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Two-body Dirac equation and Regge trajectories
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The spin-triplet spectra of light and heavy neutral mesons are studied in the framework of a free two-
body Dirac equation supplemented by a linear scalar confinement interaction. The theoretical Regge
trajectories of this model are compared with those of a nonrelativistic model and with the experimental
data. Several confinement mechanisms usable for the two-body Dirac equation are presented and the
connection with the two-body Klein-Gordon equation is discussed.

PACS number(s): 11.10.Qr, 12.40.Qq

I. INTRODUCTION

The two-body Dirac equation is the most obvious way
that makes possible a full spinor treatment of the two fer-
mions. This equation, which is an equal-time relativistic
equation, is not fully covariant; nevertheless it exhibits
several desirable features, such as good symmetry proper-
ties and a correct nonrelativistic limit.

Brayshaw has used such a formalism to study qq sys-
tems [I]. In his Hamiltonian, the confinement is mainly
provided by a cutoff of the wave function at a fixed inter-
quark separation, and the short-range potential is given
by the Breit interaction. This model describes quite well
the spectra of all mesons with a small number of parame-
ters (two times less than the number required in the
semirelativistic model developed by Godfrey and Isgur
[2]). However, three major problems remain. First, the
Regge trajectories of light mesons are not well described
owing to the choice of the confinement mechanism.
Second, the Breit interaction fails to reproduce the ob-
served vr and E masses; an ad hoc contact interaction is
introduced to overcome this drawback. Third, it is not
possible to describe the mesons q and g' without adding
an appropriate mixing procedure with supplementary pa-
rameters.

On the other hand, Blask et al. [3] have developed a
nonrelativistic quark model which describes quite well all
mesons, including g and g' states, and baryons composed
of u, d, or s quarks. The long-range part of their interac-
tion is a linear confinement potential. The short-range
part is not deduced, as usual, from the nonrelativistic
reduction of the one-gluon exchange, but is a pairing
force stemming from a nonrelativistic limit of instanton
effects which acts only on quark-antiquark states with
zero spin and orbital angular momentum. A quarkonium
which does not contain these configurations is then only
submitted to a confinement potential. The weak points of
this model are, first, the fact that masses of some mesons
are appreciably overestimated, and second, the fact that

the Regge trajectories are not well reproduced owing to
the choice of a linear confinement, which can be shown,
in the large angular momentum limit, by simple dimen-
sion arguments [4]. It is worth noting that the pairing
force is quite similar to the contact interaction intro-
duced in the model of Brayshaw in that they are both at-
tractive and in that they contribute mainly on the 0
configuration.

It might be interesting to use the interaction proposed
by Blask et al. in a relativistic calculation of light meson
spectra. In this preliminary work, our purpose is to
study the Regge trajectories of the spin-triplet light
mesons within the two-body Dirac formalism. According
to the model of Blask et al. , the quark-antiquark interac-
tion for such mesons is reduced to a confinement poten-
tial. Using the confinement interaction of Ref. [5] we
have calculated the energy spectrum and the root-mean-
square interparticle distance of the spin-triplet mesons by
solving numerically the radial equations resulting from
the angular momentum decomposition proposed by
Brayshaw [1,6]. Actually, for the natural parity spin-
triplet states, these equations reduce exactly to a two-
body Klein-Gordon equation with masses depending
upon the interparticle distance; for the unnatural parity
spin-triplet states this is almost the case, as the Dirac
spectrum differs from its Klein-Gordon counterpart by
less than 2%. For other observables, namely the inter-
particle distance, the difference between the Dirac and
the Klein-Gordon equations is significantly larger.

Our paper is organized as follows. Section II is devot-
ed to the presentation of our model. In that section,
several confinement mechanisms usable for the two-body
Dirac equation are discussed. The results are analyzed in
the third section where they are compared, among others,
with the results of the nonrelativistic model of Ref. [7]
and the fully covariant treatment of Ref. [g]. Concluding
remarks are presented in Sec. IV.

