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Gauge-invariant three-boson vertices in the standard model and the static properties of the W
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We use the S-matrix pinch technique to derive to one-loop order gauge-independent yR' 8' and
ZW+ W vertices in the context of the standard model, with all three incoming momenta off shell. We
show that the y W W vertex so constructed is related to the gauge-independent W self-energy, derived

by Degrassi and Sirlin, by a very simple QED-like Ward identity. The same results are obtained by the
pinch technique applied directly to the process e +e ~W W . Explicit calculations give rise to ex-
pressions for static properties of the 8'gauge bosons such as the magnetic dipole and electric quadrupole
moments, which satisfy the crucial properties of infrared finiteness as well as gauge independence.

PACS number(s): 11.15.8t, 11.15.Ex, 13.40.Fn, 14.80.Er

I. INTRODUCTION AKy —Kv+ kv 1 (1.2)

The widespread belief of theoreticians that the stan-
dard model of electroweak interactions serves as an
effective low-energy description of an underlying more
fundamental theory has been persistently denied
confirmation for several years, mainly because of the
model's impressive agreement with a large body of pre-
cise experimental results [1]. This fact, combined with
the elusiveness of the top quark and Higgs particles, has
motivated the design of a new generation of machines,
which will further probe the underpinnings of the stan-
dard model in the near future. A new and largely unex-
plored frontier, on which this ongoing search for new
physics will soon focus, is the study of the structure of
the three-boson couplings. Since these couplings lie in
the heart of the non-Abelian nature of the theory, a sys-
tematic confrontation of the standard model predictions
in this domain with experiment might shed some light on
the underlying structure of the theory, if any.

Motivated by scattering experiments of the form
e+e —+ 8'+ 8', the standard parametrization for the
most general 8'+ 8' V vertex with the 8 s on shell and
Voffshell, where Vstands for y or Z, is [2—7]

and

bQv= 2A v (1.3)

where az and A, z are form factors compatible with C, P,
and T invariance. In particular, ~ and A, are related to
the magnetic dipole moment p ~ and the electric quadru-
pole moment Qiv, by the expressions

piv= (1+ter+A, r)2M~
(1.4)

Qiv= — (tc~ —
A,r) .

M~

In the context of the standard model, the tree level
values of the parameters defined above are f = 1,
EKv EQv —0, Ky 1, and A,r=0. Given the expected
experimental precision, and assuming that such quanti-
ties can actually be extracted from suitable scattering ex-
periments, calculating the one-loop corrections to these

i'p, p= —tgv f [2g p~„+4(g „Qp gp„Q )]—
+2btcv(g „Qp

—
gp Q )

b, Qv+4 (b,„Q Qp
—

—,'Q g pb, „) +

(7, Z]

i u
n8mR!

with g =gs and gz=gc, where g is the SU(2) gauge cou-
pling and s—:sinO~ and c —=cosO~, and the dots denote
omission of C- or P-violating terms. The four-momenta

Q and b. , first introduced in [8], are related to the incom-
ing momenta q,p, , and p2 by q=2Q, pi = —b, —Q, and
p2=6 —Q, as shown in Fig. 1. The quantities b, trav and
b, Qv are defined as

pt ———A —Q p2=& —Q

FIG. 1. The kinematics of the VW+ W vertex. All momen-
ta are incoming.
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and

M~
aQ~= a 3~ . (1.8)

