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Motivated by past and recent analyses we critically reexamine the use of effective Lagrangians in the
literature to constrain new physics and to determine the "physics reach" of future experiments. %'e

demonstrate that many calculations, such as those involving anomalous trilinear gauge-boson couplings,
either considerably overestimate loop-induced effects or give ambiguous answers. The source of these

problems is the use of cutoffs to evaluate the size of such operators in loop diagrams. In contrast with

other critiques of these loop estimates, we prove that the inclusion of nonlinearly realized gauge invari-

ance into the low-energy Lagrangian is irrelevant to this conclusion. We use an explicit example using

known multi-Higgs-boson physics above the weak scale to underline these points. We show how to draw

conclusions regarding the nature of the unknown high-energy physics without making reference to low-

energy cutoffs.

PACS number(s): 11.15.Ex, 12.15.Ji, 14.80.Er

I. INTRODUCTION

As experimentally accessible energies have risen above
the thresholds for producing electroweak gauge bosons, it
has become more and more clear that the mass scale asso-
ciated with any new physics is probably at significantly
higher energies. This is reAected by the great success of
the standard model in predicting the results of these ex-
periments in general and the properties of these gauge bo-
sons in particular.

Given that the scale of physics beyond the standard
model is well above the weak scale, the low-energy effects
of such new physics may be parametrized in terms of an
effective Lagrangian [1] in which the inAuence of any at-
present-unknown new heavy particles is felt through the
effective nonrenormalizable interactions that they gen-
erate among the lighter particles. These nonstandard in-
teractions may be organized according to increasing
operator dimension. At a practical level this method is
useful only to the extent that it is possible to consider just
those few interactions which have the lowest dimension.
This can usually be justified by the suppression of
higher-dimensional operators by extra powers of the in-
verse of some heavy-mass scale M.

This type of reasoning has led to considerable effort in
using experimental data to constrain the coefficients of
the operators in such an effective Lagrangian which
parametrize deviations from the standard model. Of par-
ticular interest are those terms which correspond to
anomalous couplings of the photon and the Z, since
these are the probes that are currently the most cleanly
available in collider experiments. Analyses have focused
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on the lowest electromagnetic and electroweak moments
of the light fermions [2—4] as well as gauge-boson self-
couplings [5—11] that would dominate interactions at low
energies. In this way it is possible to ascertain which in-
teractions could have hitherto escaped detection and
might yet be detectable at upcoming experiments. Pro-
ponents of particular experiments can turn this argument
around and estimate the scale M of new physics to which
a particular proposal can be sensitive —its so-called
"physics reach. " The most interesting proposals are nat-
urally those that are potentially sensitive to the highest
scales and so whose physics reach is the longest.

A complication arises, however, when loop effects in
the low-energy theory are important for detecting the
effective interaction under study. This is because such
loops are typically divergent and so can depend on posi-
tive powers of a large high-energy cutoff' A. This cutoff
physically describes the maximum energy to which the
effective Lagrangian is expected to apply and so is fre-
quently also taken to be of order of the new physics scale
M. To the extent that this is true, the most divergent
contributions to a given amplitude could be taken as indi-
cations of a strong dependence on new physics at scale
M, potentially indicating a long physics reach.

Our main point in this paper is to show that the above
argument can be very misleading and can even lead to
conclusions which contradict general decoupling results
[12]. At best, it gives [10] an ambiguous, and at worst, a
false, indication of the scale of new physics to which a
given experiment may be sensitive, often yielding overly
stringent constraints on parameters in the effective La-
grangian. The weak link in the arguments used is the as-
sumed connection between what can be computed (the
cutoff dependence of amplitudes in the low-energy
effective theory) and what is meant to be bounded (the
dependence of low-energy amplitudes on physical high-
energy physics scales such as heavy particle masses).
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In this paper we refine and expand on our results in
Ref. [13] by exploring in detail this connection between
low-energy cutoff dependence and heavy-mass depen-
dence. We demonstrate our conclusions within the con-
text of a multi-Higgs-boson model in which the inhuence
of the high-energy physics is known and calculable. We
show that cutoff dependence can be a very poor indicator
of heavy-mass dependence, particularly where massive
spin-1 particles are involved. We then indicate how to
extract the dependence on high-frequency physics
without resorting to arguments that rely on cutoffs.

In the literature the misidentification of heavy-mass
and cutoff dependences arises most frequently in the con-
text of anomalous three-gauge-boson vertices (TGV's).
There are two reasons for this. First, since TGV's cannot
yet be measured directly, the only available information
concerning them arises indirectly through their contribu-
tions to loops. Second, since problems with interpreting
the cutoff dependence arise most strikingly for loops in-
volving massive spin-1 particles, TGV-induced loops are
very easy to mishandle [10]. This has led to misleadingly
stringent constraints on anomalous TGV's, as well as to
mistaken predictions of large effects in future experi-
ments, that is to say, long physics reach.

In addition to this confusion between cutoff behavior
and new physics dependence, the waters have recently be-
come even more muddied due to a parallel confusion that
has risen within the specific context of TG-V analyses.
The authors of Ref. [11] agree that physics reach as re-
gards anomalous TGV's is overstated in places in the
literature. However, they go on to identify the error as
being the gauge invariance (or lack thereol) of the
analysis. (An alternative phrasing of this line of thought
is to object to the use of the unitary gauge in performing
loop calculations. )

The key question is whether the light particles in the
effective theory being considered fill out a linear represen-
tation of the gauge group. They do not, for instance, if
there is no light Higgs boson to transform with the longi-
tudinal 8' and Z bosons. In this case, gauge invariance
can only be realized nonlinearly. We contend here that,
for gauge symmetries, such a nonlinear realization can be
included, or not, simply by a change of variables, and so
nothing physical can depend on this choice.

That this confusion can arise at all serves to underline
a more pervasive hazard that underlies the association of
a physical interpretation to divergences within an
effective Lagrangian: The Lagrangians themselves, and
so also the divergences they contain, are not invariant un-
der field redefinitions. Conclusions that are based on
them are generically marked by the same Aaw, unless it is
specifically demonstrated otherwise (as can be done for
the S matrix, for example). Proposals which link cutoff
dependence in the Lagrangian to heavy-mass dependence
are therefore at best ambiguous, unless they are
specifically referred to a set of variables which are to be
used. They are simply wrong if the variables used are
poorly chosen.

Some of these points are undoubtedly familiar to some
of the effective-Lagrangian cognoscenti. They have not,
however, been absorbed into the wider community which

is now finding applications for these techniques. We
therefore feel that an examination of the issues is timely
given the present debate over the accuracy of estimates of
physics reach and over the nature of the properties that
should be built into low-energy Lagrangians.

We next expose all of these points in more detail, with
reference to explicit underlying models for which both
heavy-mass and cutoff dependences are separately calcul-
able. We start in Sec. II by discussing the relevance of
gauge symmetries for effective Lagrangians. In so doing
we (re)demonstrate the equivalence between nonlinearly
realized gauge symmetries and no gauge symmetries at
all. This is followed in Sec. III by some general observa-
tions about how the cutoff dependence arises in low-
energy effective theories. Section IV contains the guts of
our criticism. We first present the arguments for think-
ing that cutoffs might track heavy masses and then criti-
cize these arguments. We provide several examples
which indicate how field redefinitions can alter the cutoff
dependence and argue which variables are most likely to
allow cutoffs to mimic the heavy-mass dependence in ob-
servables. In Sec. V we outline how to infer the heavy-
mass dependence without having to rely on the cutoff
dependence of low-energy graphs. This permits the re-
tention of most applications of cutoff methods, but with
the conceptual advantage of relying on a more solid foun-
dation. Section VI then presents an explicit multi-
Higgs-boson model for the underlying physics in which
these ideas are explicitly worked out. Our conclusions
are summarized in Sec. VII.

