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No parity violation without R-parity violation
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In a class of minimal supersymmetric left-right models of weak interactions where R parity is au-

tomatically conserved, we show that the spontaneous breakdown of parity cannot occur without the
spontaneous breakdown of R parity. This intriguing result connects two physically different scales in su-

persymmetric models.
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I. INTRODUCTION

An awkward aspect of the minimal supersymmetric
standard model (MSSM) is the presence of R-parity-
violating terms in the superpotential [1], which are al-
lowed by gauge invariance. These terms lead to lepton
and baryon-number violation and their strengths are
therefore severely limited by phenomenological [lj and
cosmological constraints [2]. In fact, unless the strength
of the baryon-number-violating term is less than 10 ', it
will lead to a contradiction with present lower limits on
the lifetime of the proton. It would therefore be more ap-
pealing to have a supersymmetric theory where R-parity
conservation is automatic [3,4]. It was noted some time
ago [3] that if the gauge symmetry of the supersymmetric
model is extended to SU(2)i XU(1)t XU(1)~ i or

3R

SU(2)t XSU(2)z XU(1)~ t, the theory becomes au-
tornatically R-parity conserving. One can then entertain
the possibility of spontaneous R-parity violation [5,6].
There are two distinct differences between spontaneous
and explicit R-parity violations: The first is that the ca-
tastrophic baryon-number-violating terms are automati-
cally absent from the Lagrangian, in the spontaneous R-
parity-violation case, so that proton stability is
guaranteed; and the second is that, in this case, above a
certain temperature, R parity is restored so that the pic-
ture of the early Universe is very different; for instance,
any preexisting lepton or baryon asymmetry of the
Universe need not be erased. Furthermore, the strength
of R-parity-violating terms is no longer arbitrary but is
connected to the scale of R-parity breaking.

In this paper, we show that, in the minimal supersym-
metric left-right (SUSYLR) model with the seesaw mech-
anism [7], the spontaneous breaking of parity [8], and R
parity are intimately linked. By a detailed analysis of the
Higgs potential of the model, we show that if R parity
remains unbroken so does the parity symmetry of the
model, even after one-loop radiative corrections are taken
into account. Therefore, a necessary condition for parity
violation to occur is the existence of the spontaneous

A particle of baryon number 8, lepton number I, and spin 5
has R parity ( —1) + + . Thus, all the familiar particles such
as the quarks, leptons, and Higgs boson are R-parity even and
their superpartners are R-parity odd.

breakdown of R parity. This is in our opinion an in-
teresting result since it connects the breaking of two
different symmetries and links their breaking scales.
Since, in this class of models, the scale of parity breaking
is connected to the neutrino mass [9] via the seesaw
mechanism, the R-parity-breaking scale and the strength
of the induced R-parity-breaking interactions get related
to the neutrino masses. Some aspects of symmetry break-
ing for these models were studied earlier in [10] but this
connection between breaking R parity and parity was not
noticed in this paper.

The rest of the paper is organized as follows: In Sec.
II, we write down the most general tree-level Higgs po-
tential for the minimal SUSYLR model; in Sec. III, we
derive the inequality constraints between the parameters
of the tree-leve1 Higgs potential by requiring that it be
bounded from below and use these constraints to prove
that there can be no parity violation without R-parity
violation for the three-level potential; in Sec. IV, we show
that even in certain nonminimal SUSYLR models R pari-
ty must be violated or else either electric charge is not
conserved by the ground state of the theory or parity
symmetry is unbroken; in Sec. V, we prove that if R pari-
ty is violated spontaneously, then in the minimal
SUSYLR model itself, the ground state can violate parity
and conserve electric charge; and in Sec. VI, we use the
freedom of choosing a convenient renormalization scale
to argue that in the minimal SUSYLR model radiative
corrections do not change the tree-level result that there
can be no parity violation without R-parity violation,
since otherwise electric charge is not conserved.

