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Flavor symmetries and the problem of squark degeneracy
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If supersymmetry exists at low energies, it is necessary to understand why the squark spectrum exhib-
its sufficient degeneracy to suppress Aavor-changing neutral currents. In this article, we point out that
gauged horizontal symmetries can yield realistic quark mass matrices, while at the same time giving just
barely enough squark degeneracy to account for neutral K-meson phenomenology. This approach sug-

gests likely patterns for squark masses, and indicates that there could be significant supersymmetric con-
tributions to B -B and D -D mixing and CP violation in the K and B systems.
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while for the imaginary part, the limit is about two orders
of magnitude stronger. There are also limits on degen-
eracy from other processes: B-B mixing, b ~sy, p —+ey,
etc. There are additional constraints on the size of cer-
tain CP-violating angles coming from E-E, and the neu-
tron and electron electric dipole moments. The question
is, can one naturally satisfy all of these constraints? In
some early models of supersymmetry breaking, these con-
ditions were automatically satisfied because the breaking
of supersymmetry was fed to squarks by gauge interac-
tions [4]. In hidden sector supergravity theories, howev-
er, which provide the basis for much of our thinking
about low-energy supersymmetry, the situation is far less
clear. It is often said that this degeneracy is perhaps
reasonable, since, after all, gravity is "Aavor blind. " On
closer examination, however, this argument is seen to be
without substance. In most models of the type which
have been considered to date, there are operators which
one can add to the theory, not suppressed by any (even
approximate) symmetry, which give rise to an order 1

breaking of the degeneracy [5]. This problem has been
discussed in numerous places. In the context of super-

Two solutions of the hierarchy problem have been sug-
gested over the years: technicolor and supersymmetry.
Perhaps the biggest problem for technicolor theories is
that they tend to suffer from unacceptable Aavor-
changing neutral currents. Partial solutions to this prob-
lem have been offered, but the resulting models are ex-
tremely elaborate [1]. Supersymmetry, it is often argued,
does not suffer from this problem. However, this is not
so clear. At one loop, it is well known that there are dia-
grams contributing to K -K mixing which, for
supersymmetry-(SUSY-)breaking masses below a TeV,
are too large unless there is a high degree of degeneracy
among squarks. The real part of this mixing, for exam-
ple, leads to the requirement that [2,3,7]

gravity theories, for example, it is considered in Ref. [6].
In Ref. [8], this situation was anticipated for string
theory and strategies for naturally raising the
supersymmetry-breaking scale into the multi-TeV region
to alleviate this problem were proposed. Explicit depar-
tures from universality in simple orbifold models have
been computed in Ref. [9]. Kaplunovsky and Louis [10]
have recently reviewed this problem in the framework of
string theory. They note that if supersymmetry breaking
is associated principally with the dilaton, one will obtain
some degree of degeneracy. However, they have also
pointed out serious difhculties with such a scenario.

In early work on hidden sector supergravity models, it
was suggested that one should simply postulate a large,
approximate, flavor symmetry among squarks [11].
Indeed, while various other solutions to this problem
might be contemplated, flavor symmetries seem a most
natura1 framework. There are two immediate issues
which one must face. First, whatever horizontal symme-
try there may be is clearly very badly broken by the ordi-
nary quark mass matrices. Second, we would prefer not
to impose continuous global symmetries on the underly-
ing theory. Such symmetries are almost certain to be
broken by gravitational interactions, and are known not
to arise in string theories [12].

In this paper we will study models with non-Abelian,
gauged flavor symmetries, to determine whether these
can assure an adequate degree of squark degeneracy
while simultaneously allowing realistic quark mass ma-
trices. We will describe simple models containing an
SU(2)H horizontal symmetry in which there is adequate
degeneracy to satisfy the limits coming from the real part
of K-K mixing. To be more precise, a naive estimate, as-
suming all SUSY-breaking parameters of order 300 GeV,
gives a result about an order of magnitude larger than the
experimental upper bound. This order of magnitude
discrepancy is not disturbing. First, in the framework we
consider, it is not unnatural to suppose that squarks of
the first generation have TeV masses, while those of the
third have smaller masses (so fine-tuning of Higgs boson
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masses is not required). Alternatively, some of the pa-
rameters of order one in the model may be of order 3,Q.