II. PERTINENCK OF GAUGE SYMMETRIES

Essentially, two ingredients are required to specify a
low-energy effective Lagrangian: the low-energy particle
content and the symmetries that their interactions
preserve. Once these have been specified, all possible in-
teractions of successively higher dimensions may generi-
cally be written down.

When considering the interactions of 8' and Z bosons,
the most important distinction to be made concerns
where the scale of the unknown new physics, M, lies in
relation to the electroweak scale v=246 GeV. If M is
much greater than roughly 4m v, then the perturbative un-
itarity of the low-energy theory requires that it must
linearly realize the electroweak gauge symmetries [14,15].
In this case the low-energy theory must contain more
particles than have presently been discovered (such as the
standard-model Higgs boson and top quark) in order for
the known particles to fill out a linear representation of
the gauge group. This is the choice that has been pur-
sued in Refs. [4], [9], and [11].

We are mostly concerned in what follows with the oth-
er alternative in which the underlying physics we are
groping for is the electroweak-breaking physics itself. In
this case the particle content need not fall into linear rep-
resentations of the gauge group and so could, in particu-
lar, consist only of those particles that have already been
discovered. Since perturbative unitarity fails in this type
of effective theory at energies of order 4~v =8~M~/g,
we are guaranteed that the effective theory must fail at or
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before this point. Below this scale, agreement exists in
the literature as to the appropriate low-energy particle
content that is to be chosen, but practitioners differ ac-
cording to their choices for the symmetries that these
particles should respect.

No gauge invariance In. the first approach [2,5 —8, 10],
only electromagnetic gauge invariance is imposed, and all
spontaneously broken gauge symmetries are simply ig-
nored.

2Vonlinearly realized gauge invariance. In the alterna-
tive framework [3,16], invariance with respect to the full
electroweak gauge group is required, but with all but the
unbroken U, (1) subgroup being nonlinearly realized.
The physical motivation that underlies this second ap-
proach is the assumption that the low-energy degrees of
freedom of the unknown symmetry-breaking sector con-
tain only the three Nambu-Goldstone bosons which are
absorbed by the massive 8' and Z particles. Given this
assumption, the transformation properties of all fields are
determined by general arguments [17,18] that were
developed within the framework of chiral perturbation
theory many years ago.

It is the point of this section to (re)demonstrate the
equivalence of these last two schemes. This result is not
new, appearing as it does in Refs. [14] and [18], but the
reminder is worthwhile in order to put to rest more re-
cent concerns as to the legitimacy of ignoring the broken
electroweak symmetries in the effective Lagrangian. The
equivalence is established by explicitly finding a change
of variables that relates the two alternatives. Although
our arguments can be made quite generally, we restrict
ourselves here to two specific cases: a simplified toy mod-
el involving a single massive spin-1 particle, as well as the
realistic case appropriate to the couplings of the elec-
troweak gauge bosons 8'—,Z and the photon y.

A. Toy example

In order to describe the argument within its simplest
context, consider first the coupling of a single massive
spin-1 particle, V„, coupled to various forms of spinless
or spin- —,

' matter, g. We first state the two alternative
forms for the effective Lagrangian and then demonstrate
their equivalence.

Xo gauge invariance. The Lagrangian in the first for-
mulation then takes the form

X,=X,( V„,g),
in which X, is a pviori an arbitrary local Lorentz-
invariant function of the fields V„,P and their spacetime
derivatives. Since P and V„are independent degrees of
freedom, the quantum theory could be defined in this case
by a functional integral of the form

Zi = f [dg][dV ]exp i f d xX,(V„,Q) . (2)

Nonlineavly realized gauge invariance. The alternative
formulation is to consider a U(1) gauge theory with
matter fields g; carrying U(1) charges q;. The gauge sym-
metry transformation acting on these fields and on the
gauge potential A„are the usual ones:

iq,. co
e 'g;, gA gA +B„~. (3)

f here is the Nambu-Goldstone boson's decay constant
which is of the order of the scale at which the U(1) sym-
metry is spontaneously broken. It is related to the mass
of the gauge boson by the relation M =gf.

The most general gauge-invariant low-energy Lagrang-
ian may then be written in the form

(D„V,y'), (5)

in which the redefined field is g,' =e '
y, is the'q; %~f

gauge-covariant derivative for y is given by
D„y=Bq& gf A—„. N—ote that all of the dependence on
A„ in X2 arises through this gauge-covariant derivative.
For example, the gauge field strength is given by
gfF„="d„D,y "d+„y. —

The corresponding functional integral defining the
quantum theory then has the standard form

Z, = f [dy,'][dA„][dq]

Xexp i f d x%2(D„@,y') 5[G]Det 5'
(6)

in which the second-to-last term is the functional delta
function 5[G], which enforces the gauge condition G =0,
and the last term is the associated Faddeev-Popov-
DeVA'tt, or ghost, functional determinant.

It is crucial for the remainder of the argument that
both y,

' and D„cp be invariant, as opposed to being covari-
ant, with respect to gauge transformations. As a result,
any Lorentz-invariant Lagrangian, such as X2, that is
built from these fields becomes gauge invariant automati-
cally.

Equj, valence. Now comes the main point. The two La-
grangians X, and X2 are identical to one another. There
is a one-to-one correspondence between the terms in each
given by the replacement g~y, '. and D y~ gf V„. This-
is only possible because both X, and Xz are constrained
only by Lorentz invariance and so any interaction which
is allowed for one is equally allowed for the other.

More formally, the functional integral of Eq. (2) may
be obtained from that of Eq. (6) by simply choosing uni-
tary gauge, defined by the condition G =p(x), and using
the functional 6 function to perform the integration over
qo. The ghost "operator" is in this case
5G (x)/5'(x') =f5 (x —x'), and so the ghost deter-
minant contributes just a trivial field-independent nor-
malization factor.

The integration over the "extra" Nambu-Goldstone

g here is the gauge coupling constant.
Symmetry breaking is incorporated by coupling these

matter and gauge fields in a completely general way to a
single Nambu-Goldstone boson y for a spontaneously
broken U(1). The action of the U(1) on the Nambu-
Goldstone bosons may always be chosen to take a stan-
dard form [17],which becomes, in this case,

(4)
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degree of freedom of the gauge-invariant theory is there-
by seen to be precisely compensated for by the freedom to
choose a gauge.

B. Applications to the electroweak bosons

The argument as applied to a more complicated
symmetry-breaking pattern, such as appears in the elec-
troweak interactions, has essentially the same logic, al-
though the technical details are slightly more intricate.

No gauge invariance. We take for the purposes of illus-
tration the degrees of freedom in the low-energy efFective
Lagrangian for the electroweak interactions of leptons
and quarks. These are the massless photon 3„,the mas-
sive weak vector bosons 8'„and Z„, and the usual fer-
mions P. Although other particles such as gluons may
also be very simply included, we do not do so here for
simplicity of notation. The general Lagrangian for these
fields may be written

X,=X,( A„, W~, Z„,Q), (7)

in which X., is a general local and Lorentz-invariant func-
tion whose form is further constrained only by unbroken
U, (1) invariance. All derivatives are taken to be the
U, (1) gauge-covariant derivative D„, which for fer-
mions takes the form D„P=d„P ieQ A „Q—Q.here
denotes the diagonal matrix of fermion electric charges.

The quantum theory is given in terms of a functional
integral of the form

Z, =f [dW„][dW* ][dZ„][dA„][dg]

5G,
Xexp i f d xX, 5[G, ]Det

™
&~em

We next outline the nonlinear realization of
SUL (2) XUi (1).

Nonlinearly realized gauge invariance. The first step is
to briefly review the formulation for the low-energy in-
teractions of the Nambu-Goldstone bosons for the global
symmetry-breaking pattern SUL(2)XU&(1)~U, (1)
[17]. We then promote the symmetry to local gauge
transformations.

