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Screening mass from chiral perturbation theory, virial expansion, and the lattice

V. L. Eletsky*
Institute for Theoretical Physics, Bern University, CH 90-1P Bern, Switzerland

3. I. Kapusta
School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55)55

R. Venugopalan
Theoretical Physics Institute, University of Minnesota, Minneapolis, Minnesota 55/55

(Received 28 May 1993)

We calculate the electric screening mass in hot hadronic matter using two different approaches,
chiral perturbation theory and the relativistic virial expansion with empirical phase shifts, and
compare the results to each other and to a gas of free pions and p mesons. We also compute the
electric screening mass for noninteracting, charged bosons with mass m on a lattice to study likely
finite-size effects in lattice gauge theory simulations of continuum QCD. For a lattice of given size,
the continuum can be properly represented only for a window in the ratio T/m.
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I. INTRODUCTION

The advent of a new generation of heavy ion accel-
erators is making it possible to produce hadronic mat-
ter at high temperatures and densities. Specifically, we
refer to temperatures near the pion mass and densities
greater than the density at the center of atomic nuclei.
Little is known about the properties of these hot and
dense systems and of their expected transition to a phase
consisting of quarks and. gluons. In principle, both of
these phases are described by QCD, but the structure
of this theory is especially complicated for the above-
mentioned region of temperatures and densities. It is
therefore reasonable to use a wide array of techniques to
investigate different aspects of the behavior of hot and
dense hadronic matter.

One way in which we can investigate the properties of
this many-body system is to study its response to a small
perturbation using linear response theory. This response
can then be expressed in terms of correlation functions
unperturbed by the presence of the probe. For example,
we could ask for the response of an electrically neutral
system to an applied, static, electric field. The system re-
sponds to a weak perturbation, such as a heavy, charged
lepton or hadron, by dynamically Debye screening the
long-range Coulomb force. The Debye screening length
is independent of the external perturbation.

In Ref. [1] the inverse of the Debye screening length,
the electric screening mass, m, ~, was studied in hot QCD.
Interestingly, this can be done in two different ways. One
way is to compute the photon self-energy. The electric
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screening mass squared is then the static, infrared limit of
the time-time component of the self-energy. Another way
is through an identity which relates the electric screening
mass squared to the pressure

fO'P )
) g=o

where p is the electric charge chemical potential. Both
ways of computing the screening mass are exact.

In this work, we will use Eq. (1) to calculate the elec-
tric screening mass for a hot pion gas. This is done
using three very different techniques, namely, the rela-
tivistic virial expansion, chiral perturbation theory, and
lattice theory, which are discussed in successive sections.
In the virial approach, dynamical information obtained
from empirical two-body scattering phase shifts is used
to compute the pressure for an interacting pion gas with
a nonzero chemical potential and hence, from Eq. (1),
the electric screening mass. In the following section
the screening mass is computed using finite tempera-
ture chiral perturbation theory, extended to the case of
a nonzero chemical potential. The results of chiral per-
turbation theory are found to agree exactly with those of
the virial expansion in the low temperature Boltzmann
limit, T &( m, to order (T/m ) ~z. Finally, we compute
the screening mass for free, massive, bosons on a lattice.
The ratio of the screening mass on the lattice to that in
the continuum is studied parametrically as a function of
T/m, where m is the mass of the boson. This gives an
indication of how large a lattice is needed in order that
lattice gauge theory properly approach the continuum
QCD limit. See Fig. 1, taken from Ref. [1].

Each of the above-mentioned methods, as might be
expected, has its advantages and disadvantages. The rel-
ativistic virial expansion demonstrates how the inhuence
of both resonant and repulsive interactions may be in-
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free quarks 10~x6
get a better physical understanding of the immense in-
formation that may in principle be available from both
heavy ion experiments and future lattice gauge theory
simulations, especially with the Teraflop project.
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FIG. 1. The square of the electic mass in units of e T
vs temperature. At low T the two lines represent the con-
tributions from pions, and pions plus p mesons. At high T
the three lines represent the contributions from up and down
quarks computed to the indicated order in the QCD coupling.
The data points are from lattice @CD calculations on a 10 x 6
lattice. For free massless up and down quarks on a lattice of
this size m, ,&/e T = 35/36 as indicated by the dashed line in
the upper right-hand corner. In this Ggure the pion mass was
taken to be one-half the p mass in order to facilitate compar-
ison with the lattice results. Taken from Ref. [1).

