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Quantum mechanics of neutrino oscillations
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We present a space-time approach to neutrino oscillations where neutrino emission, propagation,
and absorption are treated as a single coherent quantum-mechanical process. The neutrino enters
the calculation only as an unobserved intermediate state connecting initial and final states of the
neutrino source and target. Equivalently, the neutrino can be considered to be an exchanged particle
when the neutrino source "scatters" from the target at a macroscopic impact parameter. This
approach avoids ambiguities inherent in both the standard "two-state" treatment and the "neutrino
wave packet" treatment of neutrino oscillations and makes clear why and under what conditions
oscillations can be observed. In simple situations, transition rates can be calculated showing how
oscillations are suppressed for large neutrino mass differences.

PACS number(s): 14.60.Gh, 12.15.Ff

I. THREE WAYS TO OSCILLATE

If neutrinos have masses and nonzero mixing angles,
they may "oscillate" [1]. By this we mean that a neu-
trino born as a given "flavor" (v, v„, or v ) may inter-
act later as a neutrino of a difFerent flavor. This would
result in the charged-current production of "wrong fla-
vor" charged leptons and/or a deficit in production of
"correct flavor" charged leptons. For example, neutri-
nos produced in pion decays in association with positive
muons may oscillate from v„ to v, and produce electrons.

In the standard treatment of neutrino oscillations [2],
the neutrino "flavor eigenstates" are linear combinations
of "mass eigenstates. " For two neutrino types one writes

I~i) = ).Ui*l~*)
i=i

where l = e, p and the matrix. U is the mixing matrix
Uii ——U22 ——cos 0 and Ui2 ———U~i ——sin 0. To calculate

I

the probability for a v to oscillate to a vt one supposes
the v to be produced at time t = 0 with a definite mo-
mentum p. This state is a superposition of two states of
difFerent energies given by E, = gp2 + m2 p + m, /2p
where in the last form we assume m, i (( p. The time
evolution is then given by

iv(t)) = ) U„e ' *'iv, ) = e '"') U.;e ' *' '"iv;) .

(2)

(We use units where h = c = 1.) The amplitude for the
neutrino to be a v~ at time t is

(vi~v(t)) = ) U,*,U„e

The time t is then replaced by xT/c, where xT is the
distance from the production point to the neutrino tar-
get. The probability that the neutrino is a v~ is seen to
oscillate with the distance:

&(t =xT, ~. ~ ~i) = l(~il~(t))l' = I).&;*iU' e *

i=1

~UiiUi~~ + ~U lU22~~ + 2UiiU1~U2&U2, cos(2vrxT/l„),

where we assume the U are real. The vacuum oscillation
length is given by

l„=4~p/(m —m ).

The treatment is simple and elegant and gives the right
answer under certain conditions. However, it immedi-
ately raises a number of conceptual questions. Why is
the v given a definite momentum rather than a definite
energy'? How can we change t into xT/c when a neutrino
with a definite momentum must have a wave function of

infinite extent? Why should we set t = xl /c when the
two neutrinos have diferent velocities neither of which
is equal to c. Finally, would not the time-of-flight and
momentum measurements allow us to determine if a vi
or v2 was emitted and thus destroy the interference that
makes the oscillations?

Wave-packet treatments [3] eliminate some of these
problems. Here the neutrino is created not as a sim-
ple two-state system but rather as a superposition of two
wave packets, one for each mass eigenstate. Appeals to
the uncertainty principle indicate under what conditions
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oscillations are observable. Unfortunately, it is not clear
what determines the size of the wave packet at the mo-
ment of creation or even if it makes sense to talk of a
precise time of creation. Additionally, the treatment can-
not give the right answer when the source and target are
separated by a distance smaller than the presumed size
of the wave packet.

It is the purpose of this paper to emphasize that it is
not necessary to worry about when or in what state the
neutrino is created because neutrinos are neither "pre-
pared" nor "observed. " The only things that can be pre-
pared are the unstable source particle (pion, nucleus, ...)
and the target particle. The only things that can be ob-
served are the hadrons and charged leptons created in
the decay or in the neutrino interaction.