Consider, therefore, a collection of matter fields f on
which SUL (2) XUi (1) is represented (usually reducibly)
by the matrices G =exp[iaizT, +itoiY] We cho. ose here
a slightly unconventional normalization for the genera-
tors T, and Y, viz. , tr[T, Tt, ]=—,'5,t„ tr[T, Y]=0, and
Tr[ Y ]=—,'. Finally, define the matrix-valued scalar field

containing the Nambu-Goldstone bosons by
g( )x= e px[ i2''( )x/v ], in which the three X, 's

represent the spontaneously broken generators X, = T„
X2 = Tz, and X3 =aT& —b K Here a +b = 1, and a /b is
chosen to ensure that tr[X3Q] =0, where Q is the unbro-
ken generator: Q =bT3+a Y.

The action of the gauge group SUL(2)XU&(1) on g
and g may be written in the standard form

g~GP and g'~P, (9)

where Gg=g'H . Here H =exp[iQu (g, g', G)] and

u =u (g, g', G) is implicitly defined by the condition that
g' on the right-hand-side of Eq. (9) involves only the bro-
ken generators.

As was the case for the toy example, for the purposes
of constructing the Lagrangian it is convenient to define
new matter fields g' according to g':—g g since this has
the SUL(2) XUi (1) transformation rule

=Hg' . (10)

Note that even for global U~(1) rotations, for which co, is
constant, u (g, g', G) is spacetime dependent because of its
dependence on the scalar field g(x).

The next step is the construction of the general locally
SUL (2) X Ui (1)-invariant effective Lagrangian. To this
end consider the auxiliary quantity 2)„(g), which may be
defined in terms of g and the SUL (2) XUi (1) gauge po-
tentials W„=g8'„'T, +g'B„Yby

eA =2i tr—[Q2)„(g)], eA„~eA„+B„u;
g +g Z„=2i tr[X—32) (g)], Z„~Z„;

g%'„——:i&2tr[T+2)„(g)], %'„——+e —'"~~„—.

(12)

T+ is defined as usual to be T, +iT2. The first of these
fields A„(g) transforms in such a way as to permit the
construction of a covariant derivative for the local trans-
formations as realized on g':

D„g' —=(8„—ieA„Q )g' . (13)

The main point to be appreciated here is that Eqs. (12)
imply that all of the fields P', D„g', A„(g), Z~(g), and
lH~(g) transform purely electromagnetically under arbi-
trary SUL (2) XUr(1) transformations. This ensures that
once the Lagrangian is constructed to be invariant under
the unbroken group, U, (1), it is automatically invariant
with respect to the full nonlinearly realized group
SUL (2) X Ui (1).

With these transformation rules, the most general
SUL (2) X Ui (1)-invariant Lagrangian becomes

%2=X~(A„,lV, Z„,Q'), (14)

with Xz restricted only by the unbroken U, (1) gauge in-
variance. The functional integral which defines the quan-
tum theory may then be written

Z = f [dW„][dg][dg']

66,
Xexp i f d x%2 5[G, ]Det

&
. (15)

567

Four gauge conditions G, =0, a =1,. . . , 4, are required,
one for each generator of SUL (2) X Ui (1).

X)„(g)=pe g —ig W„g—.

In terms of this quantity, it is possible to construct fields
which transform in a simple way with respect to
SUL(2)XUi, (1). Together with their SUL(2)XUr(1)
transformation rules, these are
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Equivalence. The demonstration of the equivalence be-
tween Eqs. (8) and (15) proceeds along lines that are simi-
lar to those used in the Abelian toy example presented
previously. As was the case in this earlier example, the
equivalence works term by term in the Lagrangian. The
correspondence between the field variables is

A „~2„, Z„~Z„, 'lV„~W„, (16)

The equivalence is explicit in unitary gauge, which is
defined in this case by the condition y'(x)—:(0), or
equivalently g'(x)=—1, throughout spacetime. As is seen
from the transformation rules of Eq. (9), this condition
does not completely fix the gauge. It is preserved by the
unbroken electromagnetic transformations which satisfy

I CO

G =H=e ' . In this gauge the relations for Z„, 'N„,
and g indicated in Eqs. (16) above simply become equali-
ties.

More formally, using the unitary-gauge condition to
perform the functional integration over g in Eq. (15),
gives the result

Z2 =j[dW„][dg]exp i Id x X2

5G
Det

5co
X5[G, ]Det

&~em
(17)

Since X2(/= 1)=X„this clearly agrees with Eq. (8) apart
from the final Faddeev-Popov-DeWitt ghost determinant
that is associated with the choice of unitary gauge:

5cp'(x)/5' (x'):—b, '&(x)5 (x —x') .

The final point is that the identity Det=exp Tr ln may
be used to rewrite this determinant as the exponential of
a local, Lorentz-, and U' (1)-invariant function. As
such, it may be considered as a shift in the parameters ap-
pearing in the original Lagrangian X2. Furthermore,
since its contribution to X2 is proportional to 5 (x =0),
its eoeKcients are ultraviolet divergent and so their con-
tribution may be absorbed into the renormalizations that
are anyhow required in defining the functional integral of
Eq. (17). In practice, the Faddeev-Popov determinant
does not in any case arise until at least two-loop order.

The practical benefit of this equivalence is that it al-
lows the use of the most convenient gauge for any partic-
ular application. Covariant gauges, such as the Feynman
gauge, are particularly useful for making power-counting
arguments, since all propagators explicitly vary like I /p
for large four-momenta, and the pathologies of the
unitary-gauge propagator are put into derivative cou-
plings. For instance, this is the simplest way to under-
stand why @ED remains renormalizable once a photon
mass term is added, while the same is not true for a non-
Abelian gauge theory. This distinction is most easily seen
from the form of the Nambu-Goldstone boson couplings.
While an invariant renormalizable Lagrangian exists for
a U(1) Nambu-Goldstone boson —i.e., it is simply its
kinetic term —

—,'D„yD"y—the same is not true for a
non-Abelian symmetry group. This is because the kinetic
terms are in this case not by themselves invariant with
respect to the nonlinearly realized symmetries. Con-

versely, unitary gauge has the simplicity of just involving
physical particles, allowing a direct identification of the
physical significance of the effective interactions.

C. Derivative vs Yukawa couplings

In this section we wish to make the previous arguments
concrete by considering an explicit one-loop example. In
addition to having applications later in the paper, the ex-
ample also serves to bring out three general, but not-so-
widely appreciated, features of the equivalence we have
described. These general points are listed at the end of
the section.

It is a basic feature of the chiral Lagrangian described
above that all of the would-be Nambu-Goldstone bosons
(WBNGB's) couple derivatively to all other fields (and to
themselves). This expresses a completely generic feature
of any Nambu-Goldstone boson interaction and is easily
seen from the expansion of, e.g. , 'N„(g') [cf. Eqs. (11) and
(12)] in powers of fields:

(19)

The second term in this expansion gives a very simple
Feynman rule for WBNGB couplings: Simply contract
the result for the corresponding 8' coupling by
ik "/Mii„where k" is the WBNGB four-momentum.
This is equally true regardless of whether the particle to
which the 8'—+ or y couples is a scalar, fermion, or a
gauge boson.

Note that this type of coupling is not the same as what
is obtained for the WBNGB's in a covariant gauge in the
standard model. In the standard model, for example, the
WBNGB-fermion interactions do not involve any deriva-
tives at all, since they come from the Yukawa couplings
to the Higgs multiplet. In the standard model these two
formulations are physically equivalent, since it is possible
to pass from one to the other by performing an appropn-
ate field redefinition. As we shall now see, however, they
ean and do give rise to different types of divergences in
off-shell quantities such as the effective Lagrangian. This
point will become important once we begin trying to
track the cutoff dependence of loops in later sections.

Consider, then, the effective interaction'

X, = —aZ„(W+W " + W, W+" ) . (20)

lZ
&zd = 7.75cr" rZ„

2

that this coupling induces at one loop.