eluded in calculations of the electric screening mass at
temperatures close to the pion mass. Since the virial ex-
pansion can be expressed as an expansion in powers of
the density, the results of this approach very likely con-
tain the right physics for dilute systems. If, however, the
system is dense, three- and higher-body interactions are
significant. Extracting this information from the empir-
ical phase shifts is difBcult. The chiral perturbation the-
ory approach is of interest since it contains many of the
low energy properties of QCD. It also explains some of
the low energy hadron phenomenology successfully. Fur-
thermore, since the Lagrangian is known, many quanti-
ties of physical interest can be studied. A limitation of
this approach, though, is that resonant interactions are
not fully accounted for. These may be expected to con-
tribute significantly for temperatures close to the pion
mass. Currently, lattice gauge theory is a popular tech-
nique to understand the structure of strongly interacting
matter. This includes studies of various correlation func-
tions of mesons on the lattice. While lattice gauge theory
is in principle very powerful, finite-size effects are impor-
tant. Analytic calculations for free, massive, bosons on
the lattice are therefore very useful in quantifying the
sizes of these effects.

In addition to being of intrinsic physical interest, our
calculation of the electric screening mass is also illustra-
tive because these techniques may be used to compute
dispersion relations and other response functions. The
importance of alternative techniques to calculate various
correlation functions has been discussed by Shuryak [2],
who has used both experimental phase shifts as well as
QCD sum-rule techniques to compute dispersion rela-
tions for hot hadronic matter [3]. In this way we may

ln Z = ln Zo + ) zz' z2' b(iq, iz),
~1 )&2

(2)

where zz. ——exp(Pp~) for j = 1, 2 are the fugacities. The
virial coefficients b(iq, iz) are written as

V d P
dE exp P(P + E )—/

4~i (2~) s

gx Tr, , ;, AS '(E) S(E)).

b(ig, i2) =

In the above, the inverse temperature is denoted by P
while V, P, and E stand for the volume, the total center-
of-mass momentum, and energy, respectively. The labels
ii and i2 refer to a channel of the S matrix which has
an initial state containing ii + ~2 particles —the trace is
therefore over all combinations of particle number. The
symbol A denotes the symmetrization (antisymmetriza-
tion) operator for a system of bosons (fermions) while
the expression with the double-headed arrow is defined
as

S B BE S=—S BS BE —BS BE S.
The subscript c refers to the trace over all connected
diagrams. The lowest virial coefficient Bz = b(iq, iz)/V
as V —+ oo corresponds to the case where ii ——i2 ——1.

At temperatures close to the pion mass, the system is
assumed to be sufBciently dilute for the hadrons to inter-
act chieQy via elastic collisions. This assumption-greatly
simplifies Eq. (4) since the S matrix can be expressed in
terms of the phase shifts b& as

The relativistic virial expansion has been used recently
to compute the thermodynamic properties of a dilute gas
of interacting hadrons [4,5]. This approach is appealing
because it allows one to systematically include the effects
of both resonant and repulsive interactions in Gnite tem-
perature hadronic matter by relating the state variables
to the known, empirical, phase shifts. In this section we
will use the relativistic virial expansion to compute the
electric screening mass for a gas of interacting pions. It
will be shown in the following section that the virial ex-
pansion results also provide an excellent check of chiral
perturbation theory calculations with nonzero chemical
potentials.

The relativistic virial expansion, introduced by Dashen
and co-workers [6], relates thermodynamic state variables
of a system of interacting particles to the S matrix. The
partition function is separable into a product of the non-
interacting partition function Z0 and an interacting term
which is proportional to bilinear products of the S matrix
and its inverse. The logarithm of the partition function
can be written as
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S(E) = ) (2l + 1)(2I + 1) exp(2h, ),

1

2~sP
dE E'K, (PE) ) g, ,

M l,I

The factor g~ r = (2l + 1)(2I + 1) is the degeneracy of the
(l, I) channel and M is the invariant mass of the inter-
acting pair at threshold. The prime over the summation
sign denotes that for given I the sum over I is restricted
to values consistent with statistics. If the phase shifts
b& ~ 0 as E —+ M, an integration by parts yields

1
B2 ——

27r3
dE E K) (PE)) g( y8, .

where t and I denote the angular momentum and isospin,
respectively. The above assumption also implies that
two-body interactions are dominant relative to the three-
body and higher terms. The two-body interactions are
expressed via the second virial coefBcient

For further details on the behaviour of the virial coeK-
cients and expressions for the thermodynamic state vari-
ables, we refer the reader to Ref. [5].

