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We have carried out spectrum calculations with two flavors of dynamical Kogut-Susskind quarks on
four lattice sizes from 8 X 24 to 16' X 24 at couplings that correspond to chiral symmetry restoration for
a lattice with six time slices. We estimate that the linear spatial sizes of the lattices range from 1.8 to 3.6
fm. We find significant finite-size effects for all particles between the smallest and largest volume with
the larger quark mass that we study, am~ =0.025, where a is the lattice spacing. The nucelon experi-
ences the largest effect of about 6%. We also study a lighter quark mass, am~ =0.0125, on the two larg-
est lattices. Effects of the dynamical and valence quark masses on the hadron spectrum are studied both
directly, by comparing the two simulations, and by extracting mass derivatives from the correlation
functions. We do not find much improvement in the nucleon to p mass ratio as we decrease the quark
mass at this lattice spacing. Finally, we report on an unsuccessful attempt to see effects of the p~2m. de-

cay on the p mass, and on studies of Wilson and Kogut-Susskind hadron masses with large valence
quark masses.

PACS number(s): 12.38.Gc, 11.15.Ha, 12.38.Aw

I. INTRODUCTION AND MOTIVATION

In this paper, we describe a recent lattice QCD spec-
trum calculation with two flavors of dynamical Kogut-
Susskind quarks. As is well known, lattice calculations
can qualitatively reproduce the spectrum of low-lying
hadrons; however, it has not been possible to reproduce
directly the nucleon to p mass ratio [1]. This shortcom-
ing has been independent of whether Kogut-Susskind
quarks or Wilson quarks are used and independent of
whether the calculation is done in the quenched approxi-
mation or with dynamical quarks [2—5]. However, in a
recent series of quenched Wilson quark calculations, it
has been possible to produce hadron mass ratios in good
agreement with the real world when extrapolating in
quark mass, volume, and lattice spacing [6]. An earlier
calculation at 6/g =6.0 suggested that this could be
done merely by extrapolating in quark mass [7]. Getting
the hadron masses correct at 1 (or a few) % precision
would be a great triumph for lattice QCD and would give
one confidence that more detailed quantities such as weak
matrix elements [8] and structure functions [9] could be
accurately calculated. At this point, it is still not clear
exactly what such a calculation would require. That is,
lattice calculations are subject to systematic errors arising
from a number of sources, and we do not yet have a firm
basis for controlling these effects, or for determining
which of them are of most crucial importance.

Aside from the numerical parameters related to a par-

ticular choice of algorithm, there are at least three pa-
rameters that may cause systematic errors: the lattice
spacing a (equivalently, the gauge coupling 6/g ), the
quark mass m~ and the spatial volume V=(aL), where
I, is the number of lattice points in each spatial direction.
In addition, if the number of lattice points in the time
direction is too small, one may not be able to see the
asymptotic falloff of the propagators from which the
masses are calculated. In order to carry out a simulation,
two discrete choices must also be made: whether or not
to use the quenched approximation and whether to use
Wilson or Kogut-Susskind quarks. If QCD is the correct
theory of the strong interaction and we choose dynamical
quarks, then as a~O, V~~, and m approaches its
physical limit, we will get the correct hadron masses.
Unfortunately, each of these limits makes the calculation
more difBcult. With current computers, it is impossible
to approach all of these limits in a single calculation. In
this calculation, we attempt to make progress on large
volume and small quark mass by working at moderately
strong coupling. We have made this choice for the fol-
lowing reasons.

High Energy Monte Carlo Grand Challenge
(HEMCGC) calculations with Kogut-Susskind quarks [2]
at 6/g =5.6 hinted at some improvement in the nucleon
to p mass ratio over stronger-coupling calculations [10]
done at =5.4; however, the errors in the stronger-
coupling results were quite large, and a considerable im-
provement in precision was necessary to make a sensible
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comparison.
We were also very strongly motivated by the striking

finite-size effects seen by Fukugita et al. [11]. Their cal-
culation at 6/g =5.7 on lattices from I.=8 to 20,
showed the pion dropping in mass by almost a factor of 2
from the smallest to the largest size. In fact, the masses
for the nucleon and p are still clearly dropping as I.
grows from 16 to 20. This was not surprising to us in
view of the HEMCGC work at 6/g =5.6 with I.=12
and 16, where it was seen that the nucleon mass had
dropped 10% when the volume was increased. (L = 16 at
6/g =S.6 is about the same physical size as L =21 at
6/g =5.7, where we use the p mass at zero quark mass
to estimate the scale. ) Since no larger volume had been
explored, there was no direct evidence that I.=16 was
sufhcient to control the finite-size effects even with the
larger lattice spacing corresponding to 6/g =5.6. Nev-
ertheless, the calculation of Fukugita et al. with its range
of lattice sizes emphasizes how little we know from simu-
lations about the physical box size required to obtain ac-
curate hadron masses.

It is then clear that if our desire is to study large physi-
cal volumes and find a range of volumes for which there
are small but measurable finite-size effects, we will have
to work at stronger coupling. We wish to find such a re-
gion because we want to demonstrate control over the
finite-size effects at the level of a percent or so. This also
means that we must have very high statistics. Clearly,
one must decide whether it is more important to go to
weaker coupling with lower statistics or to collect higher
statistics at stronger coupling with similar physical
volumes. We have chosen the latter.

The need for high statistics simulations is also a mark
of the maturity of this field. In the heavy quark mass
limit, the nucleon to p mass ratio is —„the ratio of the
number of quarks. In the real world, the ratio is about
1.2. With one Aoating point operation, we can get within
30% of the correct value. Thus, if a simulation can only
get the ratio to 10% accuracy, in all probability it will be
within 3 standard deviations (o ) of the experimental
value. In fact, we already have many such calculations,
and at this point what is needed is a careful comparison
of different simulations to get quantitative control over
the systematic errors. Interesting physical questions re-
quire a higher degree of precision than distinguishing be-
tween 1.5 and 1.2. For example, comparing the Edin-
burgh plots for Wilson and Kogut-Susskind quarks clear-
ly requires very high precision in the masses because the
differences between the ratios are small.

It is also important to explore the light quark mass re-
gion. There have been many calculations with nz„/m
greater than 0.5. However, the lighter quark mass region
is not nearly so well studied. In this region, we expect
the nucleon to p mass ratio to be decreasing toward its
physical value. In dynamical quark calculations, we also
expect that we will have to deal with the effect of the p
becoming unstable [12—17]. This may be one of the larg-
est sources of di6'erences between quenched and dynami-
cal calculations, so it is very important to explore this re-
gion directly rather than just extrapolating from heavier
masses. Again, it is much more feasible to explore this

region with moderately strong coupling than it is to try
to do this with weaker couplings. However, it must be
noted that, at stronger coupling, flavor symmetry is bro-
ken, so that the number of light pions may be smaller
than in nature.

In this moderately strong-coupling calculation, we
have made the pion mass light enough so that a p meson
with nonzero momentum could decay into two pions.
However, we were unable to see the effect of this decay
on the mass of the p.

Having good control of finite-size effects in the
moderate coupling region can be of great value for
weaker-coupling calculations: by determining an ade-
quate physical box size from a moderate coupling calcu-
lation, we avoid having to do calculations at weak cou-
pling with a larger physical box size.

Further information about the extrapolation of hadron
masses to the real world quark mass can be obtained from
the correlation of the hadron propagators with the chiral
condensate Pg. Such correlations can be related to the
derivatives of hadron masses with respect to the dynami-
cal quark mass on our lattices. We have computed these
derivatives; the results do not give any support to hopes
that the spectrum can be extrapolated to the physical
spectrum at our large lattice spacing.