(21)

This interaction happens to violate CP and corresponds on
shell to the interaction denoted g f in Ref. [5].

The eouplings that this interaction induces for the
WBNGB's are found by substituting W~'N and Z ~Z
from Eqs. (12) and expanding the result in powers of
fields. We choose to compute the CP-violating Z-v.-~ ver-
tex (or Zdm)
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In the unitary-gauge formulation, we must evaluate the
graph of Fig. 1. The 8 propagator that appears in each
of the two internal boson lines is

k"k
G (k)=

k —M Mw w
(22)

On the other hand, working with the chiral Lagrangian
in a general covariant gauge leads not only to Fig. 1, but
also to the three other graphs that are obtained from this
one by replacing each 8' line by the corresponding
WBNGB propagator. In the standard one-parameter
family of covariant gauges, the two types of boson propa-
gators that appear are

l
G( )(k)=

k —gM
(23a)

l k "k
Gi(' )(k)= g" +(ri 1)—

k —M k —gMW W

(23b)

The equivalence theorem of the previous sections ar-
gues that the unitary-gauge result equals the sum of the
four covariant-gauge graphs. This is easy to see by using
the following identity in the unitary-gauge result:

GP(k) = G~(„)(k)+ G(„)(k) .
w

(24)

where g is the SUL (2) coupling constant.
It is instructive to compare this result with what would

have been obtained if we had used the chiral Lagrangian
only for the 8'8'Z vertex in Fig. 1 and had simply used
standard-model Yukawa-type Feynman rules for the

2The momentum flowing through each line must be regulated
separately, or else the result will depend on how momentum is
routed through the graph.

The two factors (ik"/Mii, )( ik /M~—) are just what is
required to reproduce the Feynman rules for the
WBNGB couplings as given in Eq. (19). (The relative
sign arises because momentum in at one end of the boson
line corresponds to momentum out at the other. ) Thus
the diagrams with WBNGB's simply cancel the g depen-
dence of the 8'propagators in Fig. 1. Note that it is cru-
cial for this result to use the derivative WBNGB cou-
plings for both the O'O'Z vertex and the 8'-fermion ver-
tices.

Since the integrands in the two formulations are equal,
they give the same result for the ~ weak dipole moment,
regardless of how the graphs are regularized. We choose
here to regulate the graph by inserting the form factor
F(p, A)= —A /(p —A ) into each internal line. (This
may be viewed as a higher-derivative regularization, for
which a higher-derivative kinetic term has been added to
the unperturbed Lagrangian for each field. ) The result
for the most-divergent part becomes

ag A
z

23(34 2 M4
m

FIG. 1. Feynman graph through which the anomalous
gauge-boson vertex contributes to fermion weak dipole mo-
ments.

WBNGB-fermion vertices. In this case the WBNGB
graphs are less divergent, since there are fewer powers of
momentum associated with each vertex. The most-
divergent part of the result becomes

m, (m, —m )
ag 7 'T v

z — lnInost div 384 MW4
(26)

The main point of this paper is to critically reassess the
common habit of inferring heavy-mass dependence from

There are three lessons to be learned from this section
and from this example.

(1) First, we explicitly verify the equivalence between
the chiral Lagrangian and the Lagrangian which ignores
all but U, (1). This equivalence relies crucially on the
derivative couplings of the WBNGB s in chiral perturba-
tion theory. Criticizing the apparent gauge noninvari-
ance of the TGV Lagrangians that are used in loop calcu-
lations (or, equivalently, of unitary gauge) in favor of
chiral perturbation theory clearly misses the point. If
there are problems with the large loop estimates that
have been obtained, then the reason must be found else-
where. We point this reason out in the following section.

(2) Next, we see explicitly that even the dominant
cutoff dependence of off-shell quantities, such as cou-
plings in the effective Lagrangian, depend strongly on the
choice of field variables used. In particular, the two
kinds of Feynman rules for the fermion-WBNGB vertex
may be obtained from one another by performing a
WBNGB-dependent nonlinear field redefinition on the
fermion fields of the form g~f(p) P. (In fact, the
answer would have remained unchanged if the higher-
derivative terms which implement the cutoff were also
transformed, since this transformation introduces new
cutoff-dependent fermion-WBNGB interactions. ) This is
part of the intrinsic hazard of trading in off-shell diver-
gences: They depend in detail on which field variables
are regulated.

(3) But the last, and most important, point is this:
Without knowing the underlying physics, which of these
two answers is correct? If one interprets A to agree, in
order of magnitude, with the new physics scale, they have
very different physical implications. The difference be-
tween them could well be the difference between detect-
ing z at the CERN e+e collider LEP or not. We shall
argue in the following sections that in this case it is Eq.
(26) which is correct. It is clearly important to be able to
decide which is right in advance.

III. CUTOFFS: GENERAL ARGUMENTS
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the cutoff dependence obtained purely within low-energy
loops. In this section we make our main points. In order
to do so, we start by presenting the arguments in favor of
using cutoffs in this way, followed by our criticism of
these arguments. We then provide a few explicit exam-
ples to illustrate the relevant points.

A. Why might one think that cutouts track new physics?

Associating a physical interpretation with the cutoff is
an almost irresistible impulse when dealing with effective
Lagrangians. After all, the effective theory is from the
start only meant to describe physics below some scale A,
above which we cannot probe. Since effective theories
are not renormalizable in the traditional sense, the inser-
tion of effective vertices into loop graphs can produce
very divergent results. It is natural to suppose that these
divergences indicate that the amplitude in question gets
its most important contributions from the highest fre-
quencies: those just below the cutoff. Presumably this
strong sensitivity is removed once all of the heavy degrees
of freedom of mass M & A are included, such as would
happen if this underlying theory were renormalizable. As
a result, so the argument goes, the strong short-distance
contributions should saturate at M, leaving a result
whose size is set by replacing A with M, at least up to an
order of magnitude.

This reasoning can be made considerably more precise
by rephrasing it as the following principle [19].

If there is a divergent graph in the low-energy theory,
cutting it off at the scale where the theory breaks down
due to new physics gives a lower bound to the actual
value of the graph in the full theory (in the absence of
fine-tuning).

What could possibly be wrong with such a physically
appealing argument? The answer is that, in certain cir-
cumstances, nothing goes wrong with it. Unfortunately,
it can sometimes also happen that it is completely false,
and it fails because it does not take into account cancella-
tions that are automatically built into any effective
theory. We describe here what these cancellations are
and return in following sections to the question of how to
tell when the above reasoning will fail.

B. Curse of cancellations

Consider, then, a theory which involves two very
difFerent mass scales M ))m. (We have in mind that m
represents the weak scale, say, m —M~, while M
represents the scale of unknown new physics. ) Suppose
that within this theory we wish to compute a physical
low-energy observable, such as a calculable low-energy
mass shift 6p as a function of these two mass scales. An
example of this type of observable in the electroweak in-
teractions would be the deviation from unity of the p pa-
rarneter, which is related to the comparative strength of
the low-energy charged- and neutral-current weak in-
teractions.

We are interested in the form taken by 6p in the limit
where m/M is taken to be asymptotically small, with all
dimensionless couplings held fixed. It is possible to make
fairly general statements as to the result in this limit (in

M
5p (m, M)=coM +c,m +cz + . (27)

in which the ellipsis represents terms that are suppressed
by more than two powers of m/M. The dimensionless
coefficients are functions of the other (renormalized) di-
mensionless parameters of the theory, and they may also
depend at most logarithmically on the large mass ratio
M/m. Note that the largest power of M here is just set
by dimensional analysis.