This suggests that a less ambiguous treatment of neu-
trino oscillations could be performed by considering a sys-
tem consisting initially of an unstable source particle in a
definite quantum state and a target particle in a definite
quantum state at some distance from the source. One can
then use the Schrodinger equation to calculate the ampli-
tude for this system to evolve into a state consisting of a
set of particles associated with the source and another set
associated with the target. Since only weak interactions
are involved, the time evolution can be calculated easily
with second-order time-dependent perturbation theory of
standard quantum mechanics [4]. The amplitude is sec-
ond order because the Hamiltonian acts twice, once at
the source and once at the target. The neutrino enters
the calculation only as an unobserved intermediate state,
which is precisely what it is. In the language of quantum
field theory, the neutrinos are exchanged particles when
the source particle "scatters" from the target particle [5I.
The associated "diagram" is shown in Fig. 1.

II. A RADIOACTIVE SOURCE

To get an idea how this can work we take our initial
state to consist of an unstable particle trapped in a poten-
tial well centered at x = 0 and a target particle trapped
in another potential well centered at x = xz. (To sim-
plify things we take space to be one dimensional. ) We
assume that initially (t = 0) the source and target parti-
cles are in the ground states of their potential wells. This
is a realistic model of a radioactive nucleus and target nu-
cleus placed in two crystal lattices at the absolute zero
of temperature. (Temperature efFects will be discussed
later. ) The total energy (mass plus potential energy) of
the source particle is Eg while that of the target par-

FIG. 1. The diagram for neutrino oscillations due to a neu-
trino source S and target T. Set A contains one charged
antilepton l+ and set B contains one charged lepton l

ticle is ET. The final state is taken to consist of two
sets of particles. One set (A) contains one positron and
any other particles produced in the decay of S. The set
has momentum p~ and energy E~. The other set (B)
contains one lepton (electron or muon) and any other
particles produced in the neutrino interaction with T.
The set has momentum p~ and energy E~. The inter-
mediate states are those with set A of particles and one
neutrino of mass m, , i = 1, 2 of momentum p and energy
E„-p. +m, ,'/2p .

As a specific example, we could use Na as the source
S and Ge as the target T. The sequence of events would
be Na ~2 Ne e+ v followed by v 1Ga ~ Ge e
The set A consists of Ne and the positron while the set
B consists of Ge and the electron. The intermediate
states consists of Ne, the positron and the neutrino.

Starting at t = 0 with the source and target in their
ground states, the intermediate states start to be pop-
ulated because the interaction Hamiltonian has matrix
elements, (A, v, [H S), that connect the initial state with
the intermediate states. We denote by c~, e '~ A+

the amplitude for the system to be in the intermediate
state at time t. The standard first-order perturbation
result obtained by integrating the Schrodinger equation
is

c~, (t) = dt'(A, v, [H~S)e'~ + 'l' csT(t = 0),

(6)

where c&T(0) = l is the amplitude for the system to
be in the initial state. The intermediate states then
feed into the final state because of the matrix elements

(B[H v;, T). Denoting by c~~e '~~"+ ~~ the amplitude
for the system to be in the final state at time t, the stan-
dard perturbation result is

cga(t) = —) )
1 pv

dt" (B[H[ T) '&~ ~ ~-&' (t")

i=1 pv

dt" (B[H[v;, T)e'f@ dt'(A, v, [H~S)e'~ "+ " 'l' c (0)



4320 J. RICH

(A, v;iHiS) oc U.; dxe *" e *~"*g (x)

The two sums are over the two neutrino types (masses)
and all possible neutrino momenta.