The limit on the imaginary part, two orders of magnitude
stronger, is more problematic. To satisfy this constraint,
it is necessary to make some further assumptions. Again,
there are plausible regions of parameter space for which
the imaginary part is suKciently small. A different ap-
proach is to impose additional symmetries, such as
discrete symmetries, to provide further suppression. This
seems a reasonable thing to do, since such symmetries
might be necessary to understand the fermion mass ma-
trices. ' One also may want to consider additional as-
sumptions about the nature of CP violation. Note that
bounds on gaugino mass phases from d„and d, also sug-
gest additional assumptions such as spontaneous CP
violation. One can view these results in a positive light:
generic models do not (quite) satisfy all constraints, so ad-
ditional features must be considered, and perhaps addi-
tional predictions made.

The models we consider will be predictive: they will
imply definite relations among squark masses. For exam-
ple, models with SU(2)H symmetry predict that up or
down squarks of the first two families are approximately
degenerate, while third family squarks may have quite
different masses. Similar degeneracies among sleptons
are also expected. These models will also have interesting
implications for B-B and D-D mixing and, possibly,
b ~sy.

One might hope that models of this kind would explain
the many puzzling features of the fermion mass spec-
trum. We will not attempt this here. In particular, our
models will require a rather large range of quark Yukawa
couplings (though perhaps not quite as large a range as in
the minimal standard model).

The first question one must address is the scale of
breaking of the horizontal symmetry. We will distinguish
two possibilities: breaking near M and breaking much
below M . A simple model with large-scale breaking is as
follows. Take the gauge group to be that of the standard
model times an additional SU(2)H. For purposes of
enumerating the different particles and couplings, we will
label the states by the quantum numbers they might have
in an SU(5)XSU(2)H unification. Note that we are not
assuming an underlying SU(5) symmetry, but simply us-
ing SU(5) to classify the states. The three generations are
then assumed to form doublets and sin glets of the
SU(2)H. The states are

5, = (5,2), 10, =(10,2), 5, =(5, 1), 10, =(10,1) .

The Higgs particles are taken to be two singlets of
SU(2)H; this will avoid the problem of fiavor-changing
currents mediated by Higgs particles. We will denote
these by H, and Hz. To break SU(2)H, one adds three
fields transforming as (1,2): @;, i =1,2, 3. The model is
then free of both perturbative and nonperturbative
anomalies. Alternatively, one can add an SU(2)~ doublet

For a recent effort along these lines, see Ref. [13].

of right-handed neutrinos, in which case only two N, -

singlets are added.
We will assume that supersymmetry is broken in a hid-

den sector, whose dynamics do not by themselves break
any of these gauge symmetries. We will also assume that,
after supersymmetry breaking, the potential for the fields
N,. is such that these fields obtain large vacuum expecta-
tion values (VEV's). This assumption may seem unnatur-
al, but it is often satisfied in string theories. First, there
are "D-fiat" directions [i.e., directions in which the auxi-
liary D fields in the SU(2)H gauge supermultiplet vanish]
where some of these fields have VEV's. I' fatness is
known to arise in string theory in at least two ways.
Moduli of string compactifications with (2,2) world-sheet
supersymmetry are I' fiat [14]. At points of enhanced
symmetry, the moduli are typically charged (e.g., at orbi-
fold points); the enhanced symmetry could be our hor-
izontal symmetry. Generically, however, the moduli do
appear in the superpotential of the matter fields (some of
these couplings may be exponentially suppressed at large
radius) [14]. F fiatness is also known to arise in the pres-
ence of discrete R symmetries [15]. In either case, if
some of the N fields acquire negative masses upon super-
symmetry breaking, they can acquire large VEV's. We
will require that these be smaller than M by a factor of
order 10. We will not attempt to explain here how this
factor might arise, but simply argue that, in a theory with
small couplings, it is not unnatural.

To keep the discussion simple, we will assume that two
singlets, 4'i and Nz, obtain VEV's:

~ (4& ) ~
=(0,$) and

~ (Nz) ~
=($,0) . In order to understand how this break-

ing of the SU(2)H symmetry feeds down to other fields,
we need to examine the Lagrangian more carefully. Let
us focus first on the quark fields. Denoting quark dou-
blets by Q and singlets by d and u, the superpotential just
below M contains dimension-four terms:

1E~b Q, db H, +k i&~b Q~ Q b H2

+A Q3, d, H, +A4Q, u, H2 . (2)

1+
2 (~7~ab~cd@a@CQbddH1+

M
(3)

20ne possible origin in this scale is through the appearance of
a Fayet-Iliopoulos D term [16].