For applications to the electroweak interactions
m -M~, it is important to be aware that the above form
strictly applies only asymptotically for Mii, /M —+0. It
may therefore be expected to hold when the new physics
can be at very high scales compared to the weak scale,
such as if the underlying physics were a grand unified
theory of some kind. Its application is less straightfor-
ward when the new physics is associated with elec-
troweak symmetry breaking, since in this case M cannot
be larger than of order 4~v, and so M/M~~8~/g. In
this case Eq. (27) must be interpreted as applying to the

g —+0 limit rather than for M~/M —+0 with g fixed.
Imagine now performing the same calculation, but this

time dividing the contributions into a "low-energy" part
and a "high-energy" part. To this end choose a cutoff A
which satisfies m «A«M. First, integrating out the
high-energy part of the spectrum produces a low-energy
effective Lagrangian that is applicable at scales below A.
Next, compute the physical mass shift in this low-energy
effective theory. Since this simply corresponds to a par-
ticular way of organizing the calculation in the full
theory, it must produce the correct answer of Eq. (27)
above. The full expression may therefore be broken up as
follows:

5p (m, M) =5@„E(m,A, M)+5pHE(m, A, M), (28)

in which the first (second) term here, respectively, con-
tains only the low-energy (high-energy) contributions.
(This split between low and high frequencies may be con-
veniently formulated in Euclidean signature according to
whether the four-momentum p for a particle of mass m,
in each internal line of a Feynman graph satisfies the con-
dition p +m; )A .)

The low- and high-energy contributions to 6p in gen-
eral take the form

6pHE —coM +biA +

ALE= b i A'+
(29)

In both of these equations, the ellipses represent terms
that depend differently on the small mass ratios m/A,
A/M, or m /M than the terms that are explicitly written.
Examples in later sections include, for example, such
quartically divergent terms as A /m . Clearly, the con-
dition that the two contributions sum up to the full result

four spacetime dimensions) if the renormalizable part of
the low-energy theory is perturbative, so that all fields
scale approximately as the noninteracting Lagrangian
would indicate. Typically, the answer in this case takes
the general form
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of Eq. (27), whose A independence is manifest, requires
that the coeScients satisfy b

&
+b', =0, etc.

Now comes the main point. In order to calculate the
scale of new physics that may be probed by a detailed
measurement of a quantity such as 6p, we require accu-
rate knowledge of the coefficient co in Eq. (27). If we
only have access to the low-energy effective Lagrangian
below scale A, then it is impossible to precisely compute
cp. In particular, knowledge of the coeKcient bi of the
low-energy quadratic divergence gives no a priori infor-
mation regarding cp, since it is completely canceled by
the high-energy contribution (or counterterm) b, . There
is nothing miraculous about this cancellation; it simply
rejects how physics cannot depend on the intermediate
steps in a calculation.

There are occasions, however, when knowledge of the
coefficient of a particular divergence in the low-energy
theory can be parlayed into reliable information about
the heavy-mass dependence of the full result [20]. A log-
arithmic divergence furnishes perhaps the simplest exam-
ple. Here the full and partial results for a dimensionless
observable, call it 3, can take the form

2

3 = ALE+ AHE=apln
M
Pl

(30a)

while

3HE
—a pin

M
A

(30b)

A
LF =ap'ln

2
+

Pl
(30c)

In this case the condition that the cutoff dependence can-
cel requires that ap =a p

=a p and so the coeKcient of the
large logarithm within the full theory may be determined
simply by identifying the coefficient of the logarithmic
divergence within the low-energy theory. It is important
to realize that this property is n,ot generically shared by
other types of divergences.

C. "Good" vs "bad" variables

With the general concepts regarding cutoffs now firmly
in hand, we can now demonstrate the Aaw in the princi-
ple enunciated earlier (Sec. III A), which states that
cutoffs furnish lower bounds for the contributions of new
physics. A brief example here is instructive.

Consider the case where the standard model itself,
Higgs boson and all, is the low-energy theory, as might be
appropriate to a grand unified theory. In this case the
bounds of Eq. (27) should apply since the low-energy
theory is perturbative in the regime of interest, and we
may take M~/M to be extremely small. Suppose we
choose to compute the cutoff dependence in this theory of
the coefficient of the effective operator F„F",which
contributes to the vacuum polarization of the photon.
Since the standard model is renormalizable, this result in
a manifestly renormalizable gauge is finite, varying like

1/A for A ))M~. If the same result is computed in uni-
tary gauge, however (or, equivalently, in any gauge using
the derivative WBNGB couplings of chiral perturbation
theory), then it diverges quadratically: -A /M~. If
taken seriously, this example would drastically overesti-
mate the heavy-mass dependence of the underlying
theory, which cannot be larger than 0 (1/M ).

Once again, just as in our earlier example involving the
weak dipole moment of the ~, a change of variables has
dramatically altered the cutoff dependence of the effective
Lagrangian. These two examples illustrate the difference
between what might be called "good" and "bad" vari-
ables. To see the distribution between these variables,
note that for both examples the divergences of the S ma-
trix are the same in both sets of variables, since the S ma-
trix is unchanged by field redefinitions. "Bad" variables
are therefore characterized by large cancellations in
physical quantities, such as the S matrix, between enor-
mous terms in the effective Lagrangian. As a result,
these are variables for which the couplings in the La-
grangian do not follow the couplings that would be
defined in terms of scattering amplitudes.

With this in mind, one can propose a modification of
the above principle [19].

If there is a divergent graph in the low-energy theory,
cutting it off at the scale where the theory breaks down
due to new physics gives a lower bound to the actual
value of the graph in the full theory (in the absence of
fine-tuning), as long as "good" variables are used in the
calculation.

It appears that this principle holds in all known exam-
ples. However, its utility relies on the existence of a prac-
tical algorithm for determining in advance whether the
variables of interest are "good" or "bad."

This is our main criticism of the papers in Ref. [10]. In
using cutoffs to regulate divergent loops involving anom-
alous TGV's, they obtain limits on the coeKcients of
these operators which depend on their choice of vari-
ables. Without knowing whether these variables are
"good" or "bad, " one cannot ascertain if the bounds ob-
tained are reasonable. A second criticism of some of
these papers, and indeed of some of those in Ref. [8], is
that the scale of the new physics, M, is often allowed to
be greater than 4~v, which is not permitted if the symme-
try is realized nonlinearly. This typically leads to overly
stringent bounds on new operators.

IV. BANISHING CUTOFFS

Rather than searching for a practical algorithm for
"good" and "bad" variables, we prefer to recast the
above principle in a way which does not refer to cutoffs at
all. It amounts, in essence, to the judicious use of dimen-
sional analysis, together with any other information that
may also be available purely within the low-energy
theory. This information is all that is really required of
any analysis of low-energy graphs and, in applications
where cutoff dependence happens to track the underlying
masses, produces identical answers. It has the conceptual
advantage, however, of being insensitive to field
redefinitions and so of never leading one badly astray



4S USES AND ABUSES OF EFFECTIVE I.AGRANGIANS 4345

through the mistaken use of "bad" variables. In the
remainder of this section, we describe this procedure, fol-
lowed immediately by a detailed calculation using a
known model of underlying physics with which both
cutoff and our results can be compared.

Suppose then, that some physics that is associated with
a heavy-mass scale M (which might, for example, denote
the mass of the lightest unknown particle) is integrated
out to produce a low-energy effective Lagrangian X,tr.

5X,s =c„8„. (31)

We are interested in the M dependence of the couplinp
for an effective operator of scaling dimension (mass) "

which appears in this effective Lagrangian. In general,
this is an ill-defined question, since the dependence of c„
on heavy physics requires a proper definition of the com-
posite operator it multiplies, 0„. We therefore pause
here to make a brief aside concerning a particularly con-
venient formalism for these purposes.