II. MODEL HAMILTONIAN

'Electronic address (bitnet): SSEMAY@BMSUEM11
~Electronic address (bitnet): SCEULE@BMSUEM11

We study the spin-triplet mesons using a two-body
Dirac Hamiltonian given, in the center-of-mass frame, by
(A'=c =1)
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H =(a, —a, )p+ ft, m, +/3, m, + —,'(P, +P, )A r,
where p= —iV is the conjugate momentum of the vari-
able r=r, —rz. For such states, the quark-antiquark in-
teraction proposed in Ref. [3] is restricted to a
confinement potential that we choose equal to
(P, +Pz)A, rl2 as in Ref. [5]. This efFective interaction is
scalar in order to confine the particles, and the radial
form factor is proportional to the interquark distance
r = ~r ~, as it is required to obtain linear Regge trajectories
[6,9—11].

We mention here some results obtained in a previous
paper [6]. The radial equation for natural parity (I =J) is

E(E2 J(J+1)
r2

(2)

where

and

Ei =E —m] —m2 —kr, E2 =E mi+m2

(3)

E +m) m2

2E
E+m, +m, +Xr '

a prime denoting a derivation with respect to r. The cor-
responding spinor eigenstates are given by [12]

E+m1+m2+Ar
2E

y'I 2;J1JJ.) + &J J+1

y'l3; J1JJ, ) + $13'JOJJ, )
&J J+1

E+m& —m2
' ' E+m& —m2 r

(4)

E m) m2 Al'

414;J1JJ, )

where JV is a normalization factor and i;IsJJ, ) are angular basis states defined in Ref. [6]. A more explicit form of Eq.
(2) is

[~~—(m, +m~+Ar) ][E —(m, —m2) ]

4E
1(l + 1)

r 2
=0.

(6)

Note that this equation is also the radial equation corresponding to the Klein-Gordon equation of two particles with
linear radially dependent masses [13]:

/2 (g2 —g~ )2

p + — — P~o(r)=0 with S;=m,. + ,'A, r . —
4 4E'

For the unnatural parity (I =J+1) spin-triplet states, the radial equations are

f l
— f i

—A f2+—Bg~ =0 f2+ f2+ f i
=—o gI + gi —A g2+Bf2 =o g2

— gz+r r 62 r 2

with

2&J(J+1)E4
A —= +2v'J(J+ 1 )B, B = E4 —E +m (+my+A. r

(2J + 1)rE4

(7)

When B is identically zero, equations containing f, and f2 decouple from those containing g, and g2. They give identi-
cal results and thus l becomes a good quantum number. Equations (7) reduce then to the Eq. (5), but with P replaced by
f, or g „andthe corresponding spinor-eigenstates are given by [12]

E+m &+m2+Ar
2E $11;J+11JJ,)

1

E+m& —m2

E —
m&

—m2 —kr
Qi4; J+11JJ,)

$'+ J + —P l2; J+11JJ,)1+1
E —m&+m2 2 r

r P'+ J+ —P i3;J+11JJ,)1+1 1

2 7"
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m, =m2=0, E =+2k, (4v +2l +3), (9)

m, =0, m~ &&&A,, E=m2+&A[z(u, l)], (10)

m„m2»+A. ,
1/3

(m, +m2)A,
E fPl )+Pl2+

2m )Pl2
z(v, l),

where z ( v, l) is the solution of the dimensionless equation

where P stands for f, or g, . A numerical analysis shows
that the difference between the eigenvalues of Eqs. (7) and
those of Eq. (5) is less than 2% for the ground state and
decreases rapidly when eigenvalues increase [6]. Thus as
far as the energy spectrum is concerned, the Dirac equa-
tions and its Klein-Gordon counterpart lead, for the in-
teraction considered in the present work, to very similar
spectra.

We have reported elsewhere [6,12] exact and approxi-
mate analytical solutions of Eq. (5)

TABLE I. Parameter values of our model in GeV.

&A, =0.535
C = 1.060

m„=0
m, =0.118

potential whose absolute value is quite similar to the
value of the parameter C [3,7, 18].