The precise alignment of +& and N2 will not be important to
us, except when we consider additional discrete symmetries. In
such cases, the alignment considered here is natural.

These give rise to SU(2)H symmetric terms in the mass
matrix. Clearly, we need to assume that A, , and A.z are
small (this might be arranged by means of a discrete sym-
metry).

SU(2)H-violating terms arise from higher-dimension
couplings, of which there are a wide variety. For exam-
ple, in the d-quark sector, we have

1

M ( A ~C,b @',Qb d, H, + A be, b 4&, Q, d b H, )
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Similar terms are present in the up-quark sector. Some
points should be noted immediately. First, N/M (times
couplings constants) cannot be too small; in the limit
that %~0, there is no mixing of the third generation
with the first two. As we remarked above, the SU(2) sym-
metric terms in the light quark matrices must be small, so
fn, and m, must go as N /M; this quantity thus cannot
be much smaller than 10 . With this restriction on @,
there is no difficulty in obtaining reasonable fermion
masses and Kobayaski-Maskawa (KM) angles, provided
one is willing to take several Yukawa couplings to be
small and comparable, as in the standard model. Hope-
fully, other horizontal schemes could be more predictive.
We leave the exploration of this question to future work.

For simplicity, we choose the various Yukawa cou-
plings so that the down-quark mass matrix entries
fn,"d,d satisfy

-m -m -md d d

down sector. The (32) and (31) entries in Eq. (4) are unre-
lated to the KM angles and, in general, can be as large as
a few GeV. We will see that in this limit gluino graphs
can give B(b —+sy) at the level of the latest CLEO [17]
bound, 5.4X10 . However, in this case we will have

difhculty with the E-E constraints.
What about the squark mass matrices? We are assum-

ing that the underlying supergravity theory is the most
general one consistent with its symmetries. Such a theory
is described, in general, by three functions: the Kahler
potential K, the superpotential W (which we have already
discussed), and a function f which describes the gauge
couplings. With our assumptions, the Kahler potential is
not of the so-called "minimal" type, and will give rise to
violations of universality. If we denote "hidden sector
fields" generically by z and visible sector fields by y, we
can characterize the violations of degeneracy and propor-
tionality quite precisely. For small y, we can expand E in
powers of y. We can write

fthm d
— fn d foal ~ foal s (4)

IC =k(z, z')+y;"y, +1;J(z,z*)y,*y, +. . .

Pl rfl Vld S b

with similar assumptions for the up-quark matrix. The
quark masses and eigenstates then take on a particularly
simple form. For example, the down masses are given by

m =m
d 11

m12m 21
m, =m22— m23m32

mb =
foal 33

The down mass eigenstates are given by

Id, )=xdIj), Id, )=x,, j ),
where i = 1, 2, and 3 correspond to d, s, and b, respective-
ly, and

I
1 ) corresponds to the vector (1,0,0), etc. With

a mass matrix of the form of Eq. (4), the x; are given by

Examining the form of the potential in such a theory, it is
easy to see that proportionality and degeneracy occur if /

is proportional to the unit matrix. There is no reason for
this to occur, in general. However, the SU(2)H symmetry
significantly restricts the form of l. Expanding l in
powers of P, the leading terms for the squark fields lead
to SU(2)H-symmetric squark mass terms of the form (us-

ing the same symbol for the scalar field as for the
superfield)

v,.„=m ',
I g. I'+ m ',

I g, I'+ m ',
I u. I'+ m ',

I u, I'+

+ A, A, ,gdH, + A ~A2guH2+ . +H. c.