A. Regularizational aside

A particularly clean and convenient scheme with
which to work in an effective theory is dimensional regu-
larization supplemented by the "decoupling subtraction"
renormalization scheme [21j. This scheme consists of
minimal subtraction supplemented by the explicit remo-
val of heavy degrees of freedom as the renormalization
point is lowered below the corresponding mass thresh-
olds. This "integrating out" of the heavy particles is in
practice implemented as a set of matching conditions for
the appropriate effective couplings at these thresholds.
The resulting couplings may then be used as initial condi-
tions for the renormalization-group equations that define
the scale dependence of such couplings in the theory
below the threshold. With this scheme a logarithmic
dependence on the masses of the problem (including M) is
introduced into the coeScients c„as the various effective
operators are evolved between particle thresholds.

The beauty of using dimensional regularization in this
way is that no confusion is possible between the cutoff
and the heavy-physics scale, since within this framework
no cutoff A arises at all. As a result, only the physical
masses ever arise in effective couplings. Furthermore,
more and more divergent graphs in the effective theory,
which involves only light particles, simply introduce
higher and higher powers of the light mass m rather than
some higher scale such as A or M. As a result, it be-
comes possible (and convenient) to include within the
loops of the low-energy theory all of the rnomenta of the
light fields, right up to infinity. This leads to a real dis-
tinction in the nature of the matching between the under-
lying theory and the effective theory when using cutoffs
and dimensional regularization. %'hen using a cutoff, a11
frequencies above the scale A are integrated out, includ-
ing all of the modes of the heavy particles as well as the
high-frequency components of the light particles. In di-
mensional regularization, one instead integrates out only
the heavy-particle contributions, leaving all of the mo-
menta of the light fields in the low-energy theory. This
allows the matching between the effective and the under-

lying theories to be made at the heavy-mass threshold it-
self, and so the only mass which appears due to this
matching is typically this threshold mass M.

There is another practical benefit in using dimensional
regularization. Dimensionally regularized graphs are
much less sensitive to the field redefinitions that relate the
"good" and "bad" variables of the earlier examples. For
instance, if dimensional regularization is used to regular-
ize the contribution of the 8 8 Z interaction to the Zdm,
the divergent piece is found to be

m, (m, —m, )
ag

Pole 384 M4
(32)

Note the similarity between the logarithmic dependence
here and the previous results of Eq. (26).

Both terms in Eq. (33) have a clear interpretation. The
logarithmic dependence corresponds to the explicit
operator mixing that can be unambiguously computed
purely within the low-energy effective theory. The initial
conditions z(M) and a (M), however, are determined by
matching to the underlying theory and so cannot be
known until this theory is specified. At best, we can only
try to estimate the size of these initial conditions, and this
is the goal of the remainder of this section.

B. Generic estimate

With this definition in mind, we wish now to estimate
how the couplings c„ofEq. (31) depend on the new phys-
ics scale M. We are specifically interested here in the
powers of M that arise at the threshold M rather than
any logarithmic dependence. Simple dimensional
analysis would indicate

4—d„c„=c„M (34)

Without any additional information about the nature of
the new physics that is responsible for this effective La-
grangian, all that can be said about the dimensionless
coupling c„ is that it is of order 1 or smaller.

With more assumptions concerning the physics at M,
more information can be extracted about c„. We next il-
lustrate how different kinds of physics can differ in their
implications for c„by contrasting two plausible alterna-
tives for electroweak symmetry-breaking physics at M.

C. Strong coupling: Naive dimensional analysis

Suppose first that the symmetry-breaking sector is
strongly coupled, with only the WBNCxB's appearing at

where n =4—2e is the dimension of spacetime. This re-
sult holds using either Yukawa-type or derivative cou-
plings for the WBNGB's to the fermions.

Within minimal subtraction, we find therefore that the
renormalized parameter z mixes with the renorrnalized
parameter a in the following way:

m, (m, —m, )

z(p) =z(M) — a(M)ln
384~ M~
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energies much less than M. In this case chiral perturba-
tion theory organizes their couplings according to the
numbers of derivatives which appear in the Lagrangian.
For applications to energies that are much less than the
electroweak scale, v, simple dimensional analysis with
M-u properly describes the size of each interaction.

Of more practical interest, however, is the application
of this Lagrangian to electroweak energies E=v «M.
In this case higher-derivative interactions should be
suppressed by powers of M rather than v, and it becomes
important to keep track of the powers of u/M which can
appear in the coefficients c„. A set of self-consistent
statements for the sizes that can be expected for any
given term in the chiral Lagrangian is called "naive di-
mensional analysis" (NDA) [22]. It states that a term
having b WBNGB fields, f weakly interacting fermions
fields, d derivatives, and w gauge fields has a coefficient
whose size is

c„(M)—v M2 2

u

b

M

W

(35)

with M +4nu. (If the fermions are strongly interacting,
then the appropriate factor is I/v&M for each fermion. )

Some examples of this counting are instructive, partic-
ularly when these are compared with the alternative esti-
mates of the next section. For instance, according to the
above estimate, the mass terms for the 8'and Z bosons
are both of order g u . This indicates that the small size
of the deviation from unity of the p parameter cannot be
understood in this picture as being simply the result of a
suppression by powers of v/M. Additional approximate
symmetries are required in order to explain the small size
of 5p. Also, typical corrections to the charged- and
neutral-current interactions for fermions are here of the
order of gv /M . Finally, triple-gauge boson operators
such as ~W„*W Z" and kW*" W zZ are, respective-
ly, of order v-g U /M and A, —g v /M . We next
compare these estimates with the implications of an alter-
native scenario.

type, depending on how these operators fall into linearly
realized multiplets.

This is best illustrated with a few examples. Consider
the W and Z boson mass terms 6+,= W„* Wp' and
6, =

—,
' Z„Z". The lowest-dimensional operator which

contains these terms is simply the dimension-4 Higgs
kinetic term (D„P) (D"P). Just as for the standard mod-
el, replacement of P by its expectation value in this opera-
tor generates the particular combination cos 8 6~+6,
with a coefficient that is of order g u . More general
combinations arise at dimension 6, such as through the
operator (P D„P)(P D"P)/M . This and similar opera-
tors ruin the mass relation M~=M, cosO~ by amounts
that are of order g u /M . In contrast with the NDA es-
timate, 5p is automatically small if u /M' « 1.

As we shall see in a later section, the smallness of the
present estimate in comparison with the NDA result has
a simple explanation within the context of an underlying
multi-Higgs-boson model. In this case contributions such
as those to 6p typically arise at one loop and are propor-
tional to gAH/16', where AH=gmH/M~ is a Higgs
self-coupling. If this self-coupling is weak, then the
suppression by I /(4') corresponds to a factor of v~/M .
Once kH is of order 4~, however, for which m0-4~u,
this suppression is lost and we obtain the NDA result.

It is not always true that NDA gives a larger estimate
for effective couplings than would a linearly realized un-
derlying theory, however. For example, both predict de-
viations from the standard-model charged- and neutral-
current couplings that are of order gv /M . Similarly,
both estimates for the coupling ~8"O' Z" are of order
g v /M . Furthermore, for the coupling A, (which
premultiplies the interaction 8""8' &Z, the NDA es-
timate is actually smaller than that for a linearly realized
model. NDA would predict k-g v /M, while the
linearly realized estimate is A. -g /M, since this interac-
tion can be embedded into the linearly realized operator
Tr[ W"'W z W „] without the necessity for Higgs dou-
blets.