In the pion gas, the 7r+, 7r, and 7r have chemical po-
tentials +p, —p, and zero, respectively. The chemical
potential in Eq. (2), pq + p, 2 = pg, corresponds to the
net conserved charge Q in each scattering channel con-
tributing to Eq. (2). The vrvr pressure due to interactions
can then be expressed as

~int Q ~int
Q

Q

where for —2 & Q & 2 —2y, & pg & 2p. The different era
channels contributing to the second virial coefficient B2 g
for each Q can then be decomposed, with the appropri-
ate Clebsch factors, into the corresponding spin-isospin
channels. After a little algebra, the interacting vr7r pres-
sure in the above equation is finally written in terms of
the spin-isospin phase shifts as

gint
27r3

dE E Ki(PE) 2 cosh(2pP)8O + 2 cosh(pP)(8o + 38') + ho + 38' + ho

The total pion pressure is given by the sum of the above interacting pressure and the ideal gas pressure

unideal
6vr2

dp p' 1 1 1
(~—P) /T 1 g (~+V) /T 1 to~/T 1

+ + (10)

The electric screening mass for the interacting pion gas can then be obtained from Eq. (1). We get

2 =m
e m OO) K2(Pnm ) + m.'~T 2n=1 7r 7n7r

dEE Ki(PE) (58O + 38')

The second term in the above equation is the contribution
to the electric screening mass &om the interactions. In
Ref. [4] it was shown that the pressure of an interacting
pion gas was nearly identical to the sum of the pressures
of an ideal gas of pions and (Maxwellian) p mesons up to
rather large values of the temperature. This was due to a
near exact cancellation of the isospin weighted sum of the
spin-zero phase shifts leaving only a contribution from
the b&-resonant phase shift. Unlike the pressure, however,
the screening mass for an interacting 7rvr gas is not the
sum of the screening masses of an ideal gas of vr and p
mesons. In Fig. 2 we plot the electric screening mass
squared (in units of e T ) for an ideal gas of ~'s and p's
as well as for an interacting pion gas using the expression
in Eq. (11). They agree fairly well at lower temperatures
but disagree by 10% or more at temperatures above the
pion mass. The screening masses in the two cases differ
because of the presence of a repulsive b02 piece in the
interacting mar screening mass in Eq. (11). In its absence,
they would agree almost exactly for the temperatures
considered.

In the above formulas, the virial expansion has been

CO
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FIG. 2. Square of electric screening mass in units of e T
vs temperature. The dashed line is the contribution from a
free gas of 7r mesons; the chain-dashed line includes free p
mesons as well. The solid line is the square of the screening
mass for an interacting pion gas computed using empirical vr7r

phase shifts in the relativistic virial expansion.
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truncated at the level of the second virial coeKcient; only
two-body collisions were considered. At temperatures
above the pion mass, three- and higher-body interactions
will begin to contribute significantly. Since it is virtually
hopeless to expect to obtain complete experimental data
on the S matrix for m particles in and n particles out,
the extension of this approach to high densities is limited.
One would have to rely on models of the many-body in-
teractions, as obtained from effective Lagrangians, for
example.

III. CHIRAI PERTURBATION THEORY

In this section, we will use the method of effective chiral
Lagrangians [7—9] to calculate the electrostatic screening
mass in a pion gas at R.nite temperature. We will general-
ize the calculation of the pressure of a pion gas performed
in Ref. [9] to the case of a finite chemical potential as-
sociated with electric charge and then obtain m, &

using
Eq. (1).

The partition function is given by a Euclidean func-
tional integral

which involves four coupling constants jt~, ..., l4. The
quadratic P terms in Ll l describe free mesons of mass
mp. The terms of higher order in P in Ll l and higher
or'der Lagrangians are considered as perturbations.

Inclusion of a finite chemical potential p related to the
electric charge is equivalent to coupling the pions to an
external constant electromagnetic vector potential with
only temporal component A4 ———ip being nonzero and
imaginary. This changes time derivatives in Eqs. (14)
and (16) to covariant ones:

ya ~ Dabyb (a Jab pb ePab)yb

This results in the corresponding frequency shifts in the
imaginary time propagators of charged pions [10],

1
G~ =

(Lda+zp) +p +mp

where u = 2' Tn. It is important that the same shift
also occurs in the vertices containing derivatives.

