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Remarks on quark and gluon contribution to proton spin
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We consider a pole-model scheme to study isospin violation in the quark and gluon contribution to the
proton matrix element of the flavor-singlet axial-vector current.
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A recent European Muon Collaboration (EMC)
analysis [1,2] from experiments on deep-inelastic scatter-
ing shows that the portion of the proton spin carried by
the quarks is significantly small. The EMC result is ex-
pressible in terms of the first moment of the polarized
proton structure function which is related to the nucleon-
ic matrix element of the flavor-singlet axial-vector
current. The singlet axial-vector current
AP =gy oY st +dy u¥sd +57,7 ss between two nucleonic
states is necessarily proportional to the spin vector
(p's’| A\ |Ps)=Agq’s,, where s, =tiy,ys¥ is the spin
vector and ¢ is the wave function of the nucleon. The
available data on the structure function of the polarized
proton and the results on the hyperon decays lead to the
estimates

Au’'=0.78+0.08 ,
Ad'=—0.47%0.08 , (1)
As'=—0.191+0.08 ,
implying
Ag'=F Agq'=Au'+Ad’'+As’
=0.12+0.24 . (2)

It should be noted that SU(3) restricts
Au’'+Ad’'—2As'—=3F —D while the Bjorken sum rule
fixes Au’'—Ad’'=g =F +D. Using the SU(3) relations
the results [3] for the spin contribution due to the quarks
differ appreciably from the unity value which is expected
naively from the simple quark-model picture.

Of the two axial-vector couplings, the strength of the
octet may be ascertained from the weak decays of the
hyperons while the singlet may be used to determine the
quark contribution of the proton spin. It is known that
the EMC data, in effect, signal an approximate decou-
pling of the would-be U(1) Goldstone boson from the nu-
cleon. Fritzsch [4] has shown it possible to define flavor-
independent matrix elements of the anomalous diver-
gence which are linked to the axial-vector U(1) charge
and to the spin densities inside the proton. Further, the
present authors [5] have shown that the axial-vector sing-
let charge may be related to Ag’ and the F /D ratio in a
straightforward manner.
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Recently, Hatsuda [6] made a careful analysis of the
anomalous gluon content of the proton. Employing a
large-N chiral dynamics approach he has evaluated the
proton matrix element of the flavor-singlet axial-vector
current and has noted a large isospin content in the gluon
contribution to Ag’. In this paper we take a look at the
same problem from a different point of view: adopting a
pole dominance model, we consider the nucleonic matrix
element of the axial-vector anomaly and show that it is
possible to express Ag’ and the gluon helicity component
Ag purely in terms of the decay constants and topological
charge parameters of the (7,7’,7°) mesons. In this way
we avoid any direct reference to the meson mixing angles.
Furthermore, we perform a fit to the nucleonic meson
coupling constants to estimate Aq’ and Ag quantitatively.
In our scheme, we are guided by the solutions [7] of the
anomalous Ward identities which provide reasonable esti-
mates of the isospin and flavor breaking in QCD.

We begin by writing down the Goldberger-Treiman re-
lation and its analogue in the singlet channel. The isovec-
tor axial-vector current Aif ) between the protons gives
the matrix element

(plaP|pYy=Lplay,ysu—dy,ysdlp)
=P(p)Gi(g*)y,¥s—Gylg*)g,vs¥p") ,
(3)

where 1 is the free Dirac spinor and (p’,p ) are the proton
momenta.

A pion pole is present in the induced form factor
G,(g?) but this pole makes no contribution to the diver-
gence at ¢2>—0. Taking the divergence yields the
Goldberger-Trieman relation

2MG(0)=2Mg ,=2f g nN - @)

On the other hand, the isosinglet axial-vector current be-
tween the protons is

(play,ysu+dy,ysdlp)
=9(p)G1(gD)y,rs—Gy(gP)g,vslv(p’) . (9

Since no Goldstone boson can be attached to G ‘2), we have
[4], in contrast with (4),

2MGY=2f,g,xnyv+C (6)

429 ©1993 The American Physical Society



430 BRIEF REPORTS 48

where C represents the contribution from the continuum
assuming an unsubtracted dispersion relation for the
form factor.

We now turn to the divergence of the axial-vector
currents [including the U(1) component], which in QCD
reads as

9,4,=—dyc;0+8a, i,j,k=0,...,8, (7)

where the v;’s are the standard pseudoscalar densities
according to the Gell-Mann—Oakes—Renner (GMOR)
scheme; co=(m,+tmyg+tmy)/Ve6, c;=(m,—my)/2,

=(m,+m,—2m,)/2V'3; and a stands for the gluon
anomaly, a=N(x /27)TrGG = 9.k, One may intro-
duce a partially conserved u(1) current AP=409—Fk,
whose divergence is soft. However, since the current k,
depends explicitly on the gluon gauge field, 47 is not a
gauge-invariant quantity. From (7), one has, for the sing-
let component,

9,4\ =2(m, uiysu+mydiysd+mg5iys)+a . (8)

Relation (8) dictates that even to lowest order ¢ must in-
volve a gluonic contribution:
Ag'=Aq— Nf——-Ag , 9)

where, following Cheng and Li [8], we define ¢ and g
through (setting N =3)

u,d,s _ -
(p'| 3 2mZiivsglp ) =(Aq 2M iy p+0(g"=?) ,
(10a)

2MPiysp+0(g"=2).  (10b)

2

a
<p’|a|p):_ [1 sAg
T

Hatsuda [6] has shown that under the pole dominance
approximation as in Fig. 1, Ag is determinable in terms of
the (9',7,7°) mixing angles. Writing an effective La-
grangian he has studied the influence of the nucleon-
nucleon coupling constants on Ag and the gluon helicity
component Ag individually.