D. Weak couplings: Linearly realized Lagrangian

An alternative perspective arises if the low-energy
theory fills out a linear realization of the electroweak
group. In this case M need not be small compared to
4~u, and the WBNGB's fall into some linear representa-
tion of this group. Again, operators can have coefficients
that are suppressed by powers of v/M once the low-
energy Higgs fields are given their vacuum expectation
values (VEV's), and so the power that arises depends on
the representation in which the symmetry-breaking order
parameter transforms. Much the most plausible choice
for such a linearly realized Higgs representation is one or
more doublets, with the standard hypercharge assign-
ment. In this case the dependence on u/M of any non-
Higgs-boson interactions may be found by taking

4—d„c„=c„M ", as before, and then replacing any Higgs
multiplets in the effective operator by their VEV's. In
this case the linearly realized gauge symmetry enforces
relations among the coefficients of operators of a given

E. Using loops to infer further information

These estimates that are simply based on dimensional
analysis can be sharpened using additional assumptions.
A dimensional estimate for c„(M) can be obtained by us-

ing loops in the low-energy theory to estimate factors of
dimensionless coupling constants and 1/( 16' ) which
arise from the low-energy contribution to c„at lower
scales. If these are assumed to not cancel with the high-
frequency contribution, then these factors may be used to
place a lower bound on c„, just as in the principle that
was enunciated in Sec. IIIC to describe the potential
relevance of cutoff dependence. The main difference in
the present formulation is the use of these loops purely to
determine the dependence on dimensionless combinations
of couplings, with only dimensional analysis being used to
fix the dependence on M.

For loops which involve WBNCxB's, there is one di-
mensionless coupling that is of particular interest. This is
the dimensionless coupling which describes the interac-
tions between WBNGB's and the other particles of the
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theory. It is always possible to choose variables such that
these are proportional to the ratio of the particle's mass
to v, rather than using the derivative coupling of Sec. II.
For instance, X@ff gmf /M~, A, -qM~/v, etc. In-
cluding these couplings is important if the corresponding
particle masses are large, in that they can produce what
appears to be a positive power of a heavy mass. We illus-
trate this in more detail in the following section. Use of
this coupling strength amounts to using our freedom to
use field redefinitions to remove as many derivatives as
possible from WBNGB couplings [23]. This is where the
use of "good" variables enters our rules [19].

This procedure is clearly operationally very similar to
what is usually done when using cutoffs to estimate
effective interactions. In particular, it reproduces the
many successful estimates that are often argued from us-
ing cutoffs. The main difference is that the power of M
that contributes here is explicitly argued purely on di-
mensional grounds, thereby removing the uncertainty
that is associated with the choice of "good" and "bad"
variables.

V. KNOWN NEW PHYSICS: AN EXAMPLE

We now wish to apply this reasoning to a model for
which all of the heavy-mass dependence is known and
calculable. This permits a comparison of the above argu-
ments with the known correct dependence on M, as well
as with the cutoff dependence of the low-energy effective
theory.

A. Explicit calculation

We consider a two-Higgs-doublet model with soft CP-
breaking terms in the Higgs potential and where we im-
agine that the physical Higgs particles all have masses
that are as large as is possible: mII «4~v. Larger masses
are not possible here without disbelieving the perturba-
tive analysis, since the Higgs boson masses can be made
larger than v only by increasing their self-couplings. In
this model the anomalous WWZ coupling of Eq. (20)
arises at one loop, with a calculable coefficient. We may
therefore compute the contributions which this operator
makes to the Zdm of Sec. II, we well as to the p parame-
ter, and contrast this with an estimate of the correspond-
ing higher-loop graphs that are obtained within the un-
derlying theory when the effective 8'8'Z vertex is
resolved.

Following Ref. [24], we consider a two-Higgs-doublet
model in which CP is spontaneously broken. This occurs
when there is a relative phase between the vacuum expec-
tation values (VEV's) of the two Higgs doublets. In such
a scenario, tree-level Aavor-changing neutral currents
(FCNC's) are usually generated, but these can naturally
be made small if CP violation is generated via soft CP-
breaking terms in the Higgs potential. The two Higgs

iO,.

doublets can then be written P; = (P,+,P; +u;e ' ),
l

W+

W

(o)

(b)

FIG. 2. Feynman graphs which generate the CP-violating
anomalous gauge-boson vertex in the two-Higgs-doublet model.

in which only the VEV of Pi is nonzero. Although H is

a mass eigenstate, the neutral states H, 2 and I2 are not.
They are related to the mass eigenstates by an orthogonal
matrix GI~'.

0 d i i d12 d 13 0'ml

2 ~21 ~22 ~23 (36)

I2 d31 832 833

In the absence of CP violation, d13 =d23 =03, =d32 =0
The WWZ eQectiue operator. There are two graphs

which contribute at one loop to the CP-violating 8'8Z
vertex in Eq. (20). These are shown in Fig. 2. In fact,
since we are only interested in getting an idea of the
dependence on the Higgs boson masses, we concentrate
only on diagram (a) in Fig. 2.

If we had no knowledge of the underlying theory, we
could estimate the dependence of a, the coe%cient of the
8'8'Z vertex, on the heavy-mass scale M-m~ by using
the dimensional analysis of the previous section. In order
to determine the suppression by v that is appropriate, we
use the estimate of NDA, since this is appropriate to the
case of a strongly coupled Higgs bosons that we are con-
sidering. Since a is dimensionless, we expect (after insert-
ing a factor of g for each vector boson)

2

~elm (37)

Direct calculation, on the other hand, gives

i 0,.
i =1,2, in which v, e ' are the VEV's. For calculational
purposes, it is useful to change bases such that the
WBNGB fields (y„cpii, ) are decoupled from the physical
Higgs fields (H+, 8, 2, Iz ). The new basis is

P'i = ( q ir, H i +i q'z +Q u i + u 2 )

=(H+, H +iI )

3a,~„=g i
z (d3;d2j d3, d2; )(d2, d2~+d3,—de )(m, —mj )I,

327T cosL9g
(38)
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where

Xl I
I; = dx( dxpxp(x) x2)

0 0 x2(m, 2 —m2)+x, (m,. —m, )+m, +M~x, (x, —1)
(39)

In the above equations, the sum is over the physical neu-
tral Higgs bosons with m; and m, being the neutral and
charged Higgs boson masses, respectively. From the
above expression, it is clear that

g3 mH
2

a = lnQClel (40)

where mH is a generic Higgs boson mass. This agrees
with the estimates from dimensional analysis, for
mH-M +4mv.

For our later purposes we wish to embed the anoma-
lous 8'8'Z interaction into loops in order to estimate
their implications for other effective interactions. Since
the strongest dependence on heavy masses comes from
the longitudinal 8'particles yw in these loops, we pause
here to present an estimate for the size of the coefFicient
of the anomalous Zcpwyw vertex. There is only one
difference from the previous case: The yw bosons couple
with a strength that is proportional to gM/M~ rather
than simply to g. On dimensional grounds the largest
contributions to the Zcpwyw coupling should be propor-
tional to

comparison with the result for transverse W's: Eq. (40).
This enhancement corresponds, in the underlying theory,
to the replacement of two gauge couplings g with two
WBNGB-Higgs couplings k»~-gmH/Mw. It agrees
with estimate (41) when mH -M 4'—v

The weak dipole moment. Next, consider the Zdm of
Eq. (21) in this efFective theory. Using only naive dimen-
sional analysis, we can therefore only conclude

gV
cf1m M 3

Any further information is more model specific.
In order to sharpen our estimate, we next consider the

size of the Zdm that is induced in the low-energy theory
from the effective 8'O'Z operator considered previously,
via the loop of Fig. I. The dominant short-distance
behavior comes from the contributions of longitudinal
8 s to this graph. In this case there is now an additional
factor of m, from the required helicity Hip, as well as two
factors of the longitudinal 8' couplings to the fermion
line, A, „-gm, /M~. Taking our estimate for this graph
as a lower bound, we therefore expect

2
a~dim

gM
Mw

(41)
a v'.

dim
dim 16~

2
gm

Mw

m

M

In this model, the lowest-dimensional anomalous
Zywyw coupling arises at one loop from the graphs of
Fig. 2. Keeping only terms linear in q, the four-
rnomentum of the external Z, we find that the Zqwyw
vertex is

(4m. )

5

(4m. )

2

Mw

3m

Mw

2m, m

M

(46)

with

(m, —m. )(m; —m, )(m —m, )

w
(42)

d l(2l)"(2q I )

(2~) [(I+K/2) —m, ](l —m; ) (I —m. )

(43)

(d3;d2J d»d2; )(d2;d2—) d3, d3j )—4 cosOw
We have used v /M ~ I/(4m. ) in this last equation.

