x., p)]' . (3.5)
eo(L) = lim f(T, L), (3.i4)

X)2
= ) A~t(i)Ak(i)4sin

X)2

D —1
—) ) art(p, )(ui, (p,)4sin'

~

—'
~

(3.6)

Once the theory has been placed on a lattice, the treat-
ment can be carried out in very similar fashion to Sec.
II. Choose the Hamiltonian gauge Ao ——0, V' - A = 0,
then upon Fourier transforming, the "timelike" plaquette
terms give

) [A(x + t, i) —A(x, i)]

and hence

eo(L) —eo(oo) =—,~,&, (1) + 2—

(3.i5)

Allowing for an "anisotropic" space-time with v P 1
(but still 5 = 1), one arrives at the final result given
in Eq. (2.45). Just as in the case treated by Hasenfratz
and Niedermayer [3], this leading-order behavior is unaf-
fected by higher-order terms in the effective Lagrangian,
and is expected to be an exact, universal formula for the
coefficient of the O(L ) finite-size correction term.

while the "spacelike" plaquette terms give

) [A(x + i,j ) —A(x, j) —A(x + j, i) + A(x, i)]
A A

X)2)g

= 2) .) .~k(v)~k(~)&~ (3.7)

C. Zero modes

Now let us look more closely at the class of collective
or "zero modes" with k = (ko, k = 0), corresponding
to gauge fields which are constant in space, and slowly
varying with time.
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Define the zero-mode variables D = 3 cubic lattice:

Ago(z) = AI 0 g 0(z) (3.16)

S(B)= —p, ) O„(i)Bi,a (i)4 sin
1 . t - -. . ('k )

s ko i2i
—p. ) k00t„, (i)OA, 0(i) as Lt -+ oo,

k, i

(3.17)

or, Fourier transforming,

then the term in the action associated with these vari-
ables is

«(oo) = —6x + 4.77520x i —0.475054 —0.04182x

+O(* ') (4.2)

(ii) Photon velocity:
D = 2 square lattice:

v = 2x ~ —0.479046 —0.104783m ~ —0.05847+

+O( —s/z) (4 3)

D = 3 cubic lattice:

v = 2x —0.3979337 —0.0619x + O(x ) . (4.4)

S(O) —p, dt 0 (t, i) as I t, -+ oo . (3.18)
(iii) Finite-size corrections to the ground-state energy

per site:
D = 2 square lattice:

The conjugate angular momentum density is

vr(i) = p, B(t,i), (3.19)

and the term in the Minkowski space Hamiltonian density
associated with the zero-mode variables is

«(K) —e, (~) - — [1.4376x'~' —O.34434
L,3

—0.07532x —0.0421x

(* ")].
D = 3 cubic lattice:

(4 5)

z(n) = ) ~'(i).
2ps

(3.20)

The discussion from here on is exactly the same as in the
weak-coupling expansion, so that for the compact U(l)
theory one finds the string tension for an axial string
state is predicted as

1
eo(~) —eo(oo) - ——[3.349x' ' —0.6664+ O(x '~')],

(4.6)
for a lattice of N = L sites.

(iv) Finite-size axial string tension:

(4.7)

or, allowing v g 1,

1

2p LD —l (3.21)
exact to all orders in the weak-coupling expansion.

(v) Energy gap in the ground-state sector:

2

0 I,~—l '

ps
(3.22)

This agrees with Eq. (2.53) provided

v2
(3.23)

An identity of exactly the same form holds for the param-
eters of the efFective Lagrangian in the O(2) Heisenberg
spin model in D+1 dimensions [5].

IV. SUMMARY AND CONCLUSIONS

«(oo) = —2x + 1.916183x —0.2294848
—0.0268602x —0.009315x + O(x ) .

(4.1)

%'eak-coupling expansions have been calculated for the
compact U(1) gauge theory in D+ 1 dimensions, defined
by Eq. (2.1). Let us summarize the results here, for con-
venience.

(i) Bulk ground-state energy per site:
D = 2 square lattice:

1
AE - —[4vr~x+ const] .I (4.8)

An "effective Lagrangian" theory [3] has also been con-
structed to describe the long distance behavior of the
model at the critical limit. Its leading term is simply the
free photon Lagrangian density, with coupling parameter
p, (the "helicity modulus" ). From this approach one can
derive a remarkable universal relationship for the leading
finite-size correction to the ground-state energy,

eo(K) —e0(oo) =—,n, (, + 2—(D —l)v (~l 2

+O(L, '~), (4.9)

v2

I,D —lps
(4.1o)

which agrees with Eq. (4.7) provided the parameters p,
and v obey an identity

v2

2ps
(4»)

in terms of the speed of light v, which is satisfied order
by order by Eqs. (4.3)—(4.6), and which is expected to be
an exact relationship. One also obtains an expression for
the string tension,
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Precisely analogous relationships to these have previously
been found to apply [5] to the O(%) Heisenberg spin
model in D+1 dimensions.