II. THE HIGGS POTENTIAL
FOR THE SUSY LEFT-RIGHT MODEL

The matter content of the minimal model is given in
Table I. In this paper the doublets are represented by
2 X 1 column vectors, the triplets by 2 X 2 traceless com-
plex matrices, and the bidoublet N is represented by a
2X2 complex matrix. Also note that, for example, un-
der the SU(2)t X SU(2)~ part of the gauge transforma-
tton, L ~ Ut L, b~ Ui OUI, rzL'~ Uz(r2L'), rzb, rz

UR(rzb rz)Uz, and &P~Ut @Uz, where Ut and Utt

In this paper ~„~2, ~3 stand for the Pauli matrices.
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~F terms+ ~soft+ ~D terms & (2)

are the SU(2)L and SU(2)~ group transformations (simi-
larly for 6 and b, '). The gauge-invariant superpotential
[10,11] for the model is given by

W=hqQ r2C r2Q'+hL 724 r2L'

+if(L r2bL+L' ~26'L')

+M Tr(&5+ 5'b, ')+p' Tr(rz@ A@) .

The most general form of the Higgs potential including
soft breaking terms (but omitting the Q terms) is given by
[10,11] (denoting the scalar components of the superfields
by L, L', 4&, 6, b, , b, ', and b, ')

Matter superfield

L
L'

Higgs fields

SU(2) X SU(2) XU(1)
quantum number

(2, 1, —,
'

)

(1,2, —
—,')

(2, 1, —1)
(1,2, +1)

QC

C

(3, 1, +2)
(1,3, —2)
(3,'1,'-2)
(1,3, +2)
(2,2,0)

TABLE I. The matter content of minimal SUSYLR model.

VF „, ,=/hL r2&X&r2+2ifL' r2b, '/ + hL' r24& r2+2ifL r2b,
/

+TrfhL'L +2p'4
/

+Tr(jfLL 72+Mb,
/

+TrfifL L r2+MQ f
+ /M/ Tr(gtg+Q Q'),

V„z, =ml (L L+L' L')+(M, —/M/ )Tr(b, b, +b, ' b. ')+(Mz —/M f )Tr(h b+b, ' b )

2

+ [M' Tr( b b, + b, 'b, ') +H. c.]+(M
&
—4

~

p'
~

)Tr@ 4+ Tr( r2@ ~24) +H. c.

+ [iU(L r2bL +L +L' r25'L')+eL r2@r~L'+H. c.],
2

VD „, ,= g L r L+Tr(2b, r b, +2K r b, +4 r 4)~D terms 8

(4)

+ g ~L' r L'+Tr(2b' r b, '+26, ' r b'+C&r 4't)~
m

I2

+ iL' L' LL +2 Tr(b t—b —b, 'tA' —b, b + b, ' b, ')i
8

Note that in Eq. (4) the coefficient of Tr(h b, +b, ' b, ') is
defined such that the coe%cient of this term in

VF ferms + Vso ft is simply M, . Also, in the above equations
the doublets, triplets, and the bidoublets have the electric
charge quantum numbers

and similarly for other fields.

Let us note that spontaneous E.-parity violation in this
model arises when either (v'&%0 and/or (v&%0. Also
it is obvious that parity symmetry is spontaneously bro-
ken if

L c

e

-C
V

+e

We will show that, if ( v& and ( v'& both have a zero vac-
uum expectation value, the inequality (7) cannot be
satisfied and, in fact, the ground state of the theory corre-
sponds to ( 6 &

= ( Z &
= ( b, '& = ( b, '&. We then show that

as soon as (v'&%0 inequality (7) emerges for a range of
parameters in the theory.

$+
go

'y0 y+

Note that we are imposing an exact discrete parity symmetry

in the usual way.