Here we consider the simplest procedure to determine

anomaly
current

FIG. 1. Pole dominance with %’,7,7°

Ag. We write

8pPNN

(N'|¢,IN)=="~ m? divsy, (11)

where N stands for the nucleon (p,n) and P stands collec-
tively for the I=0 pseudoscalar mesons (7’,7,7°).
Defining the gluon anomaly in terms of the meson fields
as a= Apmp¢p, where the Ap’s are the so-called topo-
logical charges (Ol|a|P)= Apm}, we may use (10b) to
translate (11) into the following sum rule:

3

——A
2 7 8

2M=A4 08 oyy T Ay8ynnt Ay8ynn »

(12)

where the positive and negative signs stand for the proton
and the neutron, respectively. It is noticeable that no
meson mixing angle is explicitly involved in (12). Similar-
ly, considering the definition (10a) we can write down

(Ag2M =%f0,8 oy TS on&8ann T Foy&ynn »  (13)

where (0[3,4 )| P)=f(pm} has been used.
The topological charge parameters 4,, 4,, and 4 o

and the decay constants (fp, fsp) may be determined by
solving the Ward identities which are [7]

202 _
mpfip=(m,+my ,

m,—mgv ,

1
mgfspfsp = “\‘/'3—(

mpfip="1m,+my+am,),
m3fapfop=V2/3(m,—my ,

V3
m%fspfopz‘S—z(mu‘Fmd—st W, (14)

202 2 =2
mpfop—mpfopAp=3(m,+m,+m ,

m%fsp Ap=0,
mpfipAp=0,

mp(fop— Ap)Ap20,

where —v =(7u)={(dd )=(3s) and the decay con-
stants are defined by <O|auAL|P)—f,-pm12>; i=0, 8, and
3. The relations (14) are expected to hold within an order
of about 20-30 % accuracy that is typical of a pole domi-
nance approximation. To determine the decay constants
and gluon couplings unambiguously, one needs to seek
consistency between (14) and the 2y decay amplitudes of
P, v, 7'y decay widths of the J /¢ and J /¢7%J /¢m)
decay widths of ¥’ assuming that the latter processes are
mediated by two gluon matrix elements. A comprehen-
sive treatment may be found in Ref. [7]—here we only
quote the estimates of the topological charge constants
and the singlet decay constants:

A ,=(0.64+0.06)f,, f,,=(0.00+0.05)f, ,
5 =(0.86£0.08)f, fo,=(0.194£0.02)f,, (15)
A,,=(0.76+0.07)f ,, fo,=(1.05+0.12)f,
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For the meson-nucleon coupling constants there are
various estimates in the literature. For instance, one can
employ the pole dominance approximation to determine
meson-nucleon coupling constants within a one-loop
baryon model. The results are [9]

govy =8.8+0.3,
gy =6.31£0.4 .

(16)

As remarked by Efremov, Soffer, and Tornqvist [3], if
the above estimates are compared with that of the one
boson exchange potential (OBEP) model which gives
gyny=7.3% a large error, it seems more reasonable to
adopt the result (16). The point is that in the OBEP
analysis of the NN scattering no ghost pole is taken into
account which may generate a contact NN interaction:
for small squared momenta transfer the latter may
change g, yy considerably.

In the following we compare the results for
[—(as/m)Ag] using the baryon loop model and the
nucleon-nucleon potential values for g, vy and g, yy-

a. Baryon loop model. Using the values (16) we get,
from (12),

— %Ag for proton=0.35,
— i7‘-S~Ag for neutron=0.06 .
27

b. Nucleon-nucleon model. Using flavor SU(3) symme-
try, the results of the nucleon-nucleon potential model
are g%NN /41r=3.68,g3,:NN /47 =4.23. These give

as

——A f ton=0.33 ,
- g or proton

- ﬂAg for neutron=0.05 .
27

In Fig. 2 we give a graphic illustration of the variation of
Ag and Ag with the meson-nucleon coupling constants.
For comparison with the results of Ref. [6] we have set
g,n (=gyn)- Itis clear from the figures that the graphs

1.4
1.2
1.0

0.8
0.6
0.4
0.2

-0.2
-0.4
—0.6

—0.61
04
0.2

-0.2
—-0.4
—-0.6

FIG. 2. (a) Variation of —3(a,/2m)Ag, Ag, and Ag’ with
8w (=gynn) for the proton. (b) Variation of
—3(a;/2m)Ag, Ag, and Agq’ with g,yy (=g, nny) for the neu-’
tron.

for Ag and the gluon helicity component Ag show a
marked difference in behavior for the proton and the neu-
tron thus reflecting a large isospin breaking. However,
Aq' is comparatively much more stable. Our analysis
confirms Hatsuda’s observation that while individually
Ag and Ag may involve sizable violations of isospin, their
linear combination, namely, Ag’, is more or less insensi-
tive to isospin breaking within a reasonable level of toler-
ance.
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