Here, rn; and 3; are of order msvsY. Terms linear and
quadratic in N give rise to symmetry-breaking terms of
the type

x"—1 x"—
ii & 21

d
fPl 12 —V„, ,
m,

(7)

x 32 cb& 31
—V x"—

mb

fn 13 —V„b .
fnb

rn sUsY (10)

The remaining x, follow from orthonormality of the
eigenstates. The X;. are obtained by complex conjugating
the above and interchanging indices on the rn; . Expres-
sions for the up masses and eigenstates are completely
analogous. Knowledge of the x; and x," will be required
to estimate the various off-diagonal squark mass matrix
entries of relevance to Aavor-changing neutral currents
(FCNC's).

Note that, given Eq. (4) and it's analogue for the up
sector, the KM angles are essentially generated in the

"If, for example, m» -m» -m&, then the mixings of the first
and second generation d quarks with the third generation
quarks are large, and the SU(2) symmetry will not lead to
sufhcient degeneracy for the E-E system.

aiid

~SVSY
5 V„~,— A, ~Q d, H, (g,&,+ rI2%~+r1342 )

M

~SUSY+ A, Q dH, (i)', 4,N, +g~N, @2
M

+g3C&, @2 )+
We have omitted SU(2)H indices on Q, u, and d but terms
with all possible contractions should be understood.
Here y, y', g, and g' are dimensionless numbers. The
couplings g3 and g3 may seem surprising, since they are
not among the usual allowed soft-breaking terms. These
terms, however, are supersyrnmetric terms, arising be-
cause the superpotential of the effective theory will, in
general, contain terms like msvsY+;Nj. By 't Hooft's
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naturalness criterion [18], many of the couplings in Eqs.
(9)—(11) should not be much less than one; the theory
does not become any more symmetric if these quantities
vanish. Some, however, can naturally be small; later, we
will consider discrete symmetries which might suppress
certain dangerous ones.

The quarks and squarks must be rescaled. For con-
venience we choose a canonically normalized basis in
which the quark mass matrices are again of the form
given in Eq. (4). The masses and eigenstates are then as
in Eqs. (5) and (7). The resulting down-squark mass ma-
trices are of three types: mLI, mIR, and NRR, where L
and R refer to left- and right-handed squarks, respective-
ly. For example, for miL one obtains

1

0.1

2X 10-'
4X10-"

3X 10
10-"

1p
—10

2X10-"

4
mdb

6
m

2 2
mdbmd b

6

4
mdb

6
m

TABLE I. (a) Bounds on various components of the squark
0 —0

mass matrix for K -K mixing. Here, m is the gluino mass and
m is a typical first-second generation squark mass. All quanti-
ties in GeV . We have taken FR=170 MeV and 6+=1. (b)
Bounds on various components of the squark mass matrix from
8 -8 mixing. We have taken F& =230 MeV and 8& = 1.

4m- mds rnds md
6 6

m rn rn

m~L =diag(mI~, m', , m~ )+5m 1

0.1

10
2X 10

10-'
2 x10-'

2X 10
7X10-"

The first and second ter~s originate in V»«and 5V,pft,
respectively. The (13), (23), (31), and (32) entries of 5m
are proportional to P/M~ and the remaining entries are
proportional to P /M . In the quark mass eigenstate
basis, the same is true [see Eqs. (6)]. For example, md, is
given by

2 I2 '2 2 2 2
md, =(rn 2

—m1 )x13x23+6m12+(6m11 —6m 22)x21

2 2+6m 13x23 +6m 32x 13 + (13)

Jim II c4 ]2m22 3 I3m23

Similar statements hold for the rnid~ and for the up sector.
The matrix elements satisfy the promising hierarchy

2 2 2
md, « mdb, m, b.

What about proportionality of the quark and squark
mass matrices? The miR matrix corresponding to a fer-
mion matrix m, satisfying the hierarchy in Eq. (4), is of
the form

to the up-quark mass matrix and will be somewhat larger.
This will turn out to be of significance for D-D mixing.
We see that for -300 GeV squarks and gluinos, some of
the dimensionless couplings in 6V, ft will have to be

10 3
to obtain satisfactory km z and 5m ~ . If the

squarks of the first two generations have masses of order
I TeV then all dimensionless couplings in the scalar po-
tential can be of order 1. Provided the third generation
squarks are comparatively light [20] (perfectly possible in
this sort of model), this does not imply any fine-tuning.
Alternatively, as will be described below, discrete sym-
metries can further suppress the most dangerous cou-
plings.