Calculating the one-loop expressions for b,~v and b, Qv
is a nontrivial task, not only from the technical point of
view, but from the conceptual point of view as well. So,
if one proceeded to calculate just the Feynrnan diagrams
contributing to the y W+ W vertex, for example, and
then extract from them the contributions to AKz, and
b,Q, after a considerable amount of labor one would ar-
rive at expressions that are plagued with several patholo-
gies, gauge dependence being one of them. Indeed, even
if the two W are considered to be on shell, since the in-
coming photon is not, there is no a priori reason why a
gauge-independent answer should emerge. In the context
of the renormalizable gauges (usually referred to as R&
gauges) the final answer depends on the choice of the
gauge-fixing parameter g, which enters into the one-loop
calculations through the gauge-boson propagators
( W, Z, y, and unphysical Higgs particles). In addition, as
it was realized by the authors of [7], who, unaware of the
fact that there is no gauge cancellation, performed the
calculation in the Feynman —t'Hooft gauge (/=1), the
answer also turns out to be infrared diuergent Put in the.
standard language, the functions a;(Q) emerging out of
this procedure are in general gauge dependent and in-
frared divergent, and these problems persist euen when
one combines them to form her and b, Q&, according to
Eqs. (1.7) and (1.8) (the resulting expressions are, howev-
er, ultraviolet finite). Clearly, regardless of the measura-
bility of quantities such as b, lr and b,Q, from the
theoretical point of view one should at least be able to
satisfy such crucial requirements as gauge independence
and infrared finiteness, when calculating the model's pre-
diction for them.

This unsatisfactory state of affairs, which occurs each
time one tries to isolate a particular piece of an S matrix
without enough care, can be avoided if one adopts the
pinch technique (PT). The PT was invented by Cornwall
over a decade ago [9] and has since been applied to a
variety of physical problems. The main idea of this
method is to resum via a well-defined algorithm the Feyn-
man diagrams contributing to a gauge-invariant process
(such as an S-matrix element) in such a way as to form
new gauge-invariant vertices, and new propagators with
gauge-independent self-energies and only a trivial gauge
dependence —that of their tree level parts. In the context

parameters is the next necessary step. One then must
cast the resulting expressions in the form

I „ ti= —igv[aig pb, „+a2(g „Q&
—

g&„Q )

+a,'a„QJ3,], (1.6)

where a &,az, and a3 are, in general, complicated func-
tions of the momentum transfer Q and the masses of the
particles appearing in the loops. It then follows that EKED

and EQv are given by expressions

(1.7)

q"~„.p=fi.t3(pj) —~ p(pz» (1.9)

where q is the four-momentum of the incoming photon,
and p, and pz of the incoming W+ and W, respective-
ly. Having constructed a gauge-independent vertex for
the general case of off-shell momenta we can recover as a
special limit the case of interest ( W+ and 8' on shell)
by setting p i ~M~ and p z ~M~ and contracting the re-
sult with the polarization vectors e (pi) and ep(pz). Fi-
nally, projecting out the kinematically relevant pieces ac-
cording to Eq. (1.6) gives rise to new individually gauge-
independent and infrared finite functions a, (Q ). So, the
additional (ultraviolet finite) pinch contributions not only
contain the right terms to cancel all gauge dependences,
but they also contribute infrared divergent terms, which
exactly cancel against the infrared divergences contained
in the standard vertex graphs. Combining now the new
functions d;(Q2) according to Eqs. (1.7) and (1.8) we find
expressions for b, i~ and b, Q that are (1) gauge-fixing pa-
rameter (g) independent and (2) ultraviolet and infrared
finite.

The paper is organized as follows. In Sec. II we review
the S-matrix PT and discuss some of the more important
results for our purposes. In addition, we brieAy present
the Degrassi-Sirlin alternative formulation of the PT. In
Sec. III the S-matrix PT is used to construct the gauge-
independent y W W vertex with all incoming momenta

of QCD a gauge-invariant gluon self-energy was derived,
and its Schwinger-Dyson equation constructed and
solved for T=0 [10], as well as finite T [11]. The
plasmon decay rate was also calculated at finite T using
the same method [12]. Later the QCD gauge-invariant
three-gluon vertex was calculated at one-loop level and
was shown to satisfy a very simple Ward identity [13].
The subleading corrections to the self-energy were calcu-
lated by Lavelle [14]. Finally, the gauge-invariant four-
gluon QCD vertex was constructed and its Ward identity
derived [15]. The PT was first extended to the case of
non-Abelian gauge theories with spontaneously broken
gauge symmetry (with elementary Higgs bosons) in the
context of a toy field theory based on SU(2), and a gauge-
independent electromagnetic form factor for the standard
model neutrino was constructed [16]. The complicated
task of applying the PT in the electroweak sector of the
standard model was recently accomplished by Degrassi
and Sirlin [17]. These last authors, in addition to deriv-
ing explicit expressions for the one-loop gauge-invariant
8'8' and ZZ self-energies, introduced an alternative
description of PT in terms of equal time commutators of
currents.