III. A PROBLEM IN THE HIGGS SECTOR:
NO PARITY VIOLATION

Theorem 3.1. The lowest state of the tree-level SUSY
left-right theory corresponds to

(~&=&~&=(~ &=(~'&=&~&=0 f(L'&=« &=o,

except on one hypersurface in the parameter space which
has a volume of measure zero.
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Proof. Let us consider Eqs. (2)—(5) with L=L'=0.
Since we have SU(2)L X SU(2)~ invariance we can diago-
nalize 4 by using a biunitary transformation. So we will
work in the 4 diagonal basis and let

0

Further without loss of generality we can assume that
M' and p in Eqs. (2)—(5) are real and positive. This is
because we can reabsorb their phases into a redefinition
of the fields 5, 6', and + and other coupling constants.
Mi z and M& are real since the Lagrangian is real. The
key point now is to recognize from Eqs. (2)—(5) that for
the potential to be bounded from below for the field going
to infinity the mass parameters must satisfy the con-
straints

The first inequality in (9) follows by looking at the direc-
tions &@&=0 and &b&=&5'&=v r, and
& b, &

=
& 6'& =0 and vice versa. The D terms vanish in

this direction and unless the first inequality is satisfied the
potential is unbounded from below for v~~. (Since
only Mi z appear in the potential we will hereafter as-
sume that M, z ~0 and real without loss of generality. )
The second inequality in (9) follows by looking along
directions &b.'&=&6, &=(v /M, )r&, &b, &=&5'&
= —(v /Mz)r&, and &4& =0. Once again the D terms
vanish and the potential is unbounded unless the inequal-
ity is satisfied. Inequalities (10) follow similarly by look-
ing along directions ~'= —K and real and the rest of the
fields equal to zero. Inequalities (9) and (10) imply that
we can define angles 0 and 0' such that

M' =MiM2 cos20 and p =M& cos20' .

M', , ~0, M'~M, M, ,

&0 and p

(9)

(10)

Since the vacuum expectation values (VEV's) of all other
fields other than the triplets and bidoublet are zero, the
Higgs potential can be rewritten in terms of 0 and 0' as

V=cos 9Tr(M, K'+Mzh' ) (M, A'+Mzh' )+sin 8Tr(M, E'—Mzb, ' )"(M&b,'—Mzh' )

+cos 9 My(K+Ic )*(~+~'*)+sin O'M~(K K ) (K K )+b ~b, ', b, ~b, '+D terms (12)

Note that every term above is a norm and is hence posi-
tive semidefinite. Thus, it follows that the absolute
minimum of the Higgs potential Vis V =0 and this is ob-
tained when

conclusion holds at the tree level for several extensions of
the minimal SUSYLR model as well.

IV. NONMINIMAL SUSYLR MODELS,
THE PROBLEM PERSISTS

A few comments are in order regarding the uniqueness
of the absolute minimum. The only case in which the
fiields can pick up VEV's and still have V =0 is if the fol-
lowing equations are satisfied:

M' =M&M2 and p =M& . (13)

In this case, there is a solution of the form
& ~'& = «& =("/M, )r„&»=

& &'& = —(v'/M, )r„
and ~'= —~. Such a solution is unstable under radiative
corrections and in any case is electric charge (Q, )

violating and parity conserving. If we further restrict the
coupling constant space such that Mi =M2 as well as
Eqs. (13) are satisfied, then there will be a solution of the
form 5'= —6', 6= —5, which can be parity breaking
and Q, conserving. However, these equality relations
for the mass parameters correspond to a very constrained
hypersurface in the parameter space and will occur for
points of measure zero in this space. Further since they
are not guaranteed by any symmetry of the theory, such
equality relations are unstable under radiative correc-
tions. Thus, the true minimum of the theory conserves
parity.

In this section we have shown that the minimal
SUSYLR model cannot violate parity if it does not
violate R parity. In the next section we show that this

A. Minimal SUSYLR+ 1 extra bidoublet field

Let

0 K2 0

0

be the VEV's of the bidoublet fields. %'e choose this form
since it is the most general form consistent with conserv-
ing Q, . The Higgs potential of the triplet and the bi-
doublet fields is of the form

4Note that the VEV's of the slepton fields are set equal to zero
so that R parity remains unbroken.