We have not included limits from 8(b ~sy ) in Table
I. From gluino graphs with LR quark mass insertions [3]
the new CLEO bound of 5.4X 10 implies

—2~I.R ~21m22 ~22m22

A 3 II32 A 32 rn 32 A 33 m 33

(14)

For a general potential, the violations of proportionality
for the mr R matrix for the first two generations are of or-
der P /M . This is small enough for the E Kand D-D-
systems.

We now discuss implications for FCNC's. Bounds on
off-diagonal down-squark masses [3] from the K-K and
8-8 mass differences are summarized in Table I. Esti-
mates of these quantities in the SU(2)H model are collect-
ed in Table II. Similar estimates are obtained in the up
sector for mLL and mRR, but mLR entries will be related

300 GeV
1 TeV

4
mds

6
rn

1 P
—9yl2

10
—10y &2

2 2
md, md,

6
m

lp
—9y~2

10
—10yi2

m~s
6

m

3 X 10 1271~2

3X 10 ' 71'

TABLE II. (a) Predictions of the SU(2)~ model for K -K
mixing for representative values of squark masses. The dimen-

sionless parameters y, 71, etc. , in (a) and (b) are as defined in the
text. All quantities in GeV . (b) Predictions of the SU(2)H—0
model for 8 -8 mixing for representative values of squark
masses.

5Such a basis can always be found [19], given a mass matrix
whose entries satisfy the hierarchy of Eq. (4) in the original in-
teraction basis.

6— &2 2 2
m1 and rn2 follow from canonical rescaling of rn1 and m 2,

respectively, and again are of order m sUsz.
7Rescaling introduces dependence of the entries in Table II on

additional dimensionless parameters originating in the Kahler
potential, at same orders in P/M~ as those given [19]. For sim-
plicity this dependence is omitted.

300 GeV
1 TeV

4.

mdb
6

rn

10 y
10 -'y'

2 2
mdbm-„b

6
m

10 7y2

1P
—8y2

4
mdb

6
m

3X10 "~'
3 X 10 '"71

8Graphs with LL and RR insertions give small contributions,
except for very light —100 GeV squarks, which are disfavored

by K-K bounds.
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—2
mb

2

~8X10
m

(15)
scalar masses, one requires

Arg(m 2 i im f, )-10
and the same for m, &. The SU(2)H model gives

—2 d d —d d dm„= 33zm3z+xz3233m33+

where the A 's are of order msUsY as given in Eq. (14).
For m3z-m„as in Eq. (4), this is too small to give in-
teresting contributions to b ~sy. However, if m 3z is as
large as a few GeV but less than mb, which is allowed
from the point of view of fermion masses and mixing an-
gles, then, from Eq. (15), we see that gluino graphs can
contribute to B(busy) at the level of 5.4X10 ~ for
squarks as heavy as 300 GeV; as noted earlier, however,
this may lead to difhculties for E-K.

Since the bounds from Am& are just barely satisfied,
the model could have very rich implications for CP viola-
tion in the B system [21]. As remarked above, the mr+
entries have interesting consequences for D-D mixing.
Given the current experimental bound of
AmD/mD (6.97X10 ', one obtains the following con-
straints, taking FD =200 MeV and B~ = 1:

2
m

m 2
-10 GeV

m
(16)

for m -m; the bound is 7X10 ' for m -0.1m. By
way of comparison, in the SU(2)H model we expect for
the above quantities 2 X 10 ' g' for 300 GeV squark
masses, and 2X10 ' g' for —1 TeV squark masses. Re-
cent heavy quark effective theory (HQET) calculations
[22] for the standard model lead to
Ama /ma —10 ' —10 ' . So it is clear that one can
readily obtain AmD one to two orders of magnitude
larger in the SU(2)H model.

What about constraints from CP violation? The
bounds from ez on the imaginary parts of the various
quantities constrained by Am+ are about two orders of
magnitude stronger than indicated in Table I. Con-
straints on nondegeneracy will depend on the size of the
phases entering these quantities. For example, if the
phases are of order unity, as would be expected in models
with explicit CP violation, then for —1 TeV first and
second generation squarks, some of the y' couplings in
5V„«would have to be of order —,', . Couplings of this
size or smaller might arise as a consequence of discrete
symmetries, as discussed below. Alternatively, these
squarks could be even heavier. This will not lead to fine-
tuning of Higgs parameters, since, as already mentioned,
their Yukawa couplings are small. Note that with this
choice of parameters, large CP-violating supersymmetric
contributions in the B system are possible, since the
relevant phases can be of order unity.