The plan of the rest of this paper is as follows. In Sec.
II, we briefly discuss our simulation and methodology.
Section III details the masses that we have determined
for the hadrons in each simulation, including our analysis
of the finite-size effects, a discussion of finite-size effects
in terms of a very simple picture of nuclear matter, and
the p meson decay. Section IV discusses our calculation
of the derivatives of hadron masses with respect to quark
mass. Section V gives a comparison of Wilson and
Kogut-Susskind Edinburgh plots and discusses their
difference in the region where m /m is large. Section
VI contains our conclusions.

II. SIMULATION AND METHODOLOGY

Our simulation of two fiavor QCD was done using the
version of the hybrid molecular-dynamics algorithm
called the R algorithm in Ref. [18]. The main technical
advance over the spectrum calculation first done with
that algorithm [10] is the use of a wall source [19] rather
than a point source. The other improvements come from
using a bigger spatial size and collecting more statistics
on a faster computer.

For the am =0.025 runs, we use a molecular-
dynamics step size of 0.02 in the normalization of Ref.
[10]. For the mass 0.0125 runs we use a step size of 0.01.
For the N, =12 run, we integrated for 0.5 time units be-
tween refreshing the momenta. For the N, =16 run, we
integrated for a full time unit. In Table I, we summarize
the parameters and lengths of our runs.

In order to obtain the hadron masses, we first fixed the
gauge to lattice Coulomb gauge and then calculated the
quark propagators. We constructed the hadron propaga-
tors with a point sink and a "corner wall" source in
which the (0,0,0) element of each 2 cube on the selected
time slice is set to 1. We then used the full covariance
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N,
amq:0 025 6/g 5@445

t Length Equilibration Equilibrated

TABLE I. Summary of all runs showing spatial size N„
molecular dynamics step size 6t, time step between momentum
refreshes t, total length of run, equilibration time and time con-
sidered equilibrated.

Particle
Particle masses for amq=0. 025

Mass X /NDF
N, =8

C.L.

TABLE II. Particle masses from each run along with the g
of each fit, the number of degrees of freedom of the fit and the
confidence level C.L.

8
8

10
12
16

0.02
0.02
0.02
0.02
0.02

1.0
1.0
1.0
1.0
1.0

1810
2020
1680
1236
2156

256
240
288
200
600

1554
1780
1392
1036
1556

7T2

p2

0.4529(7)
0.949( 12)
1.456(22)
0.779( 11)
0.994( 14)

4.28/7
6.43/5
1.79/4
6.23/5
8.40/5

0.75
0.27
0.77
0.28
0.14

amq:0 0125 6/g 5 415

12
12
16

0.01
0.01
0.01

0.5
0.5
1.0

1196
480

1428

222
198
208

974
282

1220

III. HADRON MASSES

We have analyzed the masses of the pion, p, and nu-
cleon in all of our data sets to study the effects of lattice
size. In addition, we have looked at some states with
nonzero momentum on the 16 lattices. Finally, we have
looked at the delta on the largest volume for both masses
and the smallest volume with the large mass.

The hadron masses for the different lattice sizes are
shown in Tables II and III. Table II contains the zero-
mornentum masses and Table III contains the masses for
nonzero momentum along with some relevant zero-
mornentum masses.

matrix of the propagator to carry out a fit [20]. To com-
pute the covariance matrix, we block together propaga-
tors from several successive time units of running. With
the exception of the nonzero momentum mesons and del-
ta at am =0.025, we measured every two units of
molecular-dynamics time. We used two or more wall
sources at time slices spread through the lattice.

'IT2

p2

7T'2

p2

7T2

p2

N, =10

0.4496(9)
0.909(7)
1.351(11)
0.754(9)
0.950( 11 )

N, =12

0.4488(4)
0.918(4)
1.375(8)
1.43(4)
0.759(4)
0.954(5)

N, =16

0.4500( 10)
0.938( 12)
1.408(21)
0.763( 11)
0.953( 12)

6.56/7
9.85/5
4.49/4
3.46/5

16.20/5

5.55/7
4.87/5
4.61/4
9.07/5
2.41/5

11.25/7
2.77/5

20.33/4
3.9/4
6.05/5
5.33/5

0.48
0.08
0.34
0.63
0.01

0.59
0.43
0.33
0.11
0.79

0.13
0.74

4X 10
0.42
0.30
0.38

A. Finite-size efFects

For the masses in Tables II we block together propaga-
tors from 20 successive time units of running, using two
wall sources on each lattice at t =0 and 12. We have ex-
amined the autocorrelation of the propagator and find
that with few exceptions the autocorrelation is less than
0.1 for a time lag of 10. The pion has larger autocorrela-
tions than other hadron propagators. For the lighter
mass and larger volume, we have also tried to estimate
the integrated autocorrelation time for the pion propaga-
tor at distance 8 from the source. We find that
~;„,=4.0+1.3. Given the above, a block size of 20 time
units seems adequate. As an additional check, for the
heavier mass, we have compared fits with a block size of
20 with a block size of 10. For the pion, the computed
error bars are about 10%%uo bigger with the larger block
size. (If the errors grow in proportion to the inverse of
the block size, our reported errors for the pion might be
about 10%%uo smaller than with infinite block size. ) For the
p meson, the large block size has errors 10% or less

7T2

p2

P
N
7T2

p2

0.3236(4)
0.3235(6)
0.894( 10)
1.284( 18 )

0.676( 11)
0.904( 13 )

4.37/7
4.30/6
8.60/6
4.83/5
7.81/6
1.95/6

0.3244(4)
0.3239(5 )

0.883(6)
1.311(10)
0.699(7)
0.917(8)

N, =16

5.64/7
5.06/6
7.87/6
3.05/5
3.68/6
9.88/6

Particle masses for amq=0. 0125
N, =12

0.74
0.64
0.20
0.44
0.25
0.92

0.58
0.54
0.25
0.69
0.72
0.13
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TABLE III. Energies of the particles carrying momentum, together with corresponding zero
momentum fits.

Particle

Goldstone ~
Goldstone m

ys Xysyt
ysXysy
ys X ysyi
y;Xy; p
y;Xy; p
y;Xy; p
y;Xl p
y;Xl p
y;Xl p

Momentum

2m /L
0

0

Energy
am~ =0.025

0.4478( 3 )

0.5843(12)
0.764(3)
0.835(8)
0.845(6)
0.916(09)
1.001( 11 )

0.995( 13 )

0.947(5)
1.044( 8)
1.036( 10)

Fit range

8—11
8 —11
5 —12
5—12
5 —12
5 —12
5 —12
5 —12
3—10
3—10
3—10

X'/&DF

0.56/2
1.7/2
5.2/4
8.3/4
3.4/4
1.1/4
1.1/4
0.70/4
6.5/4
2.1/4
1.7/4

C.L.

0.76
0.42
0.27
0.08
0.49
0.89
0.89
0.95
0.16
0.72
0.80

Goldstone ~
Goldstone m

ys X ysy»

y, Xysy ~
ys X ysy
y;Xy; p
y;Xy; p

y;Xl p
y;Xl p
y;Xl p

0
2~/L
0

0

0

am~ =0.0125

0.3242( 19)

0.5015(10)
0.710(3)
0.803( 10)
0.800(6)
0.887(7)
0.941( 11 )

0.968( 12)
0.942(7)
1.000( 16)
1.004(13)

7—12
7—12
4—11
4—11
4—11
4—11
4—11
4—11
3—j0
3—10
3—10

8.8/4
3.7/4

15.0/4
3.3/4
3.5/4
2.1/4
6.8/4
6.1/4
1.9/4
7.9/4
5.2/4

0.07
0.45
0.004
0.50
0.49
0.71
0.15
0.19
0.97
0.10
0.26

larger than for the smaller block size. For the nucleon,
the cases we compared were within 3% and neither block
size was consistently larger. We note that the plaquette
has a larger autocorrelation time than the hadron propa-
gators. For the light mass and large volume, we estimate
the integrated autocorrelation time for the plaquette to
be 19+4.