In this paper we use the S-matrix PT to construct in
the context of the standard model [18], to one-loop order
in perturbation theory, a gauge-invariant effective y WW
vertex with all three incoming momenta being o+ shell.
The outline of the construction of such a vertex was al-
ready given in [17],but no explicit results were reported.
It turns out that the vertex f'»(q, p, ,pz) so constructed
satisfies a very simple QED-like Ward identity, which re-
lates it to the gauge independe-nt &&self-energy A

&
de-

rived in [17]: namely,
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In this section we briefly review the S-matrix pinch
technique (PT). In particular we outline the method of
derivation of the gauge-independent proper self-energy of
a gauge boson and comment on the technical differences
that arise when PT is applied to a theory with symmetry
breaking, such as the electroweak theory, as opposed to a
theory such as QCD. In addition, we present the main
idea of the Degrassi-Sirlin formulation of the PT, and es-
tablish some of the notation we will use in the sequel.

The S-matrix pinch technique is an algorithm that al-
lows the construction of modified gauge-independent n-
point functions, through the order by order resummation
of Feynman graphs contributing to a certain physical and
therefore ostensibly gauge-independent process (an S ma-
trix in our case). The simplest example that demonstrates
how the PT works is the gauge-boson two-point function
(propagator). Consider the S-matrix element T for the
elastic scattering of two fermions of masses M, and M2.
To any order in perturbation theory T is independent of
the gauge fixing parameter g, defined by the free gluon
propagator

—g„,+(1—g)(q„q /q )
b,„(q)= (2.1)

On the other hand, as an explicit calculation shows, the
conventionally defined proper self-energy [collectively de-
picted in Fig. 2(a)] depends on g. At the one-loop level

P2 P2

offshell, and explicit results are reported. Furthermore,
we present a shortcut for deriving the gauge-independent
vertex with the two 8' onshell directly from a process
such as e+e —+8' O' . In Sec. IV we prove the Ward
identity that the gauge independent vertex satisfies. In
Sec. V we calculate the functions &(Q ) and evaluate nu-
merically the pinch contributions to b,a& and b, g&. Fi-
nally, we summarize our results in Sec. VI.

II TH. E PINCH TECHNIQUE

this dependence is canceled by contributions from other
graphs, such as Figs. 2(b) and 2(c), which do not seem to
be of propagator type at first glance. That this must be
so is evident from the form of T:

where the function Ti(t) depends only on the Mandel-
stam variable t = —(P, —p, ) = —q, and not on
s =(p, +pz) or on the external masses. The propagator-
like parts of graphs such as Figs. 2(e) and 2(fl, which en-
force the gauge independence of T, (t), are called "pinch
parts. " The pinch parts emerge every time a gluon prop-
agator or an elementary three-gluon vertex contribute a
longitudinal k„ to the original graph's numerator. The
action of such a term is to trigger an elementary Ward
identity of the form

k "y„:—k'=(/+It —m) —(P —m)

=S '(p +k) —S '(p) (2.3)

once it gets contracted with a y matrix. The first term on
the right-hand side of Eq. (2.3) will remove the internal
fermion propagator, that is, a "pinch, " whereas S '(p)
vanishes on shell. This last property characterizes the S-
matrix PT we will use throughout this paper. Returning
to the decomposition of Eq. (2.2), the function T, (t) is
gauge invariant and unique and represents the contribu-
tion of the new propagator. We can construct the new
propagator, or equivalently T, (t), directly from the Feyn-
man rules. In doing so it is evident that any value for the
gauge parameter g may be chosen, since T„T2, and T3
are all independent of g. The simplest of all covariant
gauges is certainly the Feynman —'t Hooft gauge (g= 1),
which removes the longitudinal part of the gluon propa-
gator. Therefore, the only possibility for pinching arises
from the four-momentum of the three-gluon vertices, and
the only propagatorlike contributions come from Fig.
2(b).