Though the lowest Regge trajectory of the p family can
be reproduced with nonvanishing masses for the n

quarks, a better agreement with experiment is achieved
with m„=o. According to formula (14), the squared
masses of mesons can be written

M (u, l) =A,e (v, l) —C (15)

with

1 ~2)q+l 1 1+~2+2+ (~1+13$)x (16)

where e is an eigenvalue of the dimensionless version of
Hamiltonian (1):

l(l+1) —x +z(v, l) w(x)=0 (12) x =&Xr, q=p/&4, , ~, =m;/&7, .

The quantities
and v is the principal quantum number (0, 1, . . . ). Ap-
proximate analytical formulas for the quantity z(v, l)
have been obtained in Refs. [7,12]. There it is shown
that

limz(u, l) ~l
I~ oo

(13)

Thus according to Eqs. (9) and (10), the quantity
[E —

m&
—m2] is asymptotically proportional to l when

one of the quarks is very light.
The mass of quarks n (n denoting u or d) is generally

assumed to be very small in relativistic models [1,14,15].
Taking m„=o,Eq. (9) shows that the squared energy of
the two quarks is proportional to l, which corresponds to
linear Regge trajectories. The best way to reproduce the
experimental masses is to rescale the entire spectrum as-
suming that the masses M of the mesons are expressed by
the relation

M (u, l) —M (0,0) e (v, l) —e (0,0)
M'(o, 1 )

—M'(o, o) ~'(0, 1)—E'(o, o)
(17)

a, (2o4o)

depend only on the dimensionless masses ~& and ~2. For
the lowest Regge trajectory of the family of p mesons, we
have K)=K2 —K —m„/&A,, and the two lowest levels are
the p(770) [(u, l)=(0,0)] and the a2(1320) [(u, l)
=(0, 1)]. In Fig. 1, the theoretical values of R (v, l)
for the p3(1690) [(u, l) = (0,2) ] and a~(2040)[(v, l)
= (0, 3 ) ] mesons are compared with their experimental
counterparts as a function of ~. It is seen that the best
agreement is obtained for small values of ~. Note that,

M =E —C (14)

where E is an eigenvalue of the Hamiltonian (1) and C is
a constant energy. This constant can be interpreted as a
renormalization of the vacuum energy [3]. It has been
suggested that the confinement potential has a complex
Lorentz structure [16]. It is thus possible that the rela-
tion (14) used to shift the spectra appears as a means to
simulate approximately the effects of this structure. The
parameters A, and C are chosen in order to reproduce the
lowest Regge trajectory of the p family. The mass of the
quark s is taken to reproduce the mass of the P since this
meson is practically a pure ss state. The values of the
four parameters of our model are given in Table I. Note
that, although the quarks considered in this model are
effective quarks, the quark masses found are compatible
with the values generally assumed for the current quark
masses [17]. Moreover, in nonrelativistic quarkonium
models, a good agreement between theory and experi-
ment is generally obtained by using a negative constant

R(v, 1)

p, (i69o}

0.0
I I I I I

0. 1 0.2 0, 3 0, 4 0.5 0.6

FICs. 1. R (U, I) quantities for the p3(1690) and a4(2040)
rnesons (see text). Solid curves are the theoretical results as a
function of a=m„/&A,. The dashed lines enclose the experi-
mental data with their uncertainties.
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according to Eq. (15), it is always possible to fit exactly
the theoretical masses of the p(770) and az(1320)
mesons, whatever the value of K may be. Moreover when
~ increases, the value of k decreases while the value of C
increases. For instance, when K =0.6, we have
&A, =0.467 GeV, C =1.345 GeV, and m„=0.280 GeV.