The pressure corresponds to the nonvacuum part of
the thermodynamic potential 0,

P(p) = sp —0,

The leading term corresponds to the nonlinear 0 model:

L( l = -'E Tr [a Uta U —m (U+ Ut) (14)

where U(x) = exp[i(8(2;)7 /F] is an SU(2) matrix com-
prising the pion field P(x). The integration should be
performed over all configurations which are periodic in
Euclidean time, U(x, z4 + P) = U(x, x4). The effective
Lagrangian L,ff is expressed as an infinite set of terms
with increasing number of derivatives or quark masses,

L,( ) + I,( ) + I,( ) + . . .

0 = — lim —ln[Tre l "~l~ ],
T

vmoo V

where eo is the zero temperature and chemical potential
limit of O. Thus, to calculate P(p) one should consider
all closed-loop diagrams involving all possible couplings
from I g. We will con6ne ourselves here to the second
order in the density of the pion gas and thus take into ac-
count only the diagrams with one and two thermal loops.
First we consider the noninteracting pion gas thermo-
dynamic potential 0+, and pion propagators and their
derivatives at the origin:

The coupling constant E is the pion decay constant in
the chiral limit and mo is the pion mass in the lowest
order in quark masses:

T) in[~ + (~„k ili) ], (21)

mp = — (m„+ mg) (uu + dd) . (15) G~(0) = "'P
T

(2vr)s ) (u + ((u„+ ip)
(22)

Neglecting isospin breaking in the quark masses, the next
order Lagrangian may be written in the form [9] DoG+(o) = dsp . i((u„+ ip)T

(2vr)s - cu2 + ((u„+ ip)2 ' (23)

Ll i = ——li Tr (a„Uta„U)

—-i,T (a„vta.v) T (a„vta.v)

+ —l4mp Tr (a„Uta„U) Tr (U+ Ut)
8

(ls + l4) mp [Tr(v + Ut)]
16

and similar expressions for second derivatives. Here

mo + p . Note that a single spatial derivative
would give a zero result, and that DpG~(0) is zero at
p = 0. These terms with temporal covariant derivatives
contribute new terms to P(p) which are absent at p = 0.
The corresponding temperature-dependent Gnite parts of
the above expressions are

ds

(2vr) s
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G~(0) -+ g1(v) = d'J 1 1 1

(2~)' 2~ e~-+~l/ —1 e~~ —~l/+ (2s)

DpG~(0) m +—1 c)gp(V)
2 Bp

d p 1

(2~)' e~ +~~/T —1 ~(~—~)/T 1
(26)

We also introduce two combinations of gp(V) and g1(V):

g(v) = 3gp(v) +3~.'gp(v)»(l ) g(v) = 3g. (v)gp(0) + -', ~.' [gp(0)»(v) + gp(v)g1(o)1 . (27)

To simplify comparisons with the case V, = 0, we follow the notation of Ref. [9] in which the two-loop formula for the
pressure contained functions gp, g1, and their combination g = 3(gp + m gpg1), so that gp(0) = gp, g1(0) = g1, and

g(0) = g(0) = g. In terms of gp(V), g1(V), g(V), and g(V) the two-loop pressure at V g 0 takes the form

=1 mp 2 /'Ogpu
'

P(v, ) = 2[g + 2g, (v, )1
—8~', 4g, (v, )g, (o) —g,'(o)

+,', (ll + 2f2) [3gl (o) + 4g1 (V)g1 (o) + 8gl (V)]—64,P, f. g1(o) + 2g1(V) —
2

mo —
2 2 1 /Bgp)

4

13g, (0) + 28g, ()M) + 4g1(V)g1(0)—
s /'c)gp l

m2 ( )9)M )
1 1

1f, [g(0) + 2g(V)] + 2l2 [g(0) + 3g(V) + 2g(V)]) —
2 4 [9g(0) + 38g(V) + 40g(V)] . (28)

Here we introduced the renormalized coupling constants
[8] l1, ..., l4 through the relation

in Eq. (28) the pressure may be written as a series:

l, =p,
/

A+ l; /,
1

327l r
(29)

P(V) = T(m T/2a) / ) B (V) exp( —nm /T) . (32)
n=l

where A is a logarithmically divergent term and p1 ——1/3,
p2 ——2/3, ps ———1/2, and p4 ——2. We use dimensional
regularization since it preserves gauge invariance. We use
the mass renormalization relation [8]

The n = 1 term here is the Boltzmann limit of the free gas
pressure, Eq. (10), while the n = 2 term contains both
O(e ~~) corrections to this limit and the contribution
of the interaction:

rnp2
m =mp~1 — ls

~32vr2F2 (3o)
B2(v') B (v) + B (v' f )