The choice of fit is important, so we detail how we
chose the ones we use for our final mass determinations.
In general, we are trying to balance two competing
effects: we want to get away from the source point to al-
low excited state contributions to decrease, but we do not
want to get too far away as statistical errors become more
important far from the source. We fit the propagators
from D;„ to the center of the lattice for all particles ex-
cept the nucleon. Because of antiperiodic boundary con-
ditions in time, the nucleon propagator should vanish at
the center of the lattice so we ignore that distance from
the source. For all particles except the pion, we report
masses assuming there are two particles of opposite pari-
ty propagating in each channel. For the ~ channel, we
assume two pseudoscalars. In order to pick the optimal
value of D;„, we have considered the combined
confidence level (CCL) of the fits to all four volumes for
the heavier quark mass. For smaH values of D;„ the
confidence levels are very small because there are more
than two particles contributing at short distances. To
minimize statistical errors, we pick the smallest value of

D;„ for which the CCL is reasonable. In Table IV, we
show the CCL for several channels for various D
Focusing on the p channel, we see that with D;„=3the
CCL is infinitesimal, and that it is a maximum with
D;„=4. The same is true for the ~2, p2, and nucleon
channels, and so we report masses from D;„=4fits. We
note that for the nucleon, the CCL is quite small due pri-
marily to poorer fits for N, = 16. For example, for
D;„=4 and S, the other three fits have a CCL of O.S4
and 0.44, respectively.

For the ~ channel, we see that there are a large number
of fits with quite reasonable confidence level. We have
previously reported masses for this channel based on
single-particle fits with D;„=8 [21]. For the single-
particle fits, it turns out that the rate of approach to the
symptotic mass is quite dependent upon N, . The one-
and two-particle fits as a function of D;„are shown in
Fig. 1. For the smallest lattice, N, =8, we reach a pla-
teau with D;„=S. For N, =10 and 12, we require
D;„=7 and 8, respectively. For N, =16, it is not even
clear that we see a plateau. As we increase the size of our
wall source, we get a stronger coupling to the excited
states and, thus, it requires a greater distance from the
source to suppress that contribution. For instance, the
ratio of the excited state to ground-state amplitudes is
about —0.23 for N, =8 and steadily increases in magni-
tude to —0.32 for N, =16. For our table, we choose
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TABLE IV. Combined confidence level of all the fits with

different spatial sizes for amq 0 025 for various values of D;„.

D tnin &DF CCL

29.9
27.6
23.2
17.8
19.0
14.5

32
28
24
20
16
12

0.572
0.483
0.510
0.598
0.268
0.271

75.8
23.9
20.6
17.9

24
20
16
12

3X10 '
0.246
0.196
0.118

Nucleon

71.3
31.2
26.7

20
16
12

1X10
0.013
0.008

37.9
24.8

22.4

24
20
16

0.036
0.209
0.132

2821.7
32.3
28.3

P2

24
20
16

0.000
0.040
0.029

D;„=2 for two reasons. First, larger values of D
may have somewhat larger values of the CCL, but they
also have larger error bars. Second, although D;„=1
has an even larger CCL than D;„=2,for N, =8 there is
a tendency for the pion mass from the two-particle fits to
decrease as we increase D;„. We do not see this for oth-
er values of N, . The D;„=2 fit may be somewhat less
than one standard deviation high for N, =8.

For the lighter quark mass am =0.0125, we only have
two volumes, and there is no reason to use the same
values of D~j„as for amq 0 025 since the opposite pari-
ty and excited state masses and coupling s will be
different. Looking at the fits for both volumes, we choose
the D;„=3 fits for all particles. But we also show
D;„=2fits for the m.

To summarize, we report masses from two particle fits
in each case. For the lighter quark mass, we always use
D;„=3, but for the heavier quark mass D;„depends
upon the channel. For the ~ channel, we report masses
with D;„=2, while for the other channels, we use
D;„=4. For the nucleon, we omit the center plane of
the lattice because of the antiperiodic boundary condi-
tions.

The mass of the pion is determined with the greatest
precision. The study of gauge fixed hadron wave func-
tions [22] indicates that the pion has the smallest spatial
extent, so we expect the smallest finite-size effect for this
particle. First, we focus upon the am =0.025 results.
From N, =8 to 16, we find the pion mass (in units of the
lattice spacing) varies by 0.0041(8)(5. Icr ). This is a 0.9%
effect on the pion mass. In Fig. 2, we plot the pion mass
as a function of the spatial size of the lattice. We also
have plotted a line indicating the size of a 1% effect.
Perhaps a11 of the finite-size effect for the pion is between
N, =8 and 10. That is to say, the values for N, =10, 12,
and 16 are not significantly different given the size of our
errors. For the lighter quark mass, we only have results
for the two larger lattice sizes, N, =12 and 16. Here we
do not see a significant difference. It would be very valu-
able to have results for N, =8 in order to compare the
two quark masses over the same range of N, . To convert
from N, to physical volume, we must determine the lat-
tice spacing. If we do this by assuming the p mass takes
its physical value for am =0.0125, then N, =8(16) cor-
responds to 1.8(3.6) fm. (If we were to extrapolate the p
mass to zero quark mass, the smaller box would be 1.73
fm. )

The nucleon appears to have the largest finite-size
effect of the three particles. From N, =8 to 16, we find

the nucleon mass difference is 0.081(23), or a 5.9+1.7%
effect. This is much larger than for the pion, ' however,
because the errors are larger, its statistical significance
(3.5o ) is not as great. The nucleon mass as a function of
lattice size is shown in Fig. 3 for both quark masses. In
both cases, the nucleon mass is lower for N, =12 than it
is for 16, though not significantly so.

For the p masses, the difference is 0.031(13) between

N, =8 and 16, or a 3.4% effect which is nonzero by 2.4o. .
Referring to Fig. 4, we note that the point at N, =12 is
lower than that at 16, as was the case with the nucleon.
Once again, however, the difference is not statistically
significant. For the lighter quark mass, as we only have
results for N, = 12 and 16, we cannot determine a
significant finite volume effect; the p mass is about one o
heavier for the smaller volume.

We would like to compare our finite-size effects with
those observed in weaker coupling by preparing a graph
of the p mass as a function of the box size. Because we
have different values of a, the dimensionless values of
am calculated on the lattice will differ quite a bit. For
each coupling, we fit the p mass as a function of volume
to determine p . Then we plot m /m versus the physi-

cal box size aN, . This requires a knowledge of a which
we determine by assuming that am =770 MeV. It
would be possible to refine this by extrapolating the had-
ron masses in m to determine the scale from the p mass
at the point where, for example, m /m takes its physi-
cal value. (In fact, for the weaker-coupling results, the
extrapolation to zero quark mass has been done and
would result in a 16%%uo reduction in the lattice size [23].
For our results, there would be an 8%%uo reduction. ) Extra-
polating our results to infinite volume using the form
am „+b / V, following Ref. [23], we find that
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8 x24
0.48

am =0.025 6/g =5.445 (2 runs)
I I I ~

I
I

(a)

10 x24 azn =0.025 6/g =5.445
0.48

I

i s s s

I
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(b)

0.46

6

0.44

m«Nl
X

X

0.46—
N
N
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6

Q.44—
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X
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X
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x '2 4 am
q

Q Q25 6/ g 5 445
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I
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I
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(c)

042 I I s s t a

16 x24 am =0.025 6/g =5.445
0 48

I
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I

s i s c

I
s

(d)

FIG. 1. The pion mass from both one and
two-particle fits as a function of D;„. (a)
1V, =8, (b) N, =10, (c) X, =12, and (d) N, =16.
Note that the pion mass as determined by the
single particle fits requires larger values of
D;„ to reach its asymptotic value as we in-
crease N, .