Certain extensions of minimal SUSLR models have
been considered in the literature. A popular model is the
SUSYLR model with two Higgs bidoublet fields instead
of one [11]. Another extension [12] that has been con-
sidered is the minimal SUSYLR model with an additional
parity odd singlet [13]. In this section we show that even
for these models the absolute minimum of the tree-level
Higgs potential cannot break parity and conserve Q, if
it does not break R parity.
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Vz;, = V(b„b, , a&, rr'„1~2, az)

+ V(A', b', Ir„lrI, rr2, rc2)
(15)

and their products with the singlet field. We will now
show that given any configuration of the triplet fields that
conserves Q, there is a configuration that violates Q,
for which the value of these terms is unchanged. The
most general form of the triplet fields that conserves Q,
is

Note that the above potential is invariant under A~A',
A~A'. Further, if we set g'=0, then for any value of v&,

K), K2, K2, the value of the triplet fields that minimize the
potential of Eq. (15) absolutely is b. =b, ', b, =b, ' due to
symmetry. Now let g' )0 and be arbitrary. The last
term in the Higgs potential of Eq. (15) is positive
semidefinite and for 6=6', A=A' it also has its lowest
value which is zero. From this it follows that at the abso-
lute minimum 6=6', 6=6' and parity remains unbro-
ken. Note that the same argument can be made no
matter how many triplet or bidoublet fields we have in
the SUSYLR theory as long as they are the only fields
that pick up VEV's. We also note that as in Sec. III there
is a hypersurface in the parameter space, where parity
can break but this is unstable under radiative corrections.

0 0
5 0

0 5' 0 6
0 0

(&')= — fi, 0, (~)= —
fi ()

0 5'
1 0 8

(20)

0 g' ) 0 5

It is easy to check that the following Q, -violating form
preserves the values of the terms in Eq. (18):

B. Minimal SUSYLR+ parity-Odd singlet

Let o. be the parity-odd singlet. Now the superpoten-
tial 8'has the additional terms [12]

IV= Acr Tr(bZ —b, 'Z')+ IV(o. ) .

The only additional term that this introduces in the
Higgs potential that is not of the form given below in Eq.
(18) is

Vii;s, the new I' term=Tref(o. )+ A(Ab, b, 'b,')~—
where f(cr) is a function of o along. The key is to note
that 0. does not couple directly to N and therefore in-

equality (10) still holds. This implies that the sum of the
quadratic terms involving N along are positive
semidefinite. We also note that the D terms of the Higgs
potential are all positive semidefinite. Thus, the only way
the Higgs potential can attain a negative value at the
minimum is if some of the quadratic and the cubic terms
involving the triplet and/or singlet fields are negative at
the absolute minimum. The only way in which the triplet
fields occur in these terms is in the combination

Tr(b, th),
Tr(b, b, ),

In addition, by substituting the above Q, -violating form
in the D terms of the Higgs potential it is easy to see that
together with the choice 4=0, all the positive
semidefinite D terms and quadratic terms in N that we re-
ferred to earlier take their lowest possible value which is
zero. The only other term that remains is the I' term in
Eq. (17) and it is easy to see that this term is minimized
too. Thus, the Q, -violating configuration has a lower
value for the potential than the Q, -conserving form.
Thus, we conclude that the absolute minimum of the
tree-level Higgs potential violates Q, if R parity is not
broken.

In the Appendix we investigate some more extensions
of the minimal SUSYLR model and show that minimal
SUSYLR+extra bidoublets+parity-odd singlet also has
the same problem of violating Q, . We further show in
the Appendix that minimal SUSYLR+ parity even
singlet cannot break parity without breaking R parity ei-
ther. In the next section we show that if we violate R
parity then in the minimal SUSYLR model itself, we can
obtain absolute minima that violate parity and preserve

Q. .

V. R PARITY VIOLATION CURES THE PROBLEM

Tr(b. ' b, '),
Tr(A' b, '),
Tr(b b, ),

(18) In this section we show that by giving v' a VEV and
thereby breaking R parity spontaneously, we can salvage
the minimal SUSYLR theory. We will further demon-

Tr(h'b, ')

5Under Parity o.~—o..