The case of a relativistic free gas corresponds to

so that gp, g1, g, and g in Eq. (28) are functions of m
It is very useful to compare the representation for the

pressure P(v) obtained with the method of chiral I a-

grangians to the result of the virial expansion in Sec. II.
It is of course evident that the first term in Eq. (28),
which is the ideal gas pressure, is exactly the same as
Eq. (10). Using the low temperature expansions of gp
and gl y

Ts/2~.'/2
gp(V) = 2 cosh()MP) e -/

~

1+
(2vr)'/2 ( 8 m

+O( —2 /T)

(31)
T'/' '/'

/ 3 T
gs(y) = cosh(p))) e ~e

~

1+ — + .
)(2vr)s/2 q 8 m

+Q (
—2771 se / T

)

B„(V)= B„l (V) = [1 + 2 cosh(VP)]n

(
x 11+— +8nm (34)

sin2b)(q) =2q'+ (m +q ) / (a, +q 6) + ),

(3s)

and use the scattering lengths and effective radii calcu-
lated in the chiral perturbation theory [8] in terms of the
couplings l,".

On the other hand, one can start from Eq. (9), take
the standard low momentum (q « m ) representation
for the phase shifts,
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Ref. [11]:

+O(mo)

lg ———0.62 4 0.94, l2 ——6.28 + 0.48,
l3 —— 2.9 + 2.4, l4 ——4.3 + 0.9 (40)

m2 m2

1 mo2 ( 13)
bo = 1+

~

2lg+3l2 ——
~

+O(mo)16)

1 —
~

lg + 3t2 ——
~

+ O(mo)

1 mo (- — 651
24~+'2 12~2+'2 ~

' '+
48 i

+

2—
bo =

(36)

A straightforward check shows that the contributions of
interaction to the pressure agree in the two approaches
and B2" (p, I;) may be written as

1/2
B2"'(v) =

Iq~m
3T 1

o, (p) + —a(p) + m b(p)2m 2

(m2 ) (37)

where

a(p) = 2 cosh(2pP) ao + 2 cosh(yP) oo + ao + ao,
b(p) = 2 cosh(2pP) bo + 2 cosh(pP) (bo + 3az)

+ho + b() + 3a~ . (38)

At p = 0 this coincides with the result obtained in
Ref. [9]. It should be noted that the (Ogo/Bp, ) terms in
Eq. (28) for the pressure are proportional to sinh (pP).
They are absent at p = 0 and crucial for agreement with
the virial result.

The screening mass is finally obtained from Eq. (28)
using Eq. (1):

(the coupling l4 relates I" = 87 MeV to the physical cou-
pling I" = 93 MeV [8]). The results of this calculation
are presented in Fig. 3. The dashed curve represents non-
interacting pions. The chain-dashed curve includes the
contributions of interactions to order E, and the solid
curve includes also the contributions of order E . We
have displayed these separately because the chiral pertur-
bation theory is naturally expressed as an expansion in
inverse powers of I'. See Eqs. (28) and (39). There is rea-
sonable agreement with the virial calculation up to tem-
peratures of around 80 MeV. Above 100 MeV the chiral
perturbation expansion does not seem convergent. The
order E result starts to blow-up. This can be traced to
the basic derivative expansion of the Lagrangian. For ex-
ample, the low momentum expansion of the phase shifts
in Eq. (35) will be inadequate because the average two-
pion collision energy grows with temperature.

It should be noted that in obtaining Eqs. (28) and (39)
we have actually taken into account three-loop diagrams
which contain up to two thermal loops. Because of these
thermal loops the final results are quadratic in the phase
space functions go and gq. The third, T = 0 loop, is
responsible for the renormalization of the couplings l;.
There is, however, one three-loop diagram which does
not factorize into T = 0 and T g 0 loops. This is the
eye-type diagram and we did not take it into account. As
was shown in [9] it gives a contribution to the pressure
which is proportional to exp( —m /T), but is suppressed
by an additional preexponential factor of T/m, . It con-
tributes to the O(T /m ) term in Eq. (37) and thus is
related to q terms in the expansion equation (35). This
contribution should. become important at T m which
explains the deviation from the virial result which uses
experimental information on phase shifts.

m„= go(0)—
m'

(

„[g,"(0)]'

5m'. ( 3 9)+
~

lg + 2t2 ——lp + —
~ g,"(0)gg(0)24vr2I'4

g 8 8 p

3 [g"(0)] f — 29) g"-(0)+
~
lg+ 4/2 ——

~16 m 24) 5m4 (39) CD

CD (D

where g,". (0) = 8 g;/Bp (p = 0). Odd derivatives of g,
with respect to p are zero at p = 0. Here we eliminated
mo in favor of the physical pion mass m . The erst term
is of course exactly the same as in Eq. (11). All other
terms are due to the interaction. One can check, as in
the case of pressure, that they coincide to relative order
(T/m )s~ with what follows from the interaction part
of the virial result in Eq. (11) if the approximation of
eQ'ective radius is used for the phase shifts.