0.46—
N

K
6

0.44—
X

0.42
0

S 2 e e gx x
X

X

I I I I I I I I

5
distance

10

0.46—

X
0 44 — x

X

X

042 I

0

X
SE. X

5
distance

10

am =0.911 at 6/g =5.445, and that am =0.409 at

6/g =5.7. In Fig. 5, we show our results with dia-
monds. The crosses are the results of Ref. [11],and the
square is from Ref. [4]. In addition to the data, we have
plotted two horizontal dotted lines showing an error band
of +2%%uo. We also show a vertical line at a size corre-
sponding to T, '. It has been known for quite some time
from quenched calculations that when the spatial size of
the lattice approaches T, ', there are large effects on the
hadron masses. This has been called "spatial
deconfinement. " Since our simulation parameters corre-
spond to the finite-temperature crossover for six time
slices, by using a minimum X, of eight, we avoid such an
effect.

Some time ago, an analytic study of finite volume
effects based on pion exchange was carried out by
Liischer [24]. This approach gives the leading terms for
large volume. It predicts that the nucleon mass should
approach its asymptotic value with a correction roughly
like exp( mL). Practi—cal lattice calculations are not
done in this regime, and lattice calculations have seen
effects much larger than predicted. A power-law ap-
proach to the large volume limit has been suggested on
the basis of the analysis in Ref. [23]. That work considers
lattice studies where the box length is less than 1.8 fm.

Because of the periodic boundary conditions, we may
think of our nucleon in a box as nuclear rnatter at
nonzero density. A lattice calculation done with periodic
boundary conditions is a little like finite density nuclear
matter because the nucleon "sees" the forces from its
periodic images. Of course, the images all move in lock-
step unlike real nuclear matter where the nucleons move
independently. We make the further simplification of
considering a "nuclear crystal" of hexagonal close packed
nucleons to estimate the nucleon spacing. A large nu-
cleus is more like a liquid than a crystal, but the
difference in density between water and ice, for instance,

o 460

arrr =0.0P5 6/g =5.445

0.455—

0.450 — 1%

0 445 I t I I I I I I I I I I
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0.325 I I I I
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J
am =0.0125 6/g =5.415

0.330—
(b)

0.375 — 1%

0 320
0 5 10 15 20

N,

FIG. 2. (a) The pion mass as a function of lattice spatial size
for amq 0 025 A line the height of a 1% effect is plotted near
the left edge of the graph. (b) Same as (a) except for
amq =0.0125.
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2 ' 0

x m =0.025

&& m =0.0125

xa6/g=5p
0 6/g =5.445

1.4
8

1.0—

is not that great.
The density of nuclear matter is 0.16 nucleons per cu-

bic fermi [25/. The density of hexagonal close packed
balls is I /4&2R, where R is the radius of the ball. Solv-

ing for the diameter of a nucleon, we get 2.6 fm. Thus,
we expect that if the box size is less than 2.6 fm, we are
squeezing the nucleons together. At higher density, the
energy per nucleon will rise (rapidly if there is a hard-
core potential). As we decrease the density, we expect
the energy per nucleon to approach the nucleon mass
from below. If we take our lattice spacing from the rho
mass with amq =0.0125, a box size of 2.6 fm corresponds
to 11.5 lattice spacings for the current calculation.

How large might we expect the binding to be in this
picture? If we look at the curve of binding energy per nu-

cleon, it is largest for iron at about 9 MeV per nucleon
[25]. In a real nucleus, there is Coulomb repulsion while

there is none in the lattice calculation. Neglecting the
repulsion, nuclear matter models set the binding energy
at about 16 MeV. So in this picture, we expect less than
a 2% lowering of the nucleon mass from the nuclear at-
traction. Of course, finite-size effects can be much larger

I

I

I I I I

I

I I I I

0.96— & m =0.025

&& m =0.0125

0 5 10 15 20
N,

FIG. 3. The nucleon mass as a function of lattice size for
both quark masses. The vertical line at the left edge of the
graph corresponds to l%%uo error for the heavier nucleon mass.

I I I I I I I I I I I I I I I I

0 1 2 3 4
size(fm)

FIG. 5. The p mass divided by the infinite volume mass as a
function of the linear size of the box. The diamonds are the
values from the current calculation. The crosses and square
come from weaker-coupling results [11,4]. The horizontal lines
correspond to a 2% error band. The vertical line shows the spa-
tial size corresponding to T, .

for small distances as we squeeze the nucleon, but here
we have a higher value than the mass. Another reason
that the effect should be smaller on a cubic lattice is that
there are only six nearest neighbors, whereas for a hexag-
onal lattice there are 12.

Despite this nice physical picture, whether we are just
seeing a statistical fluctuation at %, =12 we cannot yet
say. Certainly, it would be interesting to fill in the point
at 14 and repeat the calculation with a smaller lattice
spacing where one can study more points along the curve.
Of course, lattice calculations with boxes of size (1.8 fm
would not be sensitive to the effects near the minimum,
and it is not clear how they could be used to make an ex-
trapolation to the infinite volume limit.

In the Kogut-Susskind formalism, we have a second
pair of local meson operators called the rr2 and p2. (See
Refs. [26—28].) Going from N, =8 to 16, the n.

2 mass de-
creases by 0.019(11),or 2.5%%uo. This is a 1.7 o. effect. We
see a similar pattern for the p2, where the mass decreases
by 0.040(16), or 4.2%%uo. The difference is 2.6 o. The m2

and p2 masses as a function of lattice spacing are shown
in Figs. 6 and 7.

0.94— B. Flavor symmetry of pion and p

0.92

0.90

0.88—

0.86
0

FIG. 4.
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Same as Fig. 3, but for the p.

20

I I I I I I I i i I I I t I I

The m2 and p2 should be degenerate with the m and p,
respectively, if Aavor symmetry is realized. At nearly this
coupling, it is known from Ref. [10] that for the heavier
mass there is considerable Aavor symmetry breaking for
the pion but not the p. Of course, the errors were much
larger in the previous work. In the current calculation,
we find the p2 is about 4%%uo heavier than the p for both
quark masses with the largest lattice size. For every case,
we find the p2 is heavier than the p. For the pion, on the
other hand, we find the m2 to m mass ratio increases as we
decrease the quark mass. This is exactly what we expect
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since the ~ is the Goldstone mode of the U(1) symmetry
of the Kogut-Susskind quarks, but the m.

z is not. The
mass ratio is 1.69 and 2.16 for the heavier and lighter
quarks, respectively. The HEMCGC Collaboration also
Ands that this mass ratio is increasing as the quark mass
decreases [29]. In contrast, the MT, Collaboration [30]
finds that m /m is independent of quark mass, al-

though it is not equal to 1. The calculation here reaches
a smaller value of m /m than Refs. [29,30].

I I I I I I

1.00—

0.95 —~"

I I I I I I I I I

C. Mesons with momentum

We have also measured masses for mesons with
nonzero momentum. Our primary motivation was an at-
tempt to see the effects of the decay p —+2~, but the re-
sults can also be used to see how closely the energy-
momentum relation for the lattice mesons approaches the
continuum answer. In the real world, the p decays
strongly, with a width that is a large fraction of its mass.
In lattice calculations with dynamical quarks, the pion
mass has previously been large enough that the p mass
was below the two pion threshold. As the pions are made
lighter, we expect the coupling of the p and two pion
states to affect the p mass [14—17]. Indeed, when the two
pion state is really lighter than the p, the conventional
lattice calculation of the p mass would not find the p at
all, but rather a two pion state. Although it turns out
that our attempt to see the effects of the p-m. -m coupling
was unsuccessful, this issue must be sorted out before
dynamical QCD simulations can produce realistic hadron
phenomenology, and we hope that our attempt may be
useful to further studies.