We should now address the question of whether this ef-
fective Lagrangian approach is really valid in the present
context. Hasenfratz, Leutwyler, and their collabora-
tors [1—3] have hitherto only applied it to cases where
spontaneous symmetry breaking occurs, and the long
distance behavior is dominated by massless Goldstone
bosons. Here, there is no spontaneous symmetry break-
ing in the conventional sense, and no local order parame-
ter, but we have presumed that the long distance behav-
ior is dominated by massless photon modes.

The approach seems to be internally consistent at least,
in that higher-order terms in the efI'ective Lagrangian
can be shown to involve higher powers of momentum,
and hence one can develop a large volume expansion in
powers of (hv/p, L ), just as in the spin model case.

The approach is almost trivially valid for the noncom-
pact lattice model, which is obtained by truncating the
expansion (2.9) after the quadratic term in 0„. This is a
noninteracting theory, and does indeed reduce to the the-
ory of free photons in the continuum limit as one would
naively expect. In this case, the parameters p, and v are
simply given by the leading-order terms

In the present Hamiltonian version of the model, the
fine-structure constant is related to the parameters p,
and v by

4m p, 2vrv
(4.14)

(see Appendix C). From Eq. (4.4) we can obtain a weak-
coupling expansion for n, which at the transition point
x = 0.675 6 0.025 has a value

4am, = 1.7(2), (4.15)

which agrees within errors with Luck's value.
The compact D = 2 case is more problematical still.

Here there is no massless phase at finite x, and the weak-
coupling results can only apply asymptotically as x ~ oo
[although the bulk ground-state energy seems to be quite
well described by (2.37a) at moderate x values]. Further-
more, Gopfert and Mack [12] have shown analytically
that the model is confining for all values of the coupling
constant e, and that in the continuum limit it reduces
to a theory of free, massive scalar bosons, with a mass
scale that decreases exponentially as the lattice spacing
a goes to zero:

v = 2x'j',
ps 2x )

(4.12a)
(4.12b)

M a —exp( —c2/g ) as a~0,2 2 C1 2

g2
(4.16)

4am = 1.9 + 0.1 . (4.13)

satisfying Eq. (4.11).
In fact, Kovner, Rosenstein, and Eliezer [21] have ar-

gued that in this case the photon can indeed be regarded
as a Goldstone boson, arising from spontaneous break-
down of a global symmetry generated by the magnetic
fIux. They noted the softness of the interactions between
the photons at low energy, and discussed the form of the
effective "chiral" Lagrangian. Their conclusions did not
extend to the case of compact @ED, however.

For the compact (3+1)D model, it has been
proven [22,23] that there is a confining phase at strong
coupling, and a nonconfining phase at weak coupling.
There is a massless, Coulomb phase extending from the
weak-coupling limit to an end point at some finite cou-
pling. The nature of the phase transition at the end
point is still a matter of debate [24,25,7], and may de-
pend on the exact form of the action chosen. Driver [26]
has proved that in a certain sense the lattice model con-
verges to the free electromagnetic theory in the weak-
coupling continuum limit, and so our efI'ective Lagrangian
approach certainly seems valid here.

Cardy [10] has discussed the renormalization of the
fine-structure constant n in the Coulomb phase due to
magnetic monopoles in the compact theory. Confinement
occurs when the monopole susceptibility diverges. He ar-
gues that the transition should occur at a universal criti-
cal value n„by analogy with the O(2) planar spin model
in two dimensions, where the critical index g reaches a
universal value of 1/4 at the transition. Luck [ll] has es-
timated the value of n at the transition in the Euclidean
gauge model, obtaining a value

c, r' c, l1/2

1/L )) Ma exp ~—2g') (4.17)

or, in other words, the predictions apply in an asymptotic
sense at large couplings x, provided the lattice size I is
not too large. It would be interesting to have this checked
by a Monte Carlo calculation.