To explicitly calculate the pinching contribution of a
graph such as Fig. 2(b) it is convenient to decompose the
vertex in the following way, first proposed by 't Hooft.
Group theory factors aside,

T(s, t, M„M2)= T, (t)+ T2(t, M„M2)+ T3(s, t, M„M2),
(2.2)

Pl P1

(b) (c)
P I'

~pva =~pva+ ~pva

with

(2.4)

I „—=(q+k)~„+k„g (2.5)

I „=2q„g —2q„g —(2k+q) q„ (2.6)

FIG. 2. Graphs (a) —(c) are some of the contributions to the
S-matrix T. Graphs (e) and (f) are pinch parts, which, when
added to the usual self-energy graphs (d), give rise to a gauge-
independent e6'ective self-energy.

I „satisfies a Feynman-gauge Ward identity:

q r~ =[k2 —(k+q)2]g„ (2.7)

where the right-hand side (RHS) is the diff'erence of two
inverse propagators. As for I „(Pfor "pinch" ) it gives
rise to pinch parts when contracted with y matrices
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g„(g+k)=g„[(gf+g—m) —(gf —k —m )]

=g„[S '(p +q) —S '(p —k)] (2.8)

Finally, the full modified propagator b.„(q) at one-loop
order reads

A„(q)=P„(q)d(q) —g (2.18)

g„g=g„[(P—m )
—(P —k —m ) ]

=g, [S '(p) S—'(p —k)] . (2.9) d '(q) = 1 —A(q)

Now both S '(p +q) and S '(p) vanish on shell,
whereas the two terms proportional to S '(p —k) pinch
out the internal fermion propagator in Fig. 2(b). The to-
tal pinch contribution II (q) from Fig. 2(b) and its coun-
terpart mirror image graph with the bubble attached to
the bottom line is given by

II (q)=( —,'X) X2X2X ig2 d4k

(2~) k (k +q)

2' ln
16~

—
q

p
(2.10)

P„(q)= —
q g„+q„q (2.12)

Adding this to the usual Feynman-gauge proper self-
energy

II'~ "(q)= II'~ "(q)P„(q),
with

(2.13)

—
q

p
(2.14)

we find for A„(q) the gauge invariant combination

A„(q)=P (q)A(q), (2.15)

where in the second equality we give the renormalized
version of the integral. The factors in front of the in-
tegral are a group-theoretic factor —,'X [N=number of
colors in SU(X)]; one factor of 2 from the two pinching
terms from Eqs. (2.8) and (2.9); another factor of 2 from
the contribution of the mirror graph. In adding the
pinch parts to the usual gluon self-energy one ambiguity
needs resolution. Because we are working with the on-
shell S matrix, any terms -q„q in the pinch parts do
not show up in T, (t). We define uniquely the proper
self-energy associated with the pinch parts by demanding
that it be conserved [19]. So we define II„„(q)as

II„(q)=P„(q)II (q), (2.11)

where

=1+bg2ln (2.19)

We see that the modified propagator has a gauge in-
dependent self-energy and only a trivial gauge depen-
dence originating from the tree part given by Eq. (21).

It is important to emphasize at this point that the
gauge-invariant self-energies and vertices obtained by the
application of the S-matrix pinch technique do not de-
pend on the particular process employed (fermion + fer-
mion —+ fermion + fermion, fermion + fermion
gluon + gluon, gluon + gluon ~ gluon + gluon, etc.)
and are in that sense universal. This fact can be seen
with an explicit calculation, where one can be convinced
that the only quantities entering in the definition of the
gauge-independent self-energies and vertices are just the
gauge group structure constants, and that the only
di6'erence from process to process is the external group
matrices associated with external-leg wave functions, due
to the diFerent particle assignments, which are, of course,
immaterial to the de6nition of the things inside. A very
instructive example of an explicit calculation, where two
difFerent processes give rise to exactly the same self-
energy for the W gauge boson, is given in [17].