With Kogut-Susskind quarks, we expect to have four
degenerate flavors of valence quarks in the continuum
limit. Thus, we have sixteen S-wave pseudoscalar mesons
(fifteen pions and an g) and sixteen S-wave vector
rnesons. Each Dirac component of each of these quark
flavors is a linear combination of the one component
quark fields at each site of a 2 hypercube on the lattice.
The mesons are most easily described in the notation of

I I I I I I I I I I I I I I I I

)( m =0.025

0.90—
)( rn =0.025
&& m =0.01P5

I I I I I I I I I I I I I I I I

10 15
N,

20

FIG. 7. Same as Fig. 3, but for the p2.

Ref. [26], where they are created by the operator
QI, ;„XIs,„„P. Here I, ;„ is a Dirac matrix giving the
spin structure of the meson —y~ for the pion and y; (or
yoy, . ) for the p. I „,„„is a 4X4 matrix giving the flavor
structure of the meson. With nonzero lattice spacing the
pions are not degenerate, and only one pion, the y5Xy5
pion, is an exact Goldstone boson as m —+0. With the
quark masses and lattice spacings we used, this member
of the pion multiplet is considerably lighter than the oth-
er members and it is most promising to look at a vector
meson which can decay into two Goldstone pions. As il-
lustrated in Fig. 8, this requires that I fi,„„for the vector
meson be I, so that the trace over the flavor matrices
does not vanish. Thus, we use the sink operator
Py; X 3.g, which is a nonlocal p meson.

Two Harari-Rosner quark-flavor diagrams contribute
to the decay of the p meson, as shown in Fig. 9. The
quark-antiquark flavor wave functions in the scalar and
adjoint representation of SU(N ) are the generators T' of
U(N). They are normalized to Tr(T'T't)=1. Then the
flavor contribution to the partial width for a specific
channel a —+bc is

—g Tr(T'T T')Tr(T" T'tT't)

0.7 —&) rn =0.0125

I I I I I I I I I I

10 15
N,

FICs. 6. Same as Fig. 3, but for the m2.

the two terms corning from the two respective diagrams.
For example, for the physical decay p~vrmusing SU(2).
flavor, we have 6 =2gz. With our conventions this is

g in the usual normalization. (See, for example, Ref.
[31].) The experimental value is approximately g =36.

To make approximate contact with the staggered fer-
mion simulation, which has an effective SU(4) flavor, we
assume flavor independence and symmetry-breaking im-
munity. That is, the flavor part of the decay amplitude is
the same, regardless of the number of flavors, and regard-
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less of the degree of symmetry breaking apparent in the
spectrum. Thus we keep the same value for gz and in-
crease the number of flavors to 4, ignoring the eQ'ects of
Aavor symmetry-breaking mass shifts. We must now take
account of three new circumstances. First, our vector
meson propagator is composed of propagators of only
one valence quark and one antiquark, corresponding to
only the first Harari-Rosner diagram. Second, the virtual
quark loop is suppressed by a factor of 2 because our
two-flavor action includes the square root of the four-
flavor fermion determinant. Finally, Aavor symmetry
breaking singles out a unique intermediate state involving
the lightest pion channel, namely, two y5 pions. Thus the
flavor factor for the decay most strongly aff'ecting the
vector meson propagator in question is

Gt r r =g Tr(lyly~)/8~ /2=g~/8, (2)

where the factor of —,
' normalizes the three-Aavor wave

functions and the factor of —,
' comes from the square root

of the fermion determinant. From the experimental p
width we then have G

&
=—', =2.3.16

Let us now turn to ihe kinematic factors. For this
analysis we follow Ref. [16]. The coupling of the p to two
pions is described by an e6'ective Lagrangian p,.~B,.~
where p; is gy;f. Converting this interaction to a lattice
form, we calculate the dispersion relation for the vector
meson with nonzero momentum p along the z axis. The
dispersion relation up to one-1oop order in the pion-
rnduced self-energy rs

Gl (co,p ) '=2(cosh' —1)—pL
—2(1 —cosp ) —G, &,Sl (co,p )=0,

where the subtracted self-energy SI (co,p ) is given in terms of the unsubtracted self-energy III (co,p ) by

8SI (co,p ) =III (co,p ) —III (O,p ) — III (O,p )(cosh' —1) .
acoz

The unsubtracted self-energy is

(4)

1 I'
4 sinhE, [coshE2 —cosh(co —E, ) ] 4 sinhE2 [coshE, cosh(~+—E2 ) ]X' g' Z

with

(k„k„k,) =2~(n„,n, , n, )/L,

(6)

for integer n„,n, n, E [0,L —1] and polarization factor

P = [(sinhE, —sinhE2)e, +(sink, —sink&„)E

+ (sink, —sink 2 )e~ + (sink» —sink2, )e, ]

and

coshE, =I+@ /2+(1 —cosk )+(1—cosk )

+(1—cosk, )

coshE2 = 1+p /2+ ( 1 —cosk„)+ ( 1 —cosk )

+[1—cos(p —k, )] . (8)

The momenta of the intermediate pions are given by
kr =k and kz =p —k and the energies by

Finally, for polarization parallel to the momentum, the

A
B

(v)

FIG. 8. Quark propagators for a rho decaying into two
pions. For each particle the Aavor matrix is shown. The Cxold-
stone pions have a y5 in flavor space, requiring the decaying rho
to have the unit matrix.

FIG. 9. Harari-Rosner graphs for the pion self-energy contri-
bution to the p propagator. The second diagram can be ob-
tained. from the first by exchanging the two pions on one side of
the diagram. For the meson propagators only the first diagram
is computed here.
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polarization vector for the initial p meson is given by

g~~,
= —sinp p /V sinhoP +sinp p (9)

=sjnh~/Qsinhco + slnP p (10)

cos(2vrx/L )+cos(2my /L )+cos(2lrz/L ),
to produce an antiquark with one unit of momentum.

Consider a p with momentum in the z direction,
p=(2'/L )z. This mixes with a two pion state where the
pions have momenta 0 and (2'/L )z. Again from the po-
larization factor P, we see that the "parallel" p, 1(y, g,
should couple to this two pion state while the "perpen-
dicular" p's, gy„g and gy g, should not. The signal that
we look for is a difference in the mass of the parallel and
perpendicular rho mesons (averaged over momenta in the
x, y, and z directions).

The nonlocal p we are using involves the product of
quark and antiquark propagators displaced by one lattice
link. In taking these products, we parallel transport
along the lattice link. As a control on our calculation, we
also calculated the propagator for a nonlocal pion involv-
ing propagators displaced by one lattice link,

PY5(spin) + y5yi(flavor)4 '

When this pion has nonzero momentum, we may also
separate it into "parallel" and "perpendicular" com-
ponents depending on whether i is the direction of the
momentum or perpendicular to the momentum. We do
not expect to see differences between these propagators.