Except on a hypersurface in the parameter space of the Higgs
potential where the two forms have the same values for the po-
tential. The reader is referred to the discussion at the end of
Sec. III for such a case.
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strate that we can have a stable nontrivial solution for
the absolute minimum which conserves Q,~ at the tree
level itself without needing quantum corrections for sta-
bility.

We will now find a region in the coupling constant
space such that the absolute minimum for the tree-level
Higgs potential breaks parity but conserves Q, . We will

do this in perturbation by treating certain parameters as
small.

Let us consider the Higgs potential in Eqs. (2)—(5) and
let us choose a region in coupling constant space such

that g and g' are much smaller than the other dimen-
sionless coupling constants h and f . This ensures that
the troublesome D terms that were responsible for break-
ing Q, and preserving parity are weaker than the quar-
tic terms and trilinear terms between the triplet and slep-
ton fields. Also, in order to achieve the hierarchy
(L'), ( 6') » ( 4& ) we will require that the coupling con-
stants and mass terms involving 4 are smaller than those
not involving them. Under these assumptions the poten-
tial in Eqs. (2)—(5) simplifies to

I'=~I (L L+L' L'&+M', Tr(&'6+a'a')+M'Tr(Z)Z+g'g )+li,
I

L L LtL

+ f I'[(L L &'+ «'L')'1+4lf I'(IL "r,&'I'+ IL "r,a I')+M'Tr(aZ+ z'8'+H. c. )

+[L ri(ivb+iM*f1 )L+L' r2(ivb, '+iM*FZ' )L'+H c ]. . . (21)

0
l(L)= 0 (22)

with l and l' real and positive. Now let the triplet fields
have their most general form

a
v'2

In the above we will require that inequalities (9), (10), and
IM (Mz be satisfied so that there is no direction where
V—+ —oo. We will now use the SU(2)L X SU(2)ii invari-
ance to choose

cubic equations, they are a bit complicated in general.
Therefore, we will solve the equations by treating M, and
M' as perturbations that are smaller than the other mass
parameters and will neglect them in what follows. Also
we will assume that all coupling constants, including U

and f, are real. These requirements, though not essential,
will considerably simplify the mathematics and keep it
from being messy. Also note that our main goal is to
prove that there exists at least a region in the parameter
space where the absolute minimum breaks parity and
conserves Q, . Thus, the potential in Eq. (21) becomes

&=~ '( i'+ i')+M'(
I
&'I+

I
&'I )+f'(i'+ i')

(23)

+4f (l' l6' I+I I5 I)+h I' l

+[u(l' 5'+I 5)+fM(l' 6'+l 5)

+complex conjugate] . (25)

(~') =
C

V'2

Substituting these VEV's into Eq. (21) it is easy to see
that the only terms involving a, b, c, or d are

M
g (lc I'+ ld '&+M2( l~ I'+ Ib I'&

+(M' (ac+bd)+H. c. )+2If I Ic l', (24)

which are minimized when a =b =c =d=0 due to ine-
qualities (9). By similar arguments we can show that for
the absolute minimum, all the triplet fields must have the
Q, -conserving form of Eq. (19). The task now is to
determine the unknown VEV's in Eqs. (22) and (19) by
substituting them into Eq. (21) and minimizing the poten-
tial. Since the equations for the minima will be coupled

78y this we mean that at least some fields pick up nonzero
VEV's and there are no directions in the tree-level potential
wherein V~ —~.