Finally, we conclude this section with a brief presenta-
tion of an alternative formulation of the PT introduced in
[17] in the context of the standard model. In this ap-
proach the interaction of gauge bosons with external fer-
mions is expressed in terms of current correlation func-
tions, i.e., matrix elements of Fourier transforms of time-
ordered products of current operators [20]. This is par-
ticularly economical because these amplitudes automati-
cally include several closely related Feynman diagrams.
When one of the current operators is contracted with the
appropriate four-momentum, a Ward identity is trig-
gered. The pinch part is then identified with the contri-
butions involving the equal-time commutators in the
Ward identities, and therefore involve amplitudes in
which the number of current operators has been de-
creased by one or more. A basic ingredient in this formu-
lation are the following equal-time commutators, some of
which we wi11 also employ later in Sec. III:

with

A(q)= bg ln— (2.16)

5(xo —yo)l Jw(x»Jg, (y)]=c'Jg, (x)5'(x —y), (2.20)

5(xo —yo)[Jii (x),Jg (y)]= —J", (x)5 (x —y), (2.21)

111'
48m

(2.17)

5(xo —yo)[Jg (x),J"(y)] =Jg, (x)5~(x —y),
with J~z —=2(Jg+s J~z ). On the other hand,

5(xo —yo)[J&(x),JIl (y)]=0,

(2.22)

(2.23)

the coefficient of —g in the usual one loop P function. where V, V'E
I y, Z]. To demonstrate the method with
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(2.25)

where

2' (k —M, )[(k+q) —M ]
(2.26)

Obviously, the integral in Eq. (2.26) is the generalization
of the QCD expression Eq. (2.10) to the case of massive
gauge bosons.

III. THE GAUGE-INVARIANT THREE-VECTOR-BOSON
VERTICES

After this brief introduction to the PT, we now focus
on the main topic of this paper. In this section we use
the S-matrix PT to construct at one-loop order gauge-
independent three-boson vertices in the context of the
standard model, when all incoming momenta are off
shell. This problem has first been addressed in the case of
QCD in [13]. The generalization of the method to the
case of the standard model was outlined in [17] and the
general structure of the new vertices was derived; howev-
er no explicit expressions for the pinch contributions
were reported. Since these contributions are essential for
rendering the final expressions of the static properties of
the 8' bosons gauge-independent and infrared finite, we
will record in this section their explicit expressions.

%'e consider the 5-matrix element for the process
e+e —+e+v, e v, . Without any loss of generality we
will consider all external fermions to be massless [21].
The loop diagrams contributing to the S matrix can be
classified in several distinct classes: vector-boson-vertex
diagrams (such as in Figs. 4 and 5), vector-boson self-

energy diagrams (Fig. 9), fermion-fermion-boson-vertex
diagrams [Fig. 6(c)], and boxlike diagrams [Figs. 6(a),
7(a), and 8(a)]. In addition, there are propagator correc-
tions to the external fermions as well as disconnected
graphs, which are clearly irrelevant for our purposes, and
we therefore omit them. We can extract a gauge-

an example, consider the vertex I „shown in Fig. 2(b),
where now the gauge particles in the loop are 8 s instead
of gluons and the incoming and outgoing fermions are
massless. It can be written (with /= 1)

d4k
I „=f I „&(q,k, —k —q)2~4

X fd'xe'"(flT*[Jg,'(x)J~~(0)] i) . (2.24)

When an appropriate momentum, say k, from the ver-
tex is pushed into the integral over dx, it gets
transformed into a covariant derivative d/dx acting on
the time-ordered product (f l