In numerical calculation we use the central values
of the recent estimates of the couplings l, obtained in

25 50 75 100 125 150 175 200
T (MeV)

FIG. 3. Same as Fig. 2 but from chiral perturbation theory.
The dashed line represents free pions. The chain-dashed line
includes the efFects of interactions to order I' . The solid
line includes the efFects of interactions to order I"
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IV. FREE BOSONS ON A LATTICE

N, N,&n, &
2

'
2 2 2

&n4& (41)

The temperature is T = 1/Nia and the physical length
of a side of the three-dimensional cube is L = 1/N, a
Letting C denote the complex scalar field, the action is

In principle Monte Carlo simulations of lattice QCD
should predict the properties of strongly interacting mat-
ter at all temperatures, including the low temperature
phase of hadrons. So far little has been learned about
the low temperature phase due to limitations of finite
lattice size and lattice spacing and the diKculty of doing
calculations with light quarks. Some years ago, singlet
and nonsinglet quark number susceptibilities were com-
puted on a lattice of size 8 x 4 [12]. These susceptibilites
are linear combinations of the baryon and electric sus-
ceptibilities. The latter is just the square of the electric
screening mass up to a factor of e . Since then calcula-
tions have also been done on a 10 x 6 lattice [13] and
these were used in Ref. [1]. See Fig. 1. The tempera-
ture range covered by this larger lattice is about 120 to
190 MeV, which is just in the interesting regime where a
crossover from hadron to quark-gluon degrees of freedom
takes place. When comparing the results of lattice QCD
with continuum field theory calculations it is important
to have an estimate of how important finite lattice size
and spacing e8'ects are. This is true not only of the lat-
tices just mentioned, but also for lattices to be used in the
upcoming TeraQop project; typical lattices are expected.
to be 48 . Is this large enough'?

To get a handle on this question we consider a sys-
tem of noninteracting, massive, charged scalar bosons on
a lattice at finite temperature and chemical potential.
Fermions with a chemical potential have been studied on
the lattice [14,15] but apparently there are no reports of
the boson calculation in the literature. Since this is a
free theory, the partition function can be evaluated ex-
actly, and from this one can compute the net charge (or
number) density and the electric susceptibility.

We follow here the notation of Creutz [16]. We con-
sider a Euclidean lattice of size N, x Nq with equal lattice
spacing a in the space and time directions. Roman in-
dices run from 1 to 3, Greek indices run from 1 to 4, with
4 being the time direction. A lattice site is specified by
x = an . The integers n have allowed values

we make the replacement iA4 —+ iA4 + p. This ensures
that the chemical potential couples to exactly the same
charge density as the time component of the vector po-
tential. This maintains gauge invariance. Thus, in the
action, the only term which changes is

—a ) 4*(n, n4+ l)e "4(ri, n4)

+4*(n, n4) e "4(n, n4 + 1)

C (n) = ) C (k) exp —2~i
~¹Ng „(N, Ng )

(44)

where the components of the vector A: are allowed the
same values as the components of the vector n. Inserting
this Fourier decomposition into the expression for the
action, integrating over the lattice sites with the help of

1 . (k n k4n41) exp 2ni
~

+
~

= hi, „o, (45)

we get the action in the form

4

S = — ) D(k) p, (k) + $2(k)

where 4 = (Pi + i/2)/v 2 and the propagator is

2 . t'27rk l
D(k) = m,'+, ) 1 —cos

~ N, )
27t ik4+ —1 —— exp ap +

+ exp —ap— (47)

The logarithm of the partition function is, up to an irrel-
evant additive constant, given by

We can think of this as giving particles (going forward
in time) a chemical potential p and antiparticles (going
backward in time) a chemical potential —p. This is usu-
ally called a link hopping term.

In order to carry out the functional integration over
the fields it is convenient to express them in terms of
their Fourier components.

ln Z = ln [dC']e = —lndet [a D(k)] (48)

Let us define a relativistic lattice energy e by

where the first sum is over all nearest neighbors (l, n). We
shall impose periodic boundary conditions in the spatial
directions, and of course finite temperature requires the
fi.elds to be periodic in the time direction.