Equation (7) contains two matrix elements which we
will now calculate. We use the standard Fermi theory so
the elements are just proportional to the overlap of the
relevant wave functions:

As said before, the matrix elements enforce momentum
conservation in decay and interaction to a precision 0„.
If momentum were exactly conserved, only one neutrino
could contribute to c~B since if momentum is conserved
for one neutrino it cannot be for the other. However, we

only require approximate momentum conservation which
is possible for both neutrinos, according to Eq. (15), only
if

I/2E «u. (16)

(BiHiv, , T) oc UP dxe '" e'~"*gz (x)

where g~ and @z are the wave functions of the source
and target particle and t = e, p depending on whether an
electron or a muon is produced in the target. The matrix
U enters to give the relative amplitudes for emitting and
absorbing vi and v2. Taking the two wave functions to
be Gaussians

2 2
'lPg oc e

If this condition is fulfilled, the two neutrinos will have
momenta differing by less than the uncertainty of the
momentum of the initial state so both can contribute to
CAB

Evaluation of Eq. (7) confirms this for t ) xz'.

cAB(t) oc ~t(@B + @A @T @S) e

x) UU;, * * ~ "f( )

—(z—z~) /2'
cy'Z oc c

the matrix elements are Gaussians in momentum space

(A, v,
~

H
~
S) oc U„exp

—(p-+ p~)'
20

—(u- —
» a)'

20

g( U* g~(@v &&)~&p 't(~. /2@v)~&

—
(»

—pa)'
267

(B~H~v, , T) oc UP e' "" " exp

E„=Eg —E~ ——EB —Ev (i4)

The momentum of the dominating states depends on the
neutrino mass:

p =E —m, /2E .

where o~ = 1/cr In th. e last expression we note that
2Rappearance of the factor e '( '/ ") that will lead to

oscillations.
As can be seen, the matrix elements serve to constrain

the momentum of ingoing and outgoing particles in the
decay and absorption. Since neither the source nor target
has definite momentum, momentum conservation is only
enforced to a precision o„.

Before evaluating the amplitude c~~ given by Eq. (7),
we can anticipate that oscillations will result only if both
neutrinos (i = 1, 2) contribute to c~~. Whether or not
this is possible can be determined from elementary con-
siderations. In Eq. (7), the two time integrals of the
complex exponentials rapidly oscillate with time unless
the arguments of the exponentials are near zero in which
case the amplitudes grow with time. This effectively en-
forces energy conservation in the decay of S and in the
neutrino interaction with T. Thus, the sum on neutrino
momentum in Eq. (7) is dominated by states where the
intermediate neutrino has an energy given by

where the subscript t reminds us that the b function ac-
tually has a width 1/t and where

f(m, ) = exp

x exp

—(Z. —m,'/2E. —pii)'
20

(E„—m—2/2E„+ p~) 2

20
(18)

The energy E„ is to be understood as the function of the
initial-state and final-state energies given by Eq. (14).

Squaring the amplitude we get the transition probabil-
ity

~c~~(t)
~

oc tb(E~ + E~ —Ez —Eg)
2

x)) U,*,U,.e * ** ~' " f(m, )[', (i9)

where we use the relation [b&(E)]2 = tb(E) in the limit
t ~ oo. The only final states that can be populated
are those that conserve energy and those that have total
momentum (sets A and B) near zero.

Apart from the factor f(m;), the sum in Eq. (19) is
just the standard result of Eq. (4). (The momentum

p has also been replaced by E„.) The normal neutrino
oscillation formula, is obtained only if f (mi) f (m2)
so that the factor f(m, ) can be taken out of the sum.
Inspection of Eq. (18) shows that this is possible only if
the condition defined by inequality (16) is respected.

Condition (16) is also equivalent to the requirement
that the size of the source and target wave functions
be smaller than the oscillation length given by Eq. (5).
This means that the uncertainty in the distance between
source and target must be less than one oscillation length
to see the interference. This intuitively appealing con-
clusion was reached in Ref. [3] by using the uncertainty
principle.