T*[Jg, (x )J~~(0) ] l
i ) . After

using current conservation and differentiating the 0-
function terms, implicit in the definition of the T* prod-
uct, we end up with the left-hand side of Eq. (2.21). So,
the contribution of each such term is proportional to the
matrix element of a single current operator, namely
(f l

J~& li ); that is precisely the pinch part. Calling I „the
total pinch contribution from the I „ofEq. (2.24), we find
that

T(q ~i p2) =~(q)~(pl )~(72)~(q~p1 p2) (3.1)

"sandwiched" between external spinors, not explicitly
shown. The propagators b, in Eq. (3.1) are those con-
structed via the PT according to [17]; they have gauge-
independent self-energies and only a trivial gauge depen-
dence, namely that of their tree-level form. This trivial
gauge dependence of all the 6 does not appear in
T(q, p„p2), since the external fermions are on shell and
massless. Therefore, we can recover the gauge-
independent proper f'(q, p&,p2) from T(q,p„p2), by
stripping off the 6 s, as if they had no longitudinal pieces
at all. Another equivalent and more economical way to
isolate the proper vertex (as described in [13] and [17]) is
to notice that the gauge boson self-energies can be con-
verted to gauge-independent ones through PT, up to a
missing piece, namely the pinch contribution of the mir-
ror graph of Fig. 2(e), which clearly is not present in the
process we consider. The missing piece may be added by
hand to b„and then subtracted from f'. So, the proper
vertex emerges if we neglect all gauge boson self-energy
corrections and subtract instead half of the self-energy

FICx. 3. The general structure of the part T(q,p&,p ) of the S
matrix, that only depends on the momentum transfers.

independent improper vertex by identifying the part
f'(q, p„pz) of the S matrix which is independent of the
external momenta l, and I;, and depends only on the
momentum transfers q,p &,p2. The general form of
T(q,p „p2 ) is shown in Fig. 3. It is g independent as long
as we add all Feynman graphs and parts of Feynman
graphs that depend only on the momentum transfers
q,p„p2. So, to the usual vertex-diagrams we must add
the vertexlike contributions extracted from the boxlike
graphs, as shown schematically in Figs. 6—8 and their
mirror image graphs. The inclusion of these extra pieces
gives rise to a gauge-independent expression for
f'(q, p„p2). Before we record our results a few technical
remarks are warranted. The sum of all contributions
mentioned above assumes the form of an improper ver-
tex, namely,
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pinch

(1,2) (3,4) (5,6) (7,8)
(a)

,+ g ;+ & E. ,—
pinch

(14)

(c)

(15) (16) (18)

FIG. 6. Graphs (a) and (c) contribute to the gauge-
independent vertex through their pinch parts, graphs (b) and (d),
respectively. Notice the absence of box graphs containing yy,
ZZ, or Zy legs.

FIG. 4. The usual triangle graphs contributing to the

y 8'+ 8' vertex, referred to as V„'
&

in the text. All graphs are
understood to be sandwiched between external fermions, as in
Fig. 3.

pinch contribution for each leg.
We now turn to the details of the calculation. Since

the final result, when correctly constructed, is ostensibly
gauge independent, we are allowed to perform the calcu-
lation in any gauge. We choose the Feynman 't Hooft-
gauge (g; = 1, with i =y, Z, W), since it is certainly the
most convenient one. As we already explained, in this
gauge pinching terms arise only from diagrams that con-

D;(p) = 1

p —M,

The trilinear vertex at tree level is given by

1 p (k„k~,k3)=g p(k, —k2) +gp (k~ —k3)

+g (k3 —k, )p .

Left and right projectors are defined as

Pz I. = —,'(1+)'s) .

(3.2)

(3.3)

(3.4)

tain elementary three-vector-boson vertices. We will use
the following notation: Scalar propagators are generally
denoted as

(20) (21,22)

We denote by (dk) =—d k /i(2m) the loop integration
measure for convergent integrals and by (dk)
—:p "[d" k i/(2')" j the measure for divergent ones,
with p the 't Hooft mass scale of dimensional regulariza-
tion.

To construct the gauge-independent vertex, we add to