We introduce a chemical potential corresponding to the
conserved charge in the same way as one normally intro-
duces an electromagnetic vector potential [14]. That is,

e =m + —) sin4, (~k, )
a2 - (N)

Let us also define the complex variable

z =exp

(49)

(50)
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Then the partition function can be expressed as

lnZ= —) in[2+a ~ —ze "—z e
k

(51)

occurs when the chemical potential approaches the mass.
On the lattice the condition is slightly modi6ed. The
number density diverges as p approaches the critical
value determined from

BlnZ
19p

ze "—z ~e= GT
2 + +2g2 —zgap —z 1

k

(52)

We now perform the sum over k4 analytically with the
help of the formula

&~(. )= ' dz f (z)
z z~~ —1' (53)

It is expedient to differentiate with respect to the chem-
ical potential before doing the summations. This gives
the net particle number (or charge) of the system:

~

h
+Pcrit am

(59)

This allows for any finite number of particles on the lat-
tice even when the temperature goes to zero. In that
limit, all particles are concentrated in the zero momen-
tum mode.

Both the partition function and the number density
vanish in the zero temperature limit (Nq ~ oo at fixed
a) so long as —p,„;t & y, & p„;t. They both have the
correct limits as the continuum is approached: a —+ 0,
Nt, —+ oo, N, ~ oo with Nt, && N„and T = 1/Nt, a fixed.

Now we turn to the electric susceptibility. DiKerenti-
ating n with respect to IJ,, and setting p = 0, we get

where C is any closed contour containing the points sat-
isfying z ' = 1 and which does not include the origin
z = 0. Thus

an
(lattice) = 2

~ ~

T )
cjoy (N~ ) (ere/T 1)

(60)

dz f (z)
z z~ —]' (54)

This reproduces the correct expression in the continuum
limit:

where
On . 2 d p e~/

(continuum) =-
By, T 2vr s (e~/T 1)

(61)

f(z) = ze ~ —z ie
2+ a e2 —zt ap z —lt —ap. (55)

The function f has simple poles at z = exp[a(+w —p)]
where ~ ) 0 is defined by

sinh (56)

If one analytically continues from Euclidean space (irnag-
inary time) to Minkowski space (real time), as is appro-
priate for obtaining a response function, then the Mat-
subara frequency 2vrk4Ti ~ p0, where p0 is a real, contin-
uous energy. The single-particle energies are determined
by the poles of the propagator. In the limit of a vanish-
ing chemical potential these poles are located at p0 ——+~
where u is as defined in the equation above. With some
rearrangement we can replace the integral over the single
closed contour C with integrals over three disjoint con-
tours C+ C and Cp encircling the two poles of f(z) and
the origin. The residues are easily evaluated. Dividing
by the volume we obtain the number density:

where here ~ = gm2 + p2. The ratio of these two ex-
pressions, lattice/continuum, depends only on the single
dimensionless variable T/m for a given lattice N, x Nt, ,
since the lattice spacing can be written as a = 1/WqT

In Fig. 4 we plot lattice/continuum for lattices of size
8s x 4 and 10s x 6 for which lattice @CD calculations
have been done [12,13]. (We recall that in the @CD cal-
culations the scale is set in such a way that the p meson
mass has its physical value. The pion is then too heavy,
being about 1/2 the p mass even for the larger of the two
lattices. ) The susceptibility on the 10 x 6 lattice gets to
within 40% of the continuum value when T/I, = 0.35.
It deviates markedly for both lower and higher temper-
atures. As we shall now discuss, the deviation at low

CD

1
n =

(N.a)' )- el —yi/T' —1

1
e(~+y)/T —1

This is a familiar form. It is now easy to integrate n with
respect to p to obtain the partition function:

~ IH

~ Ol

~Q

Vi pH~
CDc5

lnZ= —) ln 1 —e y +ln 1 —e l +yl/ CD

CD

0.0 0.5 1.0 1.5

(58)

In the continuum theory Bose-Einstein condensation
FIG. 4. Ratio of Bn/By, on the lattice of specified size to

the continuum as a function of temperature over mass.
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temperature is caused by finite lattice spacing, while the
deviation at high temperature is caused by finite lattice
volume.

Apart from the conditions already mentioned which
must be satisfied if the lattice is to approximate the con-
tinuum, we have another. The lattice spacing must be
small compared to all physical length scales. Thus one
must have a « 1/m. This is equivalent to the condi-
tion 1/N~ &( T/m. Therefore the departure of the lattice
susceptibility from the continuum limit will be greater
and greater as the temperature gets smaller. This is seen
in the figure. From the expressions given above we can
readily evaluate the susceptibilities in the low tempera-
ture limit:

O
CE?