Condition (16) means that oscillations cannot be ob-
served for large neutrino mass differences. For a radioac-
tive nucleus contained in an atomic lattice, the nuclear
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position is uncertain to somewhat less than one inter-
atomic distance, o 1 A. In this case, neutrino oscil-
lations cannot be observed if ~m~ —m2~ is greater than
4 x 10 eV2(E /1 MeV). If the lighter neutrino has neg-
ligible mass, this corresponds to the heavier neutrino
having a mass of about 60 keV gE /1 MeV. This is
one reason why it is more difIicult to observe oscilla-
tions of charged leptons than oscillations of neutrinos.
(Charged lepton oscillations would exchange the roles of
the charged leptons and neutrinos in Fig. 1. The other
reason that such oscillations would be difricult to observe
is that charged particles may leave tracks that betray
their identity and destroy the interference. )

Summarizing, neutrino oscillations occur because there
are two intermediate states that can lead to the same fi-
nal state. In the case that we have considered, this is
possible because the momentum of the initial state is
uncertain. Only energy conservation in decay and ab-
sorption is required and this can be done with either of
the two neutrinos.

It is interesting to ask what happens if we let our "fi-
nal states" continue to develop in time according to the
Schrodinger equation. The question is important since it
can be argued that it is not the final-state particles that
are observed but rather the "tracks" that they create as
they pass through the medium containing the source and
target. These tracks would consist of atomic excitations,
lattice defects, bubbles, and the like. In a calculation
[6j very similar to the one we performed above, it can
be shown that each of our final momentum eigenstates
will generate states of the medium containing tracks that
are parallel to the momentum and that pass through the
positions of the source or target. This correspondence
between our final states and the subsequent states of the
medium "justifies" stopping the time developement of the
state vector with the momentum eigenstates. Of course,
the states of the medium may also correlate well with
other particle final states, e.g. , wave packets of approx-

imately defined momenta. The use of such final states
is convenient if the states of the media or detector are
metastable allowing one to measure the time of the in-
teraction.

III. THREE WAYS TO NOT OSCILLATE

Before applying the method of the previous section to
other situations, we discuss three ways of destroying the
oscillation pattern. The first two concern averaging over
final states. Each Anal state has its own oscillation length
determined by the energy of the neutrino that dominates
the sum over intermediate states. Therefore, the exper-
imentally necessary procedure of averaging over a group
of final states may average to zero the oscillating term of
Eq. (4). If one averages over an interval of E~ (or E~)
equal to AE, it is simple to show that the oscillation
pattern starts to be washed out after E /EE oscillations
(E = E~ —ET). In the case of a "monochromatic"
neutrino beam where set A consists of only one particle,
the energy spread of the whole neutrino spectrum will be
AE = cd. For cd

——1/1 4=0.002 MeV, the total cross
section for a 1 MeV neutrino beam will start to damp
after about 500 periods.

Effective averaging over momentum states also occurs
if one uses time of flight to determine which of the two
neutrinos was emitted and absorbed. To measure the
time of emission or absorption, one must use detectors
whose states correlate with wave packets of the final-state
particles and not momentum eigenstates. The oscillation
pattern can then be calculated with our method by tak-
ing sets A and B to consist of particles in wave pack-
ets rather than momentum eigenstates. We denote these
states by A. (t~) and B(t~) for packets that overlap the
source or target at times t~ or t~. The amplitude is the
same as Eq. (7) except that the time integrals cover only
the period when the wave packets overlap the source or
target:

t~+At t~+At
dt" (B)H~v;, T)e'( dt'(A, v, ~H~S)e'( + " ')' c&T(0), (20)

where At is the width of the wave packet. Applica-
tion of the method of stationary phase shows that the
c~~t„~~~t~~ is negligible unless t& —t& corresponds nearly
to the time of flight for a neutrino of mass m,".

m,'
tgy —tg ——xT 1 + 2E2) (21)

If the difference in flight time for the two neutrinos is
greater than the integration interval At the two neutri-
nos cannot interfere because they produce distinct final
states. Again, it is simple to show that the oscillation
pattern starts to be washed out after E At oscillations
(E = E~ —ET). Taking At = 1 ns gives a number of
observable oscillations equal to 1.5 x 10 (Ev/1 MeV).

Real detectors will give information on both the mo-

mentum and the time of the event. Experimenters must
then group events in "bins" of time and momentum. For
practical detectors, it appears that the grouping in mo-
mentum will be most important in determining the num-
ber of observable oscillations.