Other procedures to confine quarks exist within the
formalism of the two-body Dirac equation. The interac-
tion /3i/32kr can be considered in Hamiltonian (1) instead
of —2(/3, +Pz)kr A.lthough the expression /3, /32kr origi-
nates naturally from the reduction of the Bethe-Salpeter
equation, we have chosen the operator —,'(Pi+/32) because
it leads to much more simple radial equations. Moreover,
for small quark masses, which is the case for light quarks
with relativistic kinematics, and for high energy, which is
the case in the study of the Regge trajectories, the spectra
associated with these two potentials are quite similar, as
illustrated with the following example. According to Eq.
(5), the equation for natural parity spin-triplet states with
two vanishing masses is

p(2 &50

p(2

p(SHOO

2
p(&45

0 1 P 3 4 5 6

,(245O)

E (A, r )—
4

J(J+1)
r2

When —,'(P&+Pz)lr is replaced by P&/32Ar, the correspond-
ing equation is [12]

r

E —(Ar) J(J+1)
E +jr 4 r2

(19)

These two equations give similar results when E in-
creases. For instance, the difference between the ground
levels of these two models is around 7%. It drops to less
than 2% for the upper level and decreases rapidly when v

or I increases. The situation is similar for the unnatural
parity spin-triplet states.

Another approach to confine light quarks is to cut off
the wave function at a fixed interquark separation r, [1].
The use of such a mechanism in our model would imply
that the spin-triplet quarkonia are eigenstates of the free
two-body Dirac Hamiltonian and that the radial func-
tions P, f„andg, vanish at r =r, . For two massless
quarks, the eigenenergies are then given by [1]

nonrelativistic model of Ref. [7], in which the interaction
is also reduced to the confinement. The potential of this
model, which is fitted to reproduce the Regge trajec-
tories, is given by

V( r ) =0.431r —1.210 (22)

with

m„=0.270 GeV, m, =0.516 GeV,

r, (25&O)

FIG. 2. Mass spectrum for the p family [J=1+1]as a func-
tion of J. The solid and dotted lines indicate the results of our
model and the results of the Fabre model [7], respectively. Ex-
perimental values of masses are indicated by a circle; states for
which error on mass is unestimated in Ref. [20] are shown by a
box.

E =—k(v, l),=2 (20)

where k (v, l) is the (v +1)th zero of the spherical Bessel
function of the first kind j&(x). It is not possible to repro-
duce the lowest Regge trajectory of the p family with for-
mula (20) since [19]

(GeV )
4

~(&600)

lim k(0, l) ~l .
I~ oo

(21)

We have verified that neither rescalings of Eq. (20) such
that M =E +C or M =E+C, nor the use of nonmass-
less quarks, can provide a good fit for this trajectory.

III. RESULTS
2 3 4 5

From Figs. 2 to 9, we compare our theoretical results
with the experimental data and with the results of the FIG. 3. Same as Fig. 1 for the co family [J= l + 1].
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~ a, (]z|o)
O a (980

, 1
0

J I I l

6 7 8 0 1 2 3 4 5 6 7 8

FIG. 4. Same as Fig. 1 for the a, family [J=1]and the ao
family [J= l —1].

with V in GeV and distance in GeV '. The experimental
masses are taken from the 1992 compilation of masses of
the Particle Data Group [20].

A. C3rbital excitations

The parameters m„,k, and C are fitted to yield the
correct lowest Regge trajectory of the p family (see Fig.
2). Since the spin-triplet isoscalar nn mesons are nearly
degenerated with the spin-triplet isovector mesons, the
lowest trajectory of the m family is also well reproduced
(see Fig. 3). Note that though the masses of the isovector

FIG. 5. Same as Fig. 1 for the P family [J=1+1].

mesons are completely fixed by the masses of the states of
the p family [J=l+1], the agreement between the
theoretical and experimental masses of the two known
members of the a, family [J = l] is quite satisfactory (see
Fig. 4). The situation of the ac family [J=l —1] is also
quite satisfactory provided one assumes that the ac(980)
is not a qq state and that the lowest Po state is the reso-
nance ac(1320). Actually, experimental considerations
[20] and theoretical works [21,22] suggest that the
ao(980) meson is a EIC bound state. In the same way,
though the value of m, is only fixed by the mass of the P
meson, the lowest trajectories of the p family and of the
K* family [J=l +1] are very well reproduced (see Figs.

TABLE II. Masses in GeV of the ground-state mesons (1 3S, ) p, co, E*, and P with their two lowest excitations (2 'S, and 1 'D, )
with the same J ' '=1 ' ' quantum numbers, for various models, compared with the experimental scheme proposed by Ref. [20].
Each model is indicated by the first author and the number of the corresponding reference. The results of Ref. [8] are taken from the
best global fit obtained by the authors. According to Ref. [20], the two mesons indicated by an asterisk could invert their places.