The first thing to note is that since the only terms in Eq.
(25) that care about the phases of the fields are the trilin-
ear terms, all fields will pick up real VEV's. This is be-
cause if v is positive (note that it is real by assumption), 5'
will minimize the potential by being real and negative
(rather than having a complex phase) and if u is negative,
6' will be positive. The same argument goes through for
other fields and hence in what fo11ows we will keep all
fields real. The conditions for the extrema of Eq. (25) are

BV
,
= ( m(2+ 4f i5'i+ ii il i+ 2u 5'+ 2fM 5' )l'+ 2f l '

=0,
av =4f l' 6'+ul' =0,06'

av =M 6'+fMI' =0
an'

and three corresponding equations with l'~l, 6'~6, and
5'~5. The solutions for the extrema are the following.
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(1) The trivial solution:

l =l'=6'=6=0 for which V= V =0 . (27) (34)

(2) The parity-breaking solution:
I2

u ~, fMl
4f M

(u —4f m )M
l 2 I'

8f(M —M)
(28) 2

(I' —2$'2+2/' )( ~~ + ~b
~

)
4

(35)

Substituting for L' from Eqs. (22) and (28) into (33) and
minimizing, we obtain ~'=a =0. The only other term in
Eqs. (2)—(5) that couples 4& to the VEV of the other
right-handed fields is the cross term in the D term of the
Higgs potential which on substitution is

MV=VPBs= f 1 lpBs .
M2

(3) The parity-preserving solution:

6'=6=- 0

4f 2

PPS

Vpps = —2

„~Ml'
6 =6=--'

M 2

(
2 4f2 2)M2

8f IM2[1+(h /2f ) —M I

M h+ I'4
M2 2 PPS

(29)

Note that, in the above, the parity-breaking solution
will exist if

If' 25' ) l' +25' this acts as a source for ir~ + ~b
~

pick up a VEV. At this stage there are two degenerate
absolute minima of the form ~%0 and b =0 or b&0 and
v=0. Either v or b is zero because if both have nonzero
values the D terms will contribute extra positive amounts
to the potential due to cross terms between them. The
reason the absolute minimum has a&0 and b =0 is be-
cause the trilinear terms between 4, L, and L' couple
only to the electrically neutral component sc and not b.
The phase of ~ will be determined by these terms so that
they contribute the maximal negative amount to the po-
tential and this will split the degeneracy between the two
minima in favor of the g, -conserving one. Note that a
small value of L itself is induced in this process. ~ can be
easily calculated by writing down all dominant terms in
the Higgs potential as follows:

u 4f m )0. — (30)
V(terms involving v)

Further the parity-breaking solution will be the absolute
minimum if

M
4 +I' —26' +25' i~i +i~i

~PBS & ~PPS . (31) (36)

M2 Mh') 2f'
M2

(32)

Thus, we have obtained a region in parameter space such
that parity is broken. In practice, this requires existence
of large leptonic Yukawa couplings which can only arise
if there is a fourth generation of fermions.

If we substitute the VEV's given by Eqs. (28) into the
Higgs potential in Eqs. (2)—(5), then they will act as
sources for the N field to pick up a VEV. We will now
show that (4) at the absolute minimum does not break

em'
Since g,g'2(&h the most dominant coupling term

between N and the other right-handed fields is the posi-
tive definite term:

h (L' )r24 @r2(L') .

Let ( @) take its most general form given by

(33)

Substituting for Vpiis and Vpps for Eqs. (28) and (29) we
find that inequality (31) is satisfied if

Minimizing with respect to ~ we obtain

M
~2 gi2 gi2 1 li2 (37)

Note that in order that ~ &&6' we have the usual problem
of fine-tuning the terms in Eq. (36). Once a. picks up a
VEV it acts as a source for ~' (and not a or b) to pick up a
VEV due to the term (p l2)Trr2+ rz@ and we can find

the values of ~' by minimizing the dominant terms:
namely,

V(dominant terms involving ~')

=p a.~'+H. c. +(M~+h I' )~~'~ (38)

A point worth noting is the hierarchy ~ (&w is automati-
cally obtained in this mechanism.

Finally, we note that l, 6, 6 will pick up small VEV's
due to the trilinear couplings with the fields that have al-
ready picked up VEV's. The reason these fields will pick

The alert reader will notice that when the perturbation
M

&
)0 is turned on it will force 5=6'=0.