A third way of destroying the oscillations is to heat
the neutrino source above absolute zero. If this is done,
the initial state of our source will be an incoherent ther-
mal mixture of the quantum states of S described by a
density matrix. By itself, this only increases the number
of allowed final states since energy conservation will con-
nect each initial state with final states of the same energy.
However, the interactions of S with its environment give
each state of S a mean lifetime 7. This fact will limit
the number of observable oscillations to E„7. This can
be understood by using, as intermediate states, neutrino
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wave packets of width w. Successive wave packets will
have random phases with respect to each other because
of the transitions between states of S introduce random
phase changes in csT. As soon as the two neutrino wave
packets emitted at the same time cease to overlap, in-
terference will cease because of the random phase. This
point was originally made by Nussinov [7] in the context
of solar neutrinos. For solar neutrinos the lifetimes are
very short, w 3 x 10 sec and the number of observ-
able oscillations is equal to 4.6 x 10 (Ev/1 MeV).

IV. A PION BEAM

We can now apply our approach to the case where the
initial state of the decaying particle (pion) is a free wave

I

packet consisting of a superposition of pion momentum
eigenstates:

l~(t=0)) = ).;.(t=0) lp-) (22)

The spatial extent of the packet will be cr = 1/a„
where o p is the momentum dispersion of cp . The wave
packet can be allowed to propagate across a "decay" re-
gion of length lgecay. It is natural to take lgecay ) ~
The pion will be destroyed after the decay region so it
couples to the neutrino states only for a time 0 ( t (
lg„~/c. This limits the integration time in Eq. (7) so
we have

c~~(t) = —) ) )
2 1 pe/ p~

«"(&IHlv' T) ' ~clecmy

dt'(A, v, lHl7r)e* + " - '
cp (0),

where we now sum over the neutrino states and the pion
states comprising the original wave packet. The set A
now consists of one muon of momentum p~. The ma-
trix element connecting the pion momentum eigenstate
to the neutrino is again proportional to the wave function
overlap:

(A, v;lHl7r) oc U„,b(p —p„—p ). (24)

As before, the two time integrations enforce energy
conservation in the interaction and in the decay. How-
ever, in the decay, it is only enforced to a precision
1/l~„~. The matrix element enforces momentum con-
servation in the neutrino interaction to a precision op.
The decay matrix element, Eq. (24), simply picks out
one pion momentum component for each of the neutri-
nos. With all these constraints, one can again derive the
conditions that both neutrinos contribute to the final-
state amplitude. The first, coming from approximate mo-
mentum conservation in the neutrino interaction, is the
same as condition (16), i.e. , that the oscillation length
be greater than the size of the target wave function. The
second comes from approximate energy conservation in
the decay:

initial and final states of the atoms.
We note that Eq. (25) does not concern the width of

the pion wave packet (as long as 0 ( lg„~). This is
not surprising since the different momentum components
of the pion wave packet lead to different final states and
cannot interfere. It is therefore not possible to distinguish
the case of a beam of pions where all particles have wave
functions of mean momentum p and dispersion Op from
the case of a beam of pions, each with a well-defined mo-
mentum taken randomly from a distribution of the same
mean momentum and of dispersion 0„. This difficulty
in distinguishing coherent wave packets from incoherent
mixtures has been noted many times [8].

While the above results seem reasonable, the use of
pion wave packets is unsatisfying because the size of the
packet is not determined by the calculation. (This was
the problem that we wanted to avoid with the neutrino. )
Indeed, it is never strictly correct to say that the state of a
pion is a wave packet since, being created in a momentum
conserving interaction, its state is correlated with the
other particles created in the interaction.

These two problems can be addressed by going up-
stream one step and considering an initial proton inci-

lm, —m2l/2E ( 1/lg„y

or that the oscillation length be much greater than the
length of the decay region.