Meson

1 SI
2 S1
1 D1

Expt.
[20]

0.770
1.450
1.700

Our
model

0.769
1.696
1.696

Fabre

0.822
1.591
1.690

Bhaduri
[18]

0.777
1.614
1.678

Blask

0.770
1.565
1.634

Brayshaw

0.776
1.824
1.593

Godfrey
[2]

0.770
1.450
1.660

Crater

0.889
1.746
1.795

1 S1
2 S1
1 D1

0.783
1.390
1.600

0.769
1.696
1.696

0.822
1.591
1.690

0.777
1.614
1.678

0.770
1.565
1.634

0.776
1.824
1.593

0.780
1.460
1.660

0.889
1.746
1.795

1 S1
2 S1
1 D,

0.892
1.410*
1.680*

0.900
1.788
1.794

0.970
1.688
1.781

0.905
1.694
1.774

0.924
1.656
1.723

0.905
1.872
1.690

0.900
1.580
1.780

0.911
1.761
1.809

1 Sl
2 S1
1 D1

1.020
1.680

1.019
1.878
1.888

1.091
1.745
1.829

1.017
1.743
1.834

1.061
1.714
1.775

1.022
1.925
1.778

1.020
1.690
1.880

0.975
1.793
1.842
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K,(z38o)

O45)

— K (i6

0 1 2 3 7 8

FICx. 6. Same as Fig. 1 for the K* family [J = I + 1].

5 and 6).
Only the lowest members of the J=l and J=/ —1

families of isoscalar and isodoublet mesons are known
[20]. As the spin-triplet states belonging to a I multiplet
are experimentally nearly degenerated, our model yields
also good masses for these mesons.

The results reported in Ref. [7] for the lowest Regge
trajectory compare quite well with our results. Neverthe-
less, it can be seen from Table II that our predictions
concerning the low-lying state of each family are better
than those of Ref. [7]. Actually, both nonrelativistic and
ultrarelativistic approaches can yield a good description
of the light meson spectra provided an appropriate
effective confinement potential is used [11,23].

B. Radial excitations

It appears from Figs. 2 to 6 that our model seems to
provide a better description of the orbital excitations of
light mesons than the radial excitations. In Table II, we
compare, for various potential models, the ground states
of several 1 ' ' mesons and their two lowest excitations
with the same J ' ' quantum numbers. The approaches
of Brayshaw [1],Blask et al. [3], and Fabre [7] have been
described above. The model of Bhaduri et al. [18] is a
nonrelativistic one in which the long-range part of the
potential is a linear confinement and the short-range part
is the Coulomb interaction supplemented by the color
hyperfine term. This simple model is mainly fitted for
charmonium and bottomium sectors but gives acceptable
masses for mesons containing lighter quarks. On the oth-
er hand, the semirelativistic model of Godfrey and Isgur
[2] provides a better global description of all meson states
but their interaction which contains a great number of
parameters is very complex. Another good global fit of
all mesons has been obtained within the fully covariant
formalism developed by Crater and Van Alstine [8]; the

potentials used by these authors contain only one or two
parameters.