The perturbation M
&

& 0 will imply that 5=0 for the
minimum.

This condition can be easily arranged by choosing mI posi-
tive and large enough as can be seen from Eq. (28).
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up Q, -conserving VEV's is that only the electrically
neutral components of these fields couple to the other
VEV's and so only they can be induced.

Thus, we have shown that there exists a region in pa-
rameter space of the Higgs potential for minimal SUSLR
model such that parity and R parity are broken and Q,
is conserved. In the process we have obtained several in-
equality relations between the coupling constants in the
Higgs potential and they can be useful for phenomenolo-
gy

VI. EFFECT OF RADIATIVE CORRECTIONS

In Sec. III we showed that at tree level there is no pari-
ty violation without R-parity violation in the minimal
SUSYLR model. In this section we will argue that this
result is true even after radiative corrections are taken
into account. Since for phenomenological reasons
( @) (( ( b, ), we will set ( 4 ) =0 and will only consider
VEV's for the triplets. " The effective potential after ra-
diative corrections are taken into account is

Vs= V+ V„~(Q), (39)

where V is the tree-level Higgs potential in Eq. (2) and
V„~(Q) is the radiative correction evaluated using the
usual Coleman-Weinberg technique [14] at a renormal-
ization scale Q. Note that all parameters of the theory
depend on Q such that V,a is independent of Q [15,16].
In other words,

dV, fi =0, (40)

where the mass parameters and the coupling constants of
the theory are functions of Q. Equation (40) implies that
we can choose any convenient value of Q to evaluate V,a..
One of the standard ansatz [15,16] in supersymmetric
theories is to choose Q such that

configuration (configuration 2): namely,

QC
0 sinO

cosO 0

(42)

0 cosO
+2 Ql

where 8 is any fixed angle. Let us choose Q such that the
radiative corrections [V„~ in Eq. (39)] for configuration 1

and configuration 2 are equal at Q =Q. This is our renor-
malization prescription. Of course, as discussed in the
previous paragraph, all coupling constants in the tree-
level Higgs potential in Eqs. (2)—(5) are not function of
Q. Let us now compare the values of the effective poten-
tial V,a in Eq. (39) for the two configurations. Our renor-
malization prescription immediately implies that

V,a(configuration 2) —V,a.(configuration 1)

= V(configuration 2) —V(configuration 1) . (43)

Substituting the forms of the triplet fields for both
configurations into V given by Eqs. (2)—(5), it is easy to
see that above difference is negative no matter what
values tne coupling constants and mass parameters in the
Higgs potential V take. Note that we do not even have to
assume that inequalities (9) and (10) are satisfied. Howev-
er, we require g (Q) )0, which is actually a requirement
from gauge invariance since g is a gauge coupling con-
stant and hence is purely real. Once again it is the D
term whose value is lower for the Q, -violating
configuration while all other terms have the same value
for both configurations 1 and 2. Thus, choosing a suit-
able renormalization prescription we have argued that in
the minimal SUSLR model Q, is violated if R parity is
not broken even after quantum effects are taken into ac-
count.

g=(g), rest of fields at their VEV's too
(41)

VII. CONCLUSION
where g is a scalar field (or a linear combination of scalar
fields) in the theory. Note that the mass parameters and
other coupling constants of the theory are now functions
of Q where Q = Q solves Eq. (41). Physically Eq. (41) im-
plies that if we choose a configuration infinitesimally
different from the vacuum configuration for the field g,
then Q is chosen such that the radiative corrections for
the two configurations are the same. For our problem we
will use a prescription slightly different from Eq. (41) but
which is physically very similar.

Let us assume that the triplet fields pick up Q,
conserving VEV's of the form given by (19) even after ra-
diative corrections are taken into account. We will call
this Q, -conserving configuration of fields configuration
1. Let us consider a slightly different Q, -violating

We have checked that an argument similar to the one in this
section can be made even if (C&)%0.