Since lg ~ is generally a macroscopic length, the sec-
ond condition is the most stringent. However, it exists
only because we have taken momentum eigenstates as
our final states. This effectively averages over decay po-
sitions, something that is necessary experimentally if the
muon is not detected. However, if atoms are placed near
the decay region, they can be excited by the passage of
the muon and efFectively locate the decay point [6]. The
condition for oscillations, Eq. (25), is then relaxed ac-
cordingly. The diagram of Fig. 1 should be modified
to include legs attached to the muon that represent the

FIG. 2. The diagram for neutrino oscillations due to a pro-
ton, a proton target T~, and a neutrino target T . Set B
contains one charged lepton l
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dent on a target nucleus in a potential well centered at
x = 0. The pion is created in the proton-target inter-
action and then decays to a muon and a neutrino that
subsequently interacts. The diagram for this process is
shown in Fig. 2. The initial state consists of the two tar-
gets, T„and T, and the proton. The final state consists
of sets A and B of particles and one muon (from the pion
decay). Since the pion is charged and will interact with
the medium containing the target nucleus, the definition
of the state A must include the state of the medium. The
intermediate states to be summed over include the pion
and then the neutrino. Since the initial state has a mo-
mentum uncertainty associated with the proton target,
the momentum width of the proton wave packet is ir-
relevant. (DifFerent momentum components will lead to
difFerent final states. ) We can then take the proton to be
of definite momentum and then average over the beam

I

spectrum later on.
Now the amplitude for the system to evolve to the

final state is third order. There are two possibilities for
treating the intermediate state pions. If one wishes to
give the pions a finite decay region of length /~, ~, the
pion states can be taken to be wave packets that couple
to the neutrino states only as long as the pion is in the
decay region. This analysis leads to the same conclusion
as before, that oscillations are observable if l~, ~ and the
sizes of the two target wave functions are all smaller than
the oscillation length.

A more amusing possibility is to let the decay region
be defined by the pion lifetime. This situation can be
treated in the same way as resonance fluorescence [9] with
the unstable pion replacing the unstable excited state of
an atom. The amplitude for the system to be in the final
state is

dt" (B]Hlv T )e'( dt'(p, , v, lHlvr)e*( "+ " ~-~' c~ (t'). (26)

Because of the pion lifetime, the amplitude c~ (t') can-
not be computed in perturbation theory [as in Eq. (6)].
We can take the lifetime into account by solving the (phe-
nomenological) Schrodinger equation [9]

ic~ = (A, 7rlHlp, T„)e*( "+ - ~~ 'i'cz „(t)
ir

&A~)

where I' is the pion decay rate in the rest frame of the
target. The first term takes into account transitions from
the initial state into the intermediate state while the sec-
ond term takes into account the decay of the pion. The
steady-state solution to this equation is

&A ~IHlp T )e' "+~-
c~ (t) =-

E~ + E —E7; —Ep —iI'/2 (2S)

The Breit-Wigner function means that energy will be
conserved in the proton interaction only to a precision
I'. The expression for c~ (t) can now be substituted into
Eq. (26).

We have three matrix elements to evaluate. As before,
the weak matrix elements are proportional to the overlap
of the wave functions:

The pion decay matrix element fixes the pion momentum
(and energy):

We are left for the expression for the final-state ampli-
tude:

c~~„(t) oc bt(E~ + E„+E~ —ET —Ep —ET. )

x ) U,*,U,,e * * ~ g(m;), (34)

where

g(m, )
exp ( 2~, " " l E((p + p~ —p„)Ax)

E~ + E —ET —E„—iI'/2

where E is a function peaked at zero and of width greater
than unity.

Substituting these expressions into Eq. (26) we per-
form the various sums and integrations. As before, the
time integrals fix the neutrino energy:

(I v'IHI~) ~ U~* ~(p-+ p~ —p-)

(BlHl T ) U x(E —P~)2:~ —v(m, /2E )xT

(29)

x exp
—(p- —pa)'

20
(3o)

The matrix element for the proton interaction will be
more complicated but we assume that it will enforce mo-
mentum conservation to a precision no better than I/Ax
where Lx is the size of the target. We write symbolically

Once again, E, p, and E are to be considered the
functions of mi and the final-state energies and momenta
given by Eqs. (32) and (33).