In the underlying theory, the Zdm appears at two
loops as in Fig. 3. The strongest dependence on m~
again comes when both 8 s in the loop are
longitudinal —in a covariant gauge they are WBNGB's.
Although the full two-loop diagram is dificult to solve
completely, it is sufhcient for our purposes to estimate
the integrals using dimensional analysis. Again, the im-
portant region in the loop integration comes from mo-
menta -mH, since mH is the largest scale in the problem.
Including the factor of m due to the required helicity

where K =k —k'. It is not necessary to solve this in-
tegral exactly —what is important is that for the external
mornenta of interest (i.e. , those that are ~ mH) it is dom-
inated by momenta of order mII, giving an integral that is
of order mII . This gives the result

2 2g3 mH m~a~ = — ln (44)mode 16 Mw

mi& I

l

t

4'lYl j

w+

W

which is larger by an additional factor of mH/Mw in
FIG. 3. Feynman graph which generates the CP-violating ~

Zdm in the two-Higgs-doublet model.
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Aip on the fermion line and two factors of the WBNGB-~
Yukawa coupling, A,,=gm, /M~, we arrive at the follow-
ing estimate for z:

5
model

'2 3 2m mH
ln

M~ M~
(47)

This result agrees both with our current estimate of Eq.
(46), as well as with the earlier cutofF-based estimate of
Eq. (26), but not with the "bad-variable" result of Eq.
(25).

The Vacuum polarization. It is instructive to also con-
sider the contributions toward the Z vacuum polarization
that are induced by the 8'O'Z operator in this model. In
addition to providing another comparison with the esti-
mates, it furnishes an example for which there is
(superficially) an enhancement by powers of M/M~ and
for which a simple cutoff analysis in unitary gauge proves
to be correct.

The required contribution to the Z vacuum polariza-
tion comes from the three-loop graph of Fig. 4. Again, in
the underlying model the largest contribution comes
when both 8 s in the inside loop are longitudinal. Then
each Zy~y~ vertex contributes a factor of order

mode8 (48)

where a~,d, &
is given in Eq. (44) and q is the four-

momentum which Aows through the external Z line. The
middle loop gives just the loop factor I/16m. times a log-
arithm. Therefore we find that the contribution to the Z
vacuum polarization in this model has the form

3 4 2

err lng mH mH
zz ]model, 2 M4Io& Mpr 8'

(49)

Note the large power of mH/M~. This result agrees
with the most-divergent part of the unitary-gauge cutoff
dependence that is obtained by inserting two effective
8 8'Z interactions into a one-loop vacuum polarization
dlag1 am~

[511 ] „, ;„(q )=— (50)
a' A4

2

g6 4

(4m) M

m4
(51)

FIG. 4. Three-loop contribution to the Z-boson vacuum po-
larization. The blobs indicate the one-loop anomalous gauge-
boson vertices whose structure is shown in Fig. 2.

if we take our earlier estimate for the 8'8'Z interaction:
ad,. -g U /m~ &g /(4n) .

Our dimensional estimate for this quantity, on the oth-
er hand, is

1[SII»]„—
(4m. )2 ™

which also agrees with the result of the underlying model
once we use U/M ~ 1/4m.

Note that, keeping in mind gmH ~ 8aM~, what ap-
pears to be an enhancement of four powers of mH /M~ in
Eq. (49) is really more than compensated for by the
suppression of six powers of g/4m, as it must be in order
for the result to be sensible. Thus it is misleading in this
case to use the corresponding enhancement in Eq. (50)
without also including the accompanying suppression
that is implicit in the coeKcient a.

VI. CONCLUSIONS

Effective Lagrangians are the natural way to
parametrize the effects of the new physics which must lie
beyond the standard model. The next generation of ex-
periments will have the ability to probe a number of these
new efFective operators. Quite naturally, then, one wants
to have an idea of how big these new effects might be.

Much work has gone into constraining the new opera-
tors, particularly those corresponding to trilinear gauge-
boson vertices through their loop contributions to quanti-
ties which are measured at lower energies. We have ar-
gued here that these estimates [10] are typically mislead-
ing and often give bounds which are overly stringent.

Other authors [11] have made the same criticisms.
However, they trace the cause of the problem to the ap-
parent gauge noninvariance of the operators that are
widely used in the literature. We argue instead that in
this instance gauge invariance is a complete red herring
and is not the source of the problem.

If one does not wish to explicitly include a Higgs scalar
in the low-energy theory, there are two principal candi-
dates for such an effective Lagrangian: one which re-
quires only U, (1) gauge invariance, but not
SUI (2) XU&( 1) gauge invariance, and one which im-

poses the full SUI (2)XUr(1) gauge invariance, non-
linearly realized. We have demonstrated the equivalence
of these two Lagrangians.

The same arguments as are used here may be similarly
used to prove this equivalence for more general
symmetry-breaking patterns G —+H. This shows that any
effective theory containing light spin-1 particles automat-
ically has a (spontaneously broken) gauge invariance. Al-
ternatively, one can say that at low energies there is little
to choose between a spontaneously broken gauge invari-
ance and no gauge invariance at all.

The real source of the problems is the widespread use
of cutoffs to regulate divergent graphs in the low-energy
effective Lagrangian. Both the effective Lagrangian and
its divergences, being off-shell quantities, are not invari-
ant under field redefinitions. As a consequence, the result
of a loop calculation will generically depend on the
choice of variables if cutofFs are used to regulate the
divergences.

It is in principle possible to use "good" variables in
such loop calculations, in which case the cutoff behavior
of the final answer accurately refIects the true dependence
of the operator on the heavy-mass scale M. However, it
is equally possible to choose "bad" variables, character-
ized by cancellations in the S matrix between large terms
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in the effective Lagrangian, in which case the cutoff does
not properly track the dependence on M. If "bad" vari-
ables are used, the bounds on effective operators inferred
from such calculations are typically much too strong and
completely unreliable. In the absence of an algorithm to
distinguish "good" and "bad" variables, the constraints
obtained from such cutoff-regulated calculations are am-
biguous at best.

A separate mistake that has also been made when
bounding effective interactions has been to take the scale
of new physics M to be 10 TeV or higher [8,10], even
when the effective theory does not linearly realize the
electroweak gauge group. In this case the effective La-
grangian is simply being applied beyond its domain of ap-
plicability, since perturbative unitarity typically fails for
such models when M ~ 4~U.

If one wants to estimate the size of the new operators,
we advocate dispensing with cutoffs completely. A
simpler method is to just use simple dimensional argu-
ments, supplemented by any additional information con-
cerning dependence on coupling constants and (4sr)'s
that can be gleaned by inspecting underlying or low-
energy graphs. These rules coincide in practice with
currently used lore when this lore is suKciently well
spelled out. It has the conceptual advantage of not rely-
ing on the cutoff dependence of low-energy diagrams.

One quantity which is accurately calculable within the
low-energy effective Lagrangian (as opposed to being an

order-of-magnitude estimate) is the mixing among opera-
tors as the effective Lagrangian is evolved down from the
heavy-mass scale M to low energies. This mixing, which
is always logarithmic, is most easily computed using di-
mensional regularization, along with the decoupling-
subtraction renormalization scheme. Among the beauties
of dimensional regularization is that it is comparatively
insensitive to the choice of "good" or "bad" variables.

By using dimensional regularization to calculate the
mixing of operators and dimensional analysis to estimate
the size of the initial conditions, i.e., the effective opera-
tors at scale M, one sees that it is never necessary to deal
with cutoffs in a low-energy effective Lagrangian.

Tote added. After this paper was submitted, we be-
came aware of Ref. [25], whose authors present a point of
view similar to our own.
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