~O
(0
O

lA
O

0.0 0.5

48xx24

1.0

48~x12

1.5

t9'A
(lattice) m 2N,

t9p 'm
I/in

FIG. 5. Ratio of On/Op on the lattice of specified size to
the continuum as a function of temperature over mass.

t9A (2mTI' '
(continuum) m

~ ~

e
6p )

s2 s ~T& ~rlattice/continuum = (2n) N~
~

—
~

e . (62)(m)

The ratio diverges exponentially as T/m ~ 0. To get
accurate results we obviously cannot go too low in T/m
for a fixed value of Nq.

The high temperature limit is equivalent to letting the
mass go to zero. The susceptibility of the lattice di-
verges as the mass vanishes because of the zero momen-
tum mode. This is not true of the susceptibility in the
continuum; in the continuum the integral is convergent
in the infrared because of the factor p dp. Therefore the
lattice/continuum ratio also increases at large values of
T/m. However, this is a finite lattice volume effect, not
finite lattice spacing effect. We can see it in the following
ways. If we consider a box of volume L instead of the
continuum limit then we would make the replacement

d p 1

(2vr) L

Then the susceptibility diverges in the zero mass limit
because of the p = 0 mode, which was suppressed in the
integral. Numerically we can see this if we increase the
ratio Nq/N, . To approach the zero lattice spacing, infi-
nite volunie, limit we require (among other conditions)
that this ratio be small in order that many thermal wave-
lengths fit within the box. That is, 1/T &( L. In this
sense the lattice 8 x 4 is 'bigger' than the lattice 10 x 6,
as is apparent in Fig. 4.

In Fig. 5 we plot the lattice/continuum ratio for lattices
of size 48 by 12, 16, and 24. These may be typical
for the upcoming Teraflop project. On the whole the
susceptibilities are much closer to the continuum values
than was true for the smaller lattices. However, the small
and large T/m behaviors are still apparent, as discussed
above. The condition 1 « Nq « N, is also apparent in
the figure.

Since hadrons with masses in the range of 140 to 1000
MeV and beyond are important for the electric screening
mass in the temperature range of 50 to 170 MeV or so,
it is clear that very large lattices are required to at least
reproduce the noninteracting gas results. Whether inter-
action effects, and the composite nature of the hadrons,
are more or less sensitive to finite lattice spacing and vol-
ume is not known. It is known, and obvious, that any
interaction effects that get big contributions from long
wavelength modes are even more sensitive to finite lat-
tice volume [17j.

V. CONCLUSION

To get insight into the nature of the expected phase
transition (or rapid crossover) of hot hadronic matter
to quark-gluon plasma, it is instructive to investigate
the temperature dependence of different quantities char-
acterizing the system on both sides of the transition
point (or crossover region). We have considered here one
such quantity, the electric screening mass, in the case
of hadronic gas. We used two different methods: rela-
tivistic virial expansion and chiral perturbation theory.
They give very similar results up to T 80 MeV. At
high temperature the applicability of both approaches
become doubtful, for somewhat different reasons. In the
virial expansion, multipion interactions would have to be
taken into account. This is diKcult to do theoretically,
apart; from the fact that multipion scat tering amplitudes
are practically impossible to obtain experimentally. The
advantage of the chiral perturbation expansion is that it
very generally takes into account the basic symmetries
of @CD in an expansion in powers of the pion mass and
space-time derivatives. This is also its limitation. The p
meson cannot be generated in any finite order; it can arise
only from an infinite series of derivative terms in the ef-
fective Lagrangian. As the temperature rises, the average
relative energy in hadron collisions also rises. Therefore,
more and more derivative terms in the expansion must be
kept. Not only is this diKcult to do theoretically, but the
coeKcients of the higher order terms are not known yet
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from phenomenology. The application of chiral pertur-
bation theory, at least in its present form, is also limited
to temperatures below the pion mass.

Numerical simulations on the lattice provide a straight-
forward possibility to go all the way from low to high
temperatures. However, this approach has intrinsic prob-
lems due to finite lattice spacing and lattice volume ef-
fects. We have shown here that to reproduce the free gas
results for the screening mass would require very large
lattices. Analytic methods, such as the chiral perturba-
tion theory and the virial expansion, should be useful to

obtain estimates on the magnitude of the final volume
effects for the interacting hadron gas [18].
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