In Ref. [20] the p(1450) is identified with the first radi-
al excitation (2 S, state) of the p(770) while the p(1700)
is considered as its D-wave excitation with the same J
quantum numbers (1 D& state). As it can be seen from
Table II, the 2 S& state and the 1 D& state are character-
ized by the same mass of 1.696 GeV in our model. Con-
sequently, our calculations are not in agreement with the
experimental data. Of course, it is quite possible that our
model cannot correctly describe the radial excitations.
However, it is also possible that the p(1700) could be a
superposition of two nearly degenerate 1 states, one of
which, the 2 S, state, belongs to the p family (see Fig. 2)
and the other, the 1 D& state, can be interpreted as the
first orbital excitation of the 1 Po state, which is assumed
here to be the ao(1320) meson (see Fig. 4). In that case
the p(1450) cannot be considered an ordinary qq meson.
The models of Crater and Brayshaw also favor this hy-
pothesis, contrary to the model of Godfrey and Isgur.
The theoretical mass yielded by the other models is
around 1.6 GeV. It is worth noting that the experimental
situation could be more complicated with, for instance,
mixing of p(1450) and p(1700) with q q states, as sug-
gested in Ref. [24]. Such mixing could in principle ex-
plain the hadronic shift of qq states and the observed
branching ratios in the vector meson sector [25,26]. Note
that a similar problem exists in the baryon sector. The
two lowest excited states of the nucleon are the N(1440)
and the N(1710). A lot of potential models (see, for in-
stance, Ref. [27]) predict the first radial excitation of the
nucleon near 1.7 GeV, suggesting that the Roper reso-
nance could be a non-q state and that the N (1710)could
be the first radial excitation of the nucleon. Even the
models which predict a lower mass for the first excitation
of the nucleon cannot reproduce correctly the mass of the
Roper resonance (see for instance Ref. [28]).

The internal structure of the p3(2250) is also difficult to
determine. Owing to the exact degeneracy of nn states in
our model [see Eq. (9)], this meson could be identified as a
2 D3 state or as a 1 G3 state (see Figs. 2 and 4).

Since the mesons of p and co families are nearly degen-
erate, the problems concerning the identification of their
radial excitations are the same in both cases. Moreover,
in the isoscalar sector, a large number of fz resonances
exist but are not predicted by quark models. All these
states, whose accurate identification is tricky, could be
exotic multiquarks or glueball systems [29].

According to Ref. [20], the identification of the two
lowest 1 excitations of the X* is also dificult. The
mesons K*(1410)and IC*(1680) are both possible candi-
dates for these excitations. The mass of the lowest excit-
ed state of each model considered in Table II is much
larger than 1.4 GeV. For the P meson, only the P(1680)
excitation is known and it is identified with the first radial
excitation. Except for the model of Godfrey and Isgur,
the other models, including ours, predict an appreciable
larger mass for this first radial excitation.

The predictions of our model concerning the radial ex-
citations of light mesons are not in agreement with the
experimental data. Some mesons, namely p( 1450),
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TABLE III. Masses in GeV of heavy mesons in our model
and in the Fabre model [7]. Underlined masses are those used
to determine the values of I, and mb.

Our model Fabre [7]

m,
J/l(j( 3097 )

D*(2010)
D, (2110)

1.194

3.097
2.064
2. 145

1.143

2.998
2.010
2.092

1.681

3.097
2.044
2. 128

1.647

3.034
2.010
2.096

mb

r(9460)
B*(5331)

4.456

9.460
5.405

4.383

9.316
5.331

4.975

9.460
5.307

4.999

9.507
5.331

10

PC
J =1

D, states

co(1390), and IC*(1410),seem to appear as extra states in
Figs. 2 to 6. The existence of some q q vector mesons,
which could be identified with these states, cannot be ex-
cluded [24]. The I' wave q -q mesons, which are the
lowest states with negative parity, might be good candi-
dates for such resonances. Another, more likely, possibil-
ity is that our model, like some others, overestimates
masses of the radial excitations of light mesons.

In order to test our model concerning radial excita-
tions, we have calculated such excitations for the J/g
and the Y mesons whose experimental radial spectra are
well known. The one-gluon exchange potential must cer-
tainly contribute to the mass of heavy neutral mesons
[3,7]. Nevertheless, we find it interesting to compare the
predictions of our model in this sector with those ob-
tained with the potential (22) of the nonrelativistic model

I I

6 7

FIG. 8. Same as Fig. 7 for the 'D, lt mesons.

of Ref. [7]. Note that for heavy neutral mesons the
Hamiltonian (1) is nearly equivalent to a nonrelativistic
Hamiltonian with a linear confinement. For both models,
the value of m, (m& ) has been fitted to reproduce either
the mass of the J/1t (Y) or the mass of the D' (8"); the
results are given in Table III. We would like to stress
that, despite the absence of the one-gluon exchange po-

130

120
T(11020)

110

100

10
PC

J —1

3
S, states

tes

1 2
80

FIG. 7. Mass spectrum for the S, g mesons as a function of
U. The solid and dotted lines indicate the results of our model
and the results of the Fabre model [7], respectively. Experimen-
tal values of masses are indicated by a circle. The curves la-
beled by an asterisk are obtained with a value of m, fitted to
reproduce the D . For the other curves, the value of m, is
fitted to reproduce the J/g.