The normal oscillation formula is found only if the
function g(m, ) can be taken out of the sum. Approximate
momentum conservation at the neutrino target gives the
same condition as before:

lmi —m2l/2E ( 0„

(A, 7rlHlTp, p) oc I'((p~ + p~ —pp)Ax), or that the oscillation length be much greater than the
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size of the target wave function. Similarly, approximate
momentum conservation at the proton target requires
that the oscillation length be much greater than the size
of the proton target. The final condition is due to ap-
proximate energy conservation in the proton interaction
and comes from the denominator of Eq. (35). It depends
on the energy and decay rate of the pion. For relativistic
pions we have

mi m2 2
'L + 7f

2E 2E„ (37)

In this case the denominator can be considered to be
independent of neutrino species if

[m', —m,'(/2E & I, (38)

i.e. , that the oscillation length be greater than the decay
length, c/I'. This confirms our expectation.

If the pions that dominate the sum are nonrelativistic
one finds basically the same condition as (38). In this
case the condition requires that the oscillation time, f„/c,
must be much greater than the pion lifetime or that the
difference in momenta of the two neutrinos be much less
than the pion width.

The third-order diagram of Fig. 2 can be generalized to
include any number of interactions of the intermediate-
state pion with atoms in the medium containing the tar-
get or in the decay volume. This would allow a more re-
alistic quantum treatment of the process. Of course this
quickly becomes prohibitively complicated and would not
be expected to change drastically the conclusions about
the observability of oscillations.

V. SQI.AB. NEUTB.INQS

Solar neutrinos do not 6.t well into either of the two
categories discussed above. In the Sun, the state of a
radioactive nucleus like B approximates a thermal mix-
ture of free particle states subjected to a slowly varying
gravitational potential. Apart from the requirement that
the free particle states be con6.ned in the Sun, we have a
certain freedom to choose the base states. Since there is
a temperature gradient, it is convenient to use localized
states so that thermal equilibrium can be imposed on the
density matrix. . The problem is further complicated by
the high rate of particle scatterings that leads to effective
lifetimes of order 10 to 10 sec. Some of the diIIIi-
culaties involved in treating this problem were discussed
by Loeb [10] from an essentially classical point of view.

VI. CQNCI, USIQNS

We have presented a systematic method of treating
neutrino oscillations with standard quantum mechanical
techniques. It treats the whole process of emission, prop-
agation, and absorption in a consistent way. The method
can also be applied to phenomena like Kg —KI, interfer-
ence. In certain simple situations where transition rates
can be easily calculated, it is worth the extra eÃort in-
volved in treating the whole process.

Having done this we can ask how this treatment relates
to the two-state and wave-packet treatments. These ap-
proaches single out two sets of intermediate states from
the sum of Eq. (7). If these two sets include the states
dominating the sum, the traditional treatments will then
give the right answer when calculating neutrino absorp-
tion rates. This may or may not be the case depending
on the initial and Anal states of the source and target.
In the cases treated here, the dominating neutrinos have
well-defined energy so the two-state treatment with neu-
trinos of well-defined momentum will not give the right
answer if it is taken one step further to calculate the ab-
sorption probability. The wave-packet treatment takes a
larger set of states so it is obviously more robust. How-
ever, it does not give the amplitude for the emission or
absorption of the neutrinos in question so the criterion
for oscillations must remain rather vague.

The approach presented here is much "safer" since it
goes upstream in time to states of the decaying particle
that can be prepared experimentally. One simply has
to turn the "Schrodinger crank" until states that can be
correlated with detector responses are reached.

Calculations based on this approach show clearly that
oscillation phenomena occur because the finite sizes of
the initial-state wave functions impose momentum con-
servation only approximately. This allows intermediate
states for both neutrinos that would not be allowed if
both energy and momentum were conserved. The arbi-
trariness of the wave-packet approach can be eliminated
if the size of the initial bound-state wave functions is
determined by atomic physics.
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