In summary, we have shown that in a class of minimal
supersymmetric left-right models where R-parity symme-
try is automatic in the symmetry limit, spontaneous
breakdown of parity requires spontaneous breakdown of
R parity. We have also argued that this result established
for the tree-level potential is unlikely to be effected when
one-loop effects are included. This intriguing result con-
nects two physically different scales in supersymmetric
models. Its phenomenological implications will be the
subject of a future publication.
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APPENDIX

In this appendix we prove that minimal
SUSYLR+extra bidoublets+parity-odd singlet also has
the unsatisfactory feature of having only Q, -violating
absolute minimum if R parity is not broken. We also
show that for minimal SUSYLR+ parity-even singlet
model the value of the tree-level potential for parity-
conserving VEV's is always lower than the value for
VEV s that violate parity maximally if R parity is unbro-
ken.

1. Minimal SUSYLR
+extra bidoublets+ parity-odd singlets

The terms in the Higgs potential that involve the bi-
doublets are of the form Tr(@;N ), Tr(rz@; r24&~ ), where
the indices i and j run over the bidoublets in the theory
and the D terms. To keep things simple let us consider
two bidoublets and let them take Q, -conserving VEV's
of the form in Eq. (14). Note that the above-mentioned
terms are all invariant under K')~Ki, K2~K2. Because of
this symmetry it is easy to see that the most general tree-
level Higgs potential involving the bidoublets alone can
be written in the matrix notation

M B v g2
V = (air') B M t + (KK K IC) (A 1)

where the 4 X4 matrices M and B are Hermitian and

(A2)

In the direction Ir'=+a. , the quartic term in Eq. (44) van-
ishes. This implies that if the potential is to be bounded
from going to —oo the mass matrix in Eq. (44) must
satisfy the following constraints for any arbitrary ~:

M B
(Iris') B M 0,

(A3)
M B

(K K) ~0.
K

Now note that any general configuration (Irlr') can be
written as

needed to prove that the absolute minimum violates Q,
in Sec. IVB. Thus, following the same steps as in Sec.
IV 8, we can conclude that no matter how many bidoub-
lets or parity-odd singlets we have, Q, is violated if A
parity is not broken.

2. Minimal SUSYLR+ parity-even singlet

Let co be the parity-even singlet. ' The superpotential
S'has the additional terms

8'=Bro Tr(hb, +6'b;)+Ceo Tr(r24 r2@)+ W(co) .

(A5)

The only additional term that this introduces in the
Higgs potential that is not quadratic in the triplet or bi-
doublet fields is

=Tr~ f(ro)+B(b, b, +b'6')+C7.,@Tr,@~' .

(A6)

Consider a configuration that violates parity maximally,
namely, 6=6=0 and 6'=X,A'= Y, where X and Yare
Q, -conserving VEV's. We will show that regardless of
the VEV of the @ field there exists a parity-conserving
configuration which lowers the value of the tree-level
configuration. ' The reader may verify that this
configuration is b, =A'=X/V'2 and b =b, = Y/&2. Ba-
sically the parity-conserving configuration lowers the
values of the positive semidefinite D terms, regardless of
the value of the diagonal 4 field. The values of the quad-
ratic terms and the new F term are invariant for the two
configurations.

We will end this section here though the proof only
considered initial configurations that violated parity max-
imally and did not consider cases where ( b, )%0 initially.
Since phenomenologically (b, ) « ( 6'), our assumption
that for parity-violating configuration 6=0 is not too
bad.

Our conclusion then is that if we insist on a SUSYLR
theory with triplet fields to ensure the seesaw mechanism
for the neutrino masses and keep R parity intact, then we
should go well beyond the minimal models in order to
achieve breakdown of parity.

K+K K —K+-
K+K (A4)

Substituting the above in Eq. (44) it is easy to see that the
contribution from the quadratic terms in ~ and ~' is al-

ways positive semidefinite due to inequalities (46). This
was the only information from the 4 sector which was

Under parity co~co.
' Except on one hypersurface in the parameter space where

the two configurations have the same value for the potential.
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