FIG. 9. Mass spectrum for the 'S& Y mesons as a function of
U. The solid and dotted lines indicate the results of our model
and the results of the Fabre model [7], respectively. Experimen-
tal values of masses are indicated by a circle. The curves la-
beled by an asterisk are obtained with a value of mb fitted to
reproduce the B . For the other curves, the value of mb is
fitted to reproduce the Y.
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TABLE IV. Expectation values of +A, (r ) (see text) for
di8'erent mesons within our two-body Dirac model and within
an equivalent two-body Klein-Gordon model.

Meson
Dirac

&X(r')

p(770)
a~(1320)
K*(892)
$(1020)

2.00
2.45
1.93
1.86

1.73
2.24
1.69
1.64

IV. CONCLUDING REMARKS

The use of quark potential models is relevant in the
adiabatic limit, which implies that the typical time seal=

tential, our predictions for radial excitations appear ac-
ceptable and, moreover, are in better agreement with the
data than the predictions of the nonrelativistic model (see
Figs. 7 to 9). The results of the nonrelativistic model can
be improved by the introduction of a Coulomb-like term
but, even in this case, it is impossible to adjust simultane-
ously the light and heavy meson spectra with a r
confinement potential [7]. Consequently, in the nonrela-
tivistic models, a r confinement is necessary to repro-
duce the linear Regge trajectories of light mesons but a
linear confinement seems preferable to describe the heavy
meson spectra. The advantage of the relativistic models
in that a linear confinement potential works well both for
light and heavy mesons.

As mentioned above, the spectra resulting from (1) and
(6) are very similar, but this is obviously not the case for
the corresponding eigenfunctions. To illustrate this
point, we have calculated the root-mean-square dimen-
sionless interparticle distance between quarks +k(r )
for different mesons with the solutions of Hamiltonian (1)
and those of Eq. (6). As we can see in Table IV, the re-
sults are significantly different, despite the fact that the
operator r is spin independent. The difference can
exceed 10%, whereas the difference between the eigenen-
ergies is always less than 2%.

of quark fields T is much larger than the typical time
scale of the gluonic fields T . Tq is defined as the period
of a quark motion around the classical orbit [30]. It can
be evaluated by the relation T =2rrR& /Uz, Rq being the

radius of the quark orbit given by +(r )/2 and U the
speed of the quark. In our model, for the ground state of
two massless quarks, we have U =c = 1 and
+(r ) =2/+A. (see Table IV). Consequently we find
T =12 GeV '. We obtain similar values of T for the
nonrelativistic models of Blask et al. and Fabre. Note
that in these models, U, which is given by the relation
+( p /m ), is around 1, making the interpretation of the
parameters of these models questionable. This general
problem of the nonrelativistic approach is discussed in
Refs. [13,31]. Ts, which is the gluonic vacuum correla-
tion time, is expected to be less than 3 GeV ' [32]. Con-
sequently, it seems reasonable to assume, as well for non-
relativistic than for ultrarelativistic models, that the
quarks move adiabatically and that the potential ap-
proach is relevant.

We have calculated the masses of the spin-triplet light
mesons in the two-body Dirac formalism, assuming that
the interaction is reduced to a confinement potential
given by linear radially dependent masses. In our model,
which contains only two parameters other than quark
masses, the lowest Regge trajectories are well repro-
duced. The agreement between theory and experiment is
poorer for upper trajectories. Note that the results of the
fully covariant model of Ref. [8] are very similar to our
results but that the Regge trajectories are better repro-
duced within our model. Despite the absence of a
Coulomb-type potential in our calculation, our descrip-
tion of the radial excitations of the cc and bb mesons ap-
pears acceptable.
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