Table III contains results for the local and one-link p
and pion with zero and nonzero momenta. These propa-
gators were obtained from 200 stored lattices at
am =0.025, with four consecutive lattices blocked to-
gether. For am =0.0125, all 611 lattices were used with
a block size of 8. In both cases, we used four wall sources
per lattice. We chose different fits for the local pion and
rho in Table III than Table II because for this compar-

——0, and for polarization perpendicular to
the momentum by

&ix =1

and e =e =e =0.lt ly Lz

As seen from the expression for the polarization factor
I' above, the amplitude for the p-m-~ coupling vanishes as
the relative momentum of the pions vanishes. Thus, at
least one of the pions must have nonzero momentum. If
we consider only momenta of zero or 2vr/L, the most
favorable case for the p mass to exceed or equal the two
pion threshold is a p with momentum 2'/L mixing with
two pions with momenta 0 and 2m /L. In order to get a
good overlap of our wall source with a p with nonzero
momentum, we use a different wall source for the quark
and antiquark propagator. For the quark propagator, we
use our usual corner wall source. (We use the lattice
Coulomb gauge. ) Roughly speaking, this produces a
quark with momentum zero. For the antiquark source,
we set the (0,0,0) elements of the cubes to

ison we wanted to use the same distance range for both
zero and nonzero momentum.

For am =0.025, the nonzero momentum y; XI p is
very close to the threshold for decay into two Goldstone
pions: 0.448+0.584=1.03, while for am =0.0125 this
p is above the two pion threshold: 0.324+0.501 =0.83.
Evidently, Table III shows no significant difference be-
tween the parallel and perpendicular y,. X I p masses. It
is interesting to observe that all of the above masses come
reasonably close to the continuum dispersion relation

p =2 /L mp =o + (2' /L )

Is this result consistent with what is expected from the
experimental value of the coupling? Our assumptions of
flavor independence and symmetry-breaking immunity fix
the mixing strength 6 between the bare p and pion
channels in terms of the experimental width of the p. We
make the final assumption that our source and sink cou-
ple more strongly to the bare p meson than to any of the
bare two pion channels. This assumption is borne out in
our conclusions that mixing to the pion channels is in-
herently weak. Then the lattice propagator for the ob-
served vector meson channel is simply proportional to
GL(co,p ). This propagator has a series of poles corre-
sponding to the renormalized p meson and the several
pion channels. The nth pole in GL (ol,p ) at co=m„and
residue P„contributes a term

NP„ I exp( m„ t ) +ex—p[ —m„(L t ) ]$— (12)

to the time dependence of the correlator. Thus with our
final assumption, the relative strengths of all spectral
components can be predicted from the ratios of the resi-
dues in GL (co,p ). Shown in Table V are results of a cal-
culation of pole positions and residues for parameters ap-
propriate to the two quark masses considered and with il-
lustrative choices for the value of the bare rho mass.
In the case pL =1.0 and p =0.4478, appropriate to
am =0.025, in the upper part of the table, the lowest
bare two pion pole in the parallel channel (1.0297) is very
close to the bare rho mass (1.0366) resulting in strong
mixing. Nonetheless, the splitting of the two resulting
states (1.0228 and 1.0349) is far too small to be distin-
guishable in our simulation. The other two-pion states
are so weakly coupled that they have negligible effect on
the correlator. Thus the whole spectrum would appear to
our analysis as a single state with mass approximately
1.036. In the corresponding perpendicular channel, the
renormalized p is the strongest state and dominates the
correlation with its mass of 1.026. Already without at-
tempting to further tune the bare rho mass, we see that
our am =0.025 results are consistent with this scenario.
Turning next to the case pz =0.96 and p =0.3242 ap-
propriate to am =0.0125 in the lower part of the table,
we note that the lowest bare two pion state is well below
the bare p. However, it is so weakly mixed that it would
be invisible to our analysis. We can only say that our null
results are consistent with expectation.

Thus a variety of circumstances conspire to make it ex-
tremely difficult to observe the effects of p decay on the p
propagator. First, Aavor symmetry breaking inherent in
the staggered fermion scheme reduces the number of
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TABLE V. Pole positions and relative residues in the vector meson channel after taking account of
mixing with two pion states.

Polarization Pole Residue Bare pole

p~ =1.0, G =2.3, p~=0. 4478
Representative momenta (2m /1. )

1.0228
1.0349
1.2824
1.4459
1.4866

0.505
0.335
0.001
0.001
0.000

1.0297
1.0366
1.2820
1.4455
1.4865

(0,0,0)+(0,0, 1)
(bare p)
(0, 1,0)+(0, —1, 1)
(0,0,2)+(0,0, —1)
(1,1,0)+( —1, —1, 1)

1.0265
1.2830
1.4871

0.838
0.003
0.001

1.0366
1.2820
1.4865

(bare p)
(0, 1,0)+(0, —1, 1)
(1', 1',0)+(-'1,-'1, 1)

pz =0.92, 6 =2.3, p =0.3242

0.8244
0.9933
1.1325
1.3116
1.3628

0.002
0.841
0.006
0.002
0.001

0.8248
0.9940
1.1316
1.3110
1.3626

(0,0,0)+(0,0, 1)
(bare p)
(0, 1,0)+(0,—1, 1)
(0,0,2)+(0,0, —1)
(1,1,0)+( —1, —1, 1)

0.9913
1.1341
1.3637

0.833
0.016
0.003

0.9940
1.1316
1.3626

(bare p)
(0, 1,0)+(0,—1, 1)
(1,1,0)+( —1, —1, 1)

available channels by nearly a factor of 15. Second, with
our lattice dimensions, 6nite-size effects produce such a
coarse spacing of the discretized continuum that too few
m. —m states are available for mixing. The result is that
when the bare rho meson is close enough to mix strongly
with a ~—~ state, the consequent splitting is too small to
resolve, and when it is farther away, the mixing is too
weak to produce a signal. In either case, the resulting
spectral component is practically indistinguishable from
the unmixed p meson.

These results underscore important limitations in-
herent in the staggered fermion scheme with present lat-
tice sizes. To make further progress obviously requires
larger lattices and much weaker coupling to give a more
realistic representation of the two pion continuum. In
the mean time, more direct methods observing an explicit
p~m~ transition hold more promise for making a com-
parison with experiment [32].

masses of the nucleons from these two sources differ out
to fairly large separation [34].

In Fig. 10, we show the effective masses for the local
nucleon from the corner wall source and both the local
and nonlocal nucleons from the even wall source for
am =0.0125. Results were similar at am =0.025. We
see that at short distances the nucleons from the even
source have smaller effective masses than the nucleons
from the corner source, as found by the HEMCGC group
[34]. However, by the time the effective mass has leveled
off the two sources give the same mass within statistical

1 6

am =0.0125

1.4—

D. Another source and the delta baryon

In addition to the "corner wall" source used for most
of our mass estimates, we have also used "even" and
"odd" wall sources [33,34], which couple to the local nu-
cleon, a nonlocal nucleon and the delta. The even wall
source is constant over all sites on one time slice, while
the odd wall source assigns +1 to even spatial sites and—I to odd sites (in Coulomb gauge). The product of
three even sources contains representations of the
discrete lattice symmetry group sufficient to yield the
desired states [33,35]. We have calculated propagators
from this source on 200 stored 16 X24 lattices with
am =0.025, and on the entire data set with
am =0.0125. Simulations with two flavors of Kogut-
Susskind quarks at 6/g =5.6 show that the effective

.~ 12—
O
Q

1.0— o = even nonlocal nucleon
0 = even local nucleon
&& = corner local nucleon

P 8
0 2 4 6 8 10

Distance
FICx. 10. The effective nucleon mass as a function of the dis-

tance from the source plane for am =0.0125. Close to the
source, the corner wall source and even wall source given
different values; however, the two sources agree by the time the
effective masses have leveled off.
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errors.
The even source couples to the delta. For am =0.025

reasonable fits are obtained. We may estimate the 6 mass
as 1.43(4) from a two-particle fit to distance range 2 —9,
which has g =3.9 for four degrees of freedom
[confidence level (C.L.) = 0.42]. For am =0.0125, we
did not get good fits for the 6 and we are unable to quote
a mass.