In fact, Gross [13] has proved that in the "naive" con-
tinuum limit the Villain version of the model, at least,
converges to the naive free electromagnetic theory at the
level of E„or the Wilson loops. The efI'ective Lagrangian
which we have assumed is compatible with this, of course.
It seems therefore that the free photon theory which one
obtains as the "naive" continuum limit describes the sys-
tem at a fixed scale of energy and distance, while the
confining massive scalar theory describes the system on
an exponentially smaller mass scale given by (4.16), and
therefore on an exponentially larger scale of distance.

where g = e a is the dimensionless coupling.
The question then arises, whether the finite-size scal-

ing behavior predicted by the weak-coupling expansion
and the efI'ective Lagrangian approach will really apply
in these circumstances. We expect that it mill apply,
on the basis of the following argument: if one takes the
"naive" continuum limit, keeping the coupling e jixed
as a ~ 0, then the mass scale M goes to zero, and one
indeed obtains a theory of massless bosons with a sin-
gle degree of freedom per site, for which the finite-size
scaling behavior (4.9), for instance, should apply. Thus
the finite-size scaling predictions (4.5), (4.7), and (4.8)
should apply provided we look at energy scales )) M,
1.e.,
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The number of degrees of freedom is the same in each
case, and the ratio between these energy scales becomes
infinite in the continuum limit, of course, and so these
statements are not incompatible.

Perhaps the major point arising from this study is the
fact that for an Abelian gauge theory the interactions
between the gauge bosons are "soft," i.e. , become weak
at low energies [21]. Hence in an effective Lagrangian
theory of this sort, the massless gauge bosons will control
the low-temperature and large-volume behavior of the
system, just as massless Goldstone bosons do.

APPENDIX A

Here we give explicit details of some of the matrices
involved in the weak-coupling expansion. I et us denote

ik . (k li =, 8 = sin
2

' (2) (A 1)

and similarly for y and z components; then the matrix
Ri, defined by Eq. (2.11) is given by
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The eigenvalues of this matrix are given by Eq. (2.12).
The eigenvectors can be used to construct the matrix Ui„
which can be taken as

D =2.

D=3:

((
—e sy

ci ( e "sx
2C 8y Cl

—e * s~sz/cs
ie '* 8 C2

e
—'~s. &

e "sy j
iC "8 Cj

—e &8&8 Cg

2C "8y C2

e **(s2 + s2)/cs
iC 8 C2

(A3a)

(A3b)

where cl —— 8 + 8„, c2 —— 8 + 8„+8„c3= clc2.
The relationship between the gi, and the wi„ from (2.7)

and (2.14), is

where again the components coupling to wi, (3), the eigen-
vector corresponding to Ak(3) = 0, are all zero.

~~(~) = ) Gk(~ v)U~(v ~)~~(a)

so that, in Eq. (2.27),

Bi (p, , v) = ) Gi (y, , o) Ui, (0., v) .

8m8z Cl

Bk = 2
I sysx/ci

—Ci

Zsyc2/Ci 0 )—'Ls~c2/ci 0
o oj

For D = 2, Bp has only one nonzero component:

Bi, = (4„~,0) .

For D=3, wefind

(A4)

(A5)

(A6a)

(A6b)

APPENDIX B

Here we show how to calculate the bulk limits of vari-
ous lattice constants C, etc. , together with their finite-
lattice corrections.

The evaluation of C involves a summation over mo-
mentum k in the first Brillouin zone. For the bulk sys-
tem, the momentum k is continuous over the first Bril-
louin zone, but for the finite-lattice system, the momen-
tum k is discrete. For the square lattice and cubic lattice,
the structure factor pg, the first Brillouin zone for a bulk
system and the discrete momentum k for a finite-lattice
system are the following.

D = 2 square lattice:

1
pic = —[cos(k a) + cos(k„a)],

momentum k: 0 ( k a, k„a ( 2' (bulk system);
2~i - 2~i

k (i) =, k„(i)=, i = 1, . . . , I (finite-lattice system).La La'

(B1)

D = 3 cubic lattice:
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1
pi, = —[cos(k a) + cos(k„a) + cos(k, a)],3

momentum k: 0 ( k a, k&a, k, a ( 2vr (bulk system);
~ 2~' - 2~i - 2~i

k (i) =, k„(i)=, k, (i) =, i = 1, . . . , I (finite-lattice system).La' " Lo, ' La'

(B2)

C (oo) and its finite-lattice corrections can be evalu-
ated by a least-squares fit of C (L) to the form C (oo) +
A/L + +B/L + +C/L + . The results for C„AEg
and AE ~ (k) are summarized as follows.

D = 2 square lattice:

and the Hamiltonian density is

'R= E + —'8 +E-VC+kj"A„.1

2ps 2

Cg ——

Cg ——

C3 ——

C4 ——

C5 ——

C6 ——

0.958091399 —0.7188/L
0.204910823 —0.8180/L
0.04610568 —0.3080/L
0.2844704,
0.08548917,
0.06387607 .