The bound on the neutron electric dipole moment, d„,
most strongly constrains Im(m 2 i i m f i ) and

Im(m„, m, „333m 33). The former constraint has been
widely considered [23] in the minimal supersymmetric
standard model (MSSM). The situation here is much the
same: for —300 GeV squark, gluino, and 2;. trilinear

while for —1 TeV squarks, phases of order unity are per-
missible. The same turns out to be true for

Arg(m„, m-, „A 33m 33 ),
given that the B-B constraints are satisfied, since m„,m,„
and mdbmbd are expected to be of same order in our—2 —2

model.
In scenarios of spontaneous CP violation, the relevant

phases might naturally be of order 10, in which case
the ez, and d„constraints are more comfortably accomo-
dated [24]. One interesting possibility is that it is the @
field VEV's which spontaneously break CP. This is con-
sistent, for example, with the idea described above that
these fields could be moduli of a string compactification
[25]. In such a scheme the phase of the gluino, in partic-
ular, will be at most of order 4 /M . However, it ap-
pears difficult to suppress Arg(4), so that the other
phases of relevance to d„and ez are likely to be large.
Perhaps if the scale of CP violation is somewhat smaller
than the scale of horizontal symmetry breaking one can
naturally obtain smaller phases.

An alternative strategy for accommodating CP-
violation bounds is to increase the amount of squark de-
generacy by adding additional Abelian discrete or con-
tinuous horizontal symmetries. One notices that all
terms in Eqs. (10) and (11) which contribute to off-

diagonal entries (here we are referring to the interaction
basis) in mLL, mi, z, and mLz can, in principle, be elim-

inated by additional symmetries. It is not hard to con-
struct models with such symmetries and realistic quark
mass matrices. The smallness of off-diagonal squark mass
matrix entries is limited by the x, , x, or KM angles.
This can lead to further suppression of order 0, for A-K
and of order (V,big) for B B. Moreover, in-many cases,
the lowest dimension operators are CP conserving, pro-
viding adequate suppression for ImK -K .

One can also carry out the above program making use
of other symmetry groups, such as SU(3) or non-Abelian
discrete groups. The SU(2) models have the virtue of
simplicity, which is in large part due to the gross features
of the quark mass spectrum: large mass splitting and
small mixing angles between the third family and the first
two.

Let us turn now to the possibility of breaking at lower
scales. We will not attempt here to construct explicit
models, but confine ourselves to some general remarks.
First, there are a number of approaches one might adopt.
We have already remarked that, if the Higgs bosons carry
SU(2)H quantum numbers, there are likely to be problems
with flavor-changing neutral currents from Higgs boson
exchange. Still, such models are clearly worthy of ex-
ploration.

An alternative possibility, following Ref. [13],is to sup-
pose that at some new scale, not far from the Aavor
symmetry-breaking scale, there are some SU(2)L-singlet
vectorlike quarks, some of which are in doublets of
SU(2)H. There are also SU(2)H-breaking doublets P; as in
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the large-scale model, which couple the light and heavy
quarks. Without a terribly complicated structure at this
scale, integrating out the heavy fields produces couplings
of light quarks analogous to those in Eq. (3) with M~ re-
placed by the heavy-quark scale.

We can summarize all of this by saying that it is easy
to construct models in which horizontal symmetries ade-
quately suppress Aavor-changing neutral currents. This
view suggests patterns of masses which may differ from
assumptions which are conventional in model building.
For example, at very high energies, the third generation
(left and right) squarks are not likely to be degenerate
with those of the first two. Moreover, in the simplest
models, the squarks of the first two generations should
have mass of order a TeV, while the top squark (to avoid
naturalness problems) should be comparatively light.

The simplest models, which only make use of an SU(2)
horizontal symmetry, oA'er no understanding of the quark
mass matrix. Such an understanding may require more
intricate symmetry patterns, which, as we have illustrat-
ed, may lead to even tighter degeneracy. Perhaps, after,
all, supersymmetry may yield insights into the problems
of flavor.
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