E. The Edinburgh plot

In Fig. 11, we display our Edinburgh plot for the
current runs. We note that to determine the error in the
nucleon to rho mass ratio, we have just added the errors
as if there is no correlation between the two masses.
When we looked at correlations between the two masses
for X, = 16, am =0.0125, we found the correlation
varied between —0.6 and 0.08 depending on the block
size used in averaging the data, so there is no significant
effect on the error of the ratio. Looking first at the four
points for am =0.025, we see that there is some finite-
size effect between the smallest size N, =8 and the others.
However, given the size of the error bar for X, =8, this is
only about a one standard deviation effect. The octagon,
corresponding to N, = 16, is our best estimate of the ratio
for this quark mass. For the lighter mass, 0.0125, we
have the two points to the left with I /m =0.36. The
fancy cross, corresponding to X, =12 is, unfortunately,
the lower of the two values. The reader will recall that
for the lighter quark mass the rho mass fell as N, was in-
creased from 12 to 16, unlike the heavier quark mass.
We had hoped that the nucleon to rho mass ratio would
drop significantly below 1.5 as we decrease the quark
mass. Of course, we are working at a fairly strong cou-
pling and do not expect to get the physical ratio (shown
as the plus sign at the lower left) in the chiral limit. A re-
cent quenched calculation with Wilson quarks has inves-
tigated how the ratio decreases with the lattice spacing
[6]. After extrapolation of hadron masses to the chiral
limit and taking account of finite volume effects, this
work finds that the nucleon to rho mass ratio approaches
the physical value when extrapolated to zero lattice spac-

1 ~ 6

1.4 0.0125, N, =16
x; m=0. 0125, N, = 12
o; m=0. 025, N, =16
+ extrapolated

0.0 0.2 0.4 0.6 0.8 1.0 1.2
m„/m,

FIG. 12. Edinburgh plot showing extrapolations to lighter
quark mass. The N, =16 results for the heavier quark mass and
either size for the lighter quark mass are used as a basis for the
extrapolations.

ing. With current computer resources, it is possible to
work at smaller lattice spacing within the quenched ap-
proximation. To study the chiral limit, we have fit the p
and nucleon masses and m to linear functions. In Fig.
12, we show the mass ratios from the resulting fits with
1V, =12 and 16 for the lighter quark mass. We see that
the extrapolations differ by about two standard devia-
tions, and the extrapolation based on %, =16 is not
significantly different from 1.5. Figure 13 compares the
current mass ratios with those based on the HEMCGC
calculations [29] at 6/g =5.6, and others done at 5.7 by
the Columbia [36] and Kyoto-Ibaraki-Kofu [37] groups.
The figure details which points correspond to which
simulations. This figure shows the chiral extrapolation
for the 6/g =5.7 results of Ref. [37]. Here, mz/m falls
to about 1.43, which is smaller than our stronger-
coupling result. Nevertheless, this is still far from the
physical ratio of 1.22.

1.6 I I I I I I I

1.5—

1.4— &: m=0. 0125, N, = 16
m=0. 0125 Ns= 12

0: m=0. 025, N, =16
o: m=0. 025, N, =12
o: m=0. 025, N, =10
x: m=0. 025, N, =8

+

0.0 0.2 0.4 0.6 0.8 1.0 1.2
m„/rn

FIG. 11. Edinburgh plot showing all six mass and volume
combinations considered here.
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FIG. 13. Edinburgh plot comparing our results with those of
previous spectrum calculations with 6/g =5.6 and 5.7. The
line is the chiral extrapolation of the results of Ref. [37].
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IV. HADRON MASS DERIVATIVES

Hadron spectrum calculations require enormous com-
puter resources, so it is important to maximize the infor-
mation extracted. Techniques exist for using a simula-
tion with one coupling to infer information about nearby
couplings [38]. Since the current lattice simulation uses
an unphysically large quark mass, it is of interest to at-
tempt an extrapolation of our measurements to small
quark mass. In particular, we would like to see hadron
mass ratios approach their physical values as the quark
mass is lowered. This might be accomplished by comput-
ing hadron mass derivatives. These are determined by
taking numerica1 differences of masses obtained from fits
to propagators with slightly different quark masses. One
of the propagators is the usual operator measured on the
lattice. The second is formally obtained from the first by
a Taylor series expansion:

valence quark mass m, and the second is the dynamical
quark mass md. This distinction is, of course, not physi-
cal. We imagine that the propagating quarks with mass
m, that make up our hadrons are moving in a back-
ground field generated by gluons and dynamical quarks
with mass md. By taking md and m, to be independent,
we get two contributions to the hadron mass derivative:
Bmh /Bmd and Bm), /Bm, . To compute ()( G ) /()m„
(G(m+dm„)) is measured directly on the original lat-
tice (m„=md =0.0125) with dm, =0.01md. We checked
to see that this change was in the linear region. Because
we use the same set of lattices for both valence quark
masses, the small changes in the hadron masses are not
overwhelmed by statistical Auctuations. To find the
propagator with slightly different md, we must compute
()(G(m ))/()md which turns out to be a simple correla-
tion of G with fg:

(G(m+dm)) =(G(m))+ a&G(m)&
dm

Bm
(13)

where the integrals are over the gauge field U and

where m is the quark mass. The mass dependence of the
propagator is given explicitly by

f [dU]G(m )e s™
(G(m)) = (14)

[dU]
—s(m)

f (dU)G(m„)e

f (dU)e

with

=
& Gqq) &G & (q—q)

TrM

1 a&G(m)& 1 a
~md ~ ~md

(16)

(17)

nfS=S,„,— Tr[lnM(m )]gauge 4

is the QCD action. Here M is the usual fermionic matrix
with diagonal elements am, nf is the number of quark
flavors, and V is the space-time volume of the lattice.
When measuring operators on the lattice, we are free to
choose the mass appearing in the operator differently
from the mass used in the simulation. The first is the

We use a Gaussian random estimator to compute
TrM '. The trace of any matrix 3 can be computed by
introducing the Gaussian integral

R dR Rj A jkRk exp —R * R
TrA = (18)f Q,. dR;dR;* exp( —R * R )

Inserting the above into (Pg), and dropping the indices
that run over position, spin, and color, we find

n f (dU) f (dR dR*)(R*M 'R )e e s f (dR dR*)e

f (dU)e
(19)

Instead of actually integrating over R and R*, one or
more random vectors with probability distribution func-
tion exp( —R * R ) are created and R *M 'R is calculat-
ed for each random vector. The estimate of the trace is
the average over the vectors. Our measurements de-
scribed below were made using 12 random vectors for gitr
on each lattice. The m, p, and X propagators were com-
puted using six corner wall sources per lattice. Unless
stated otherwise, the results given below were computed
from correlated fits to two particle propagators (or oppo-
site parity for the p and N ) where the data were grouped
in blocks of six propagators per lattice times eight lattices
(48 in all). All measurements were made on the N, =16
lattices with the lighter quark mass, am =0.0125.

The various mass derivatives measured this way are
given in Table VI. The errors are from an ordinary jack-

I

knife estimate where the data were grouped in blocks of —,
'

of the number of lattices and one block was omitted from
each fit. The errors were insensitive to block size. g and
C.L. refer to fits to the original propagator with no
blocks omitted.

The valence mass derivatives are quite good. The
values shown are from the best fits over a wide distance
range. Values obtained over different ranges with one- or
two-particle fits agreed within errors to the values shown.
The m is seen to have the largest derivative which is
reasonable since it is expected to go like Qm as m~ goes
to zero. Ratios of X and p and p2 derivatives fall between
1.36 and 1.86 for the various ranges given in Table VI,
which is in agreement with the naive expectation of 1.5
based on a simple constituent mass model of the hadrons.