(B3a)
(B3b)
(B3c)
(B3d)
(B3e)
(B3f)

1E)mE'= —E,
v

while the lattice E field obeys

V. E'= j'

(C6)

(C7)

Now comparing (C5) with (2.1) and (3.23), we see that
our lattice E field,

D = 3 cubic lattice:

Ci = 0.97473453393 —0.6837/L (B4a)

LEg = —0.010313x (B4b)

AE ~ (k) = —0.05464(1 —pi, ) ~ as k m 0 . (B4c)

a unit charge produces unit Aux of K'. Hence one G.nds
the equivalent continuum coupling

(C8)

Now let us rescale our units and G.elds to bring the
Lagrangian density into standard form. Let

APPENDIX C

Here we show how the fine-structure constant is related
to the parameters p, and v.

Assume the continuum effective Lagrangian density (in
Minkowski space) is

1
t + t, A" i—(2A",

1
(C9)

2 = ——'F„F""—kj"A„,PV (Cl)
1

v v
(clo)

and the "speed of light" is v, where a term coupling the
field A~ to a charge current j" has been added in. Our
erst task is to establish the value of the coupling k which
corresponds to our original lattice model.

From (Cl), the canonical E field is given by

then the rescaled Lagrangian density is

FPv ~jPAPV

with speed of light equal to unity, and

(Cll)

V

ps
(C12)

and hence

i' 1 OAIE= —p, ]
V'4+—

v Ot)

therefore

4'p,
(C13)

V. E = kj', (c4)

The canonical equation of motion (Gauss' law) reads As a check, note that in the weak-coupling limit x ~ oo,
p, -+ 2x, v —+ 2V x, where x = 1/eo4 and eo is the bare
lattice coupling; and so n —i eo/47r, as expected.

[1] J. Gasser and H. Leutwyler, Nucl. Phys. B307, 763
(1988).

[2] P. Hasenfratz and H. Leutwyler, Nucl. Phys. B343, 241
(1990).

[3] P. Hasenfratz and F. Niedermayer, Bern Report No.
BUTP-92/46 (unpublished) .

[4] J.L. Cardy, in Phase Transitions and Critical Phenom
ena, edited by C. Domb and J.L. Lebowitz (Academic,



48 WEAK-COUPLING EXPANSIONS AND AN EFFECTIVE. . . AAA9

[6]
[7]
[8]
[9]

[10]
[11]
[12]

[»]
[14]

[15]

New York, 1987), Vol. 11.
M.E. Fisher and V. Privman, Phys. Rev. B 32, 447
(1985); H. Neuberger and T. Ziman, ibid. 39, 2608
(1989); D.S. Fisher, ibid. 39, 11783 (1989).
T. Hofsass and R. Horsley, Phys. Lett. 123B, 65 (1983).
C.J. Hamer and M. Aydin, Phys. Rev. D 43, 4080 (1991).
C.J. Hamer and K.C. Wang (unpublished).
S. Elitzur, Phys. Rev. D 12, 3978 (1975).
J.L. Cardy, Nucl. Phys. B170, 369 (1980).
J.M. Luck, Nucl. Phys. B210, ill (1982).
M. Gopfert and G. Mack, Commun. Math. Phys. 82, 545
(i982).
L. Gross, Commun. Math. Phys. 92, 137 (1983).
T. Banks, R. Myerson, and J. Kogut, Nucl. Phys. B129,
493 (1977).
S.D. Drell, H.R. Quinn, B. Svetitsky, and M. Weinstein,
Phys. Rev. D 19, 619 (1979).

[161

[i8]

[i9]

[20]
[21]

[22]
[23]

[24]

[26]

J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).
A.M. Polyakov, Phys. Lett. 59B, 82 (1975).
A. Dabringhaus, M.L. Ristig, and J.W. Clark, Phys. Rev.
D 43, 1978 (1991).
C.J. Hamer, J. Oitmaa, and W.H. Zheng, Phys. Rev. D
45, 4652 (1992).
C.J. Morningstar, Phys. Rev. D 46, 824 (1992).
A. Kovner, B. Rosenstein, and D. Eliezer, Nucl. Phys.
B350, 325 (1991).
A.H. Guth& Phys. Rev. D 21, 2291 (1980).
J. Frohlich and T. Spencer, Commun. Math. Phys. 83,
411 (1982).
L.A. Fernandez, A.M. Sudupe, R. Petronzio, and A.
Tarancon, Phys. Lett. H 267, 100 (1991).
V. Azcoiti, G. Di Carlo, and A.F. Grillo, Phys. Lett. 8
268, 101 (1991).
B.K. Driver, Commun. Math. Phys. 110, 479 (1987).