The dynamical mass derivatives obtained from the
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Particle
Valence mass derivatives

()mh/9m, Fit range y /NDF C.L.

p
p
p2

p2
N
N

12.32(2)
12.34(3)
6.2(1.1)
5.1( 1.6)
5.6(6)
7.0(1.0)
9.5(1.0)
9.5(4.2)

3—12
4—12
3—12
4—12
2—12
4—12
3—11
4—11

4.20/6
1.25/5

17.21/6
6.62/5
7.81/7
7.05/5
4.53/5
2.28/4

0.65
0.94
0.01
0.25
0.35
0.22
0.48
0.68

TABLE VI. Derivative of hadron masses with respect to
valence or dynamical mass. p, 0.4

0.8

v
8

A

8
v 04

A
0.4

I I I I

(a)

I I I I

I I I I

I I I I

I I I I

Particle

p
p
pz
p2
N
N
N

Dynamical

Bmz /Bmd

—0.11(16)
—0.22(11)

5.9(4.0)
12.0( 3.6)
9.9(1.3)

20.9( 3.0)
8.3(3.9)
6.4(4.6)

15.2( 13.8)

Fit range

2—12
4—12
3—12
4—12
2—12
4—12

3—9
3—11
4—11

x /NDF

4.82/7
1.25/5

17.21/6
6.62/5
7.81/7
7.05/5
3.36/3
4.53/5
2.28/4

mass derivatives

C.L.

0.68
0.94
0.01
0.25
0.35
0.22
0.34
0.48
0.68

v
A

0.8
II

~v 00
A

~~ -O.2
II

—0.4
V

I

(b)
I I I I

10

FICr. 14. (a) Correlation of the ~ effective mass with gg(t).
The effective mass was evaluated at distance of 5 time slices
from the source. Error bars are jackknife estimates. (b) Corre-
lation of the pion propagator at distance 5 with gg on different
time slices.

a
Bmq M

a a+
Bm, 8md M

is —2.0(5.5) and our best value for

simulation are less reliable. While the derivatives agree
within errors for different fit ranges (except for the p2),
there is a large jump as the minimum distance increases.
In fact, the derivatives double over the fit ranges shown.
As a check, the correlations were recomputed using pit
only over the fit range instead of the entire lattice. This
produced similar results. To investigate further, we com-
puted the correlation of the effective m mass with gg at
each time slice. The result is shown in Fig. 14(a). The
effective mass is positively correlated with gttt on one side
and anticorrelated on the other. This is consistent with
Fig. 14(b), which shows that the pion propagator for a
given time slice is positively correlated with gf on both
sides of the time slice, but the slope of the correlation
with t changes at the time slice.

With the derivatives in hand, we can attempt an extra-
polation to small quark mass. Our values give no indica-
tion that at this lattice spacing the physical values of the
hadron masses can be reached by simply lowering the
quark mass. From Table VII, we see that our best value
of

(1.485 —l.23 ) /0. 0125=20.4

TABLE VII. Derivatives of the ratio of nucleon mass to p or

p2 mass.

B(m /m )

Bmd
B(m~/mp )

—2.98(7.2)

is required.
The nucleon mass derivative is also related to the

pion-nucleon sigma term o. & which has been previously
computed on the lattice with dynamical quarks [3,39].
With cr tv

=m c)m&/c)m, we find cr & /m = 17.S(4.3) and
24.7(10.6) for fitting ranges 3 —9 and 4—11, respectively.
The ratio of contributions to o. & from dynamical and
valence quarks is given by the ratio o tv/cr"tv which we
find to be 1.9(4) and 2.8(2.3) for the two fitting ranges
mentioned. These values were computed at P= 5.415 and
am =0.0125. Our results are in rough agreement with
those of Patel, who finds that cr„z/cr"'tv is between 2 and
3 with dynamical Wilson quarks. The values given here
are for m /m =0.136, and taken with those from Patel,
show that the dynamical and valence quark mass contri-

Bm M
P2

is —9.9(4.6) where the errors are jackknife estimates.
To reach the physical value M&/M =1.23 at zero quark
mass a derivative of approximately

()md
B(m~/m )

Bm,
B(m~/m )

Bm

—9.63(4.2)

0.9(2.0)

—0.3( 8)
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butions to o ~ seem to be independent (within errors) of
m /m over a wide range (0.136—0.8).

1.8 I I I

)

I I I

V. COMPARISON OF WILSON
AND KOGUT-SUSSKIND EDINBURGH PLOTS

An issue of critical importance to lattice simulations is
whether there are difFerences between Wilson and
Kogut-Susskind quarks. In the quenched sector, it is well

known [40] that there is a scale difference in the hadron
masses that decreases as 6/g is changed from 5.7 to 6.0.
Values of mz/m greater than 1.5 have been seen for
Wilson quarks when m /m ~0.75; however, the evi-

dence for this peak in the Edinburgh plot is much weaker
for Kogut-Susskind quarks. This is partially a matter of
there being less work with Kogut-Susskind quarks for
these values of m /m . With dynamical quarks especial-
ly, the expectation has been that the interesting region is
where m /I is small. Since the determination of the
nucleon to rho mass ratio at the chiral limit involves an
extrapolation that may involve rather large quark masses,
it may be important to compare the two fermion regulari-
zations for all values of m„/m . To this end, we have
calculated the hadron spectrum with various large
valence quark masses (hopping parameters) for both reg-
ularizations in our ensemble of gauge fields generated
with dynamical quarks. For Kogut-Susskind quarks, our
valence quark masses ranged from 0.2 to 1.6, in incre-
ments of 0.2 and we show plots for the p and p2. For the
Wilson valence quarks, we used ~ values of 0.14, 0.15,
0.155, 0.16, and 0.165. The results are shown in Fig. 15.
For the p2 (octagons), as the quark mass increases,
m& jm reaches its infinite mass limit m jm =0.7 and

p2 P2

then remains constant. Perhaps more importantly, the
light quark mass result is also significantly lower for the
p2. There is no good reaso~ to prefer the p over the pz in
presenting the Edinburgh plot, except that it is conven-
tional. Clearly, until these differences are understood,
one should plot both. The lines through the Wilson re-
sults represent fits to the masses and extrapolations to
higher values of tc. A quark model calculation [41] of the
hadron masses as a function of quark mass produces an
Edinburgh plot that contains the "hump" seen with Wil-
son valence quarks. We see that the Kogut-Susskind p
results have a peak, but the shape is different from the
Wilson case, whereas, the pz results have no peak where
m /m )0.7. Additional work at weaker coupling is
necessary to verify that the two quark formulations give
equivalent results. Studies with either quenched or
dynamical quarks would be valuable.

VI. CONCLUSIONS

We have studied the hadron mass spectrum in full
QCD with two flavors of Kogut-Susskind quarks at a

linear fit in ic

quadratic fit in tc

—quadratic fit in 1/tc

&& Wilson
O Kg p
OKSpz

1.0
0.0 0.5

rn /rn
1.0

FIG. 15. Edinburgh plot. The octagons and squares are for
Kogut-Susskind valence quarks, with the left most point corre-
sponding to m, =md. The diamonds are for Wilson valence
quarks. Also shown are several extrapolations from the Wilson
points toward the light quark limit. The quadratic fit in ~ or
K ' are much better than linear fits. The two crosses represent
the physical and infinite quark mass values.

fairly large lattice spacing. The large lattice spacing al-
lows us to run with large physical volume and a reason-
ably small pion mass. EfFects of the spatial size of the lat-
tice were studied, as well as effects of the valence and sea
quark masses.

We find small but statistically significant effects of the
lattice size on the masses. Most of this effect comes be-
tween N, =8 and 12. These results should be useful in
setting parameters for further simulations, as well as for
comparison to models of the box size effects on QCD en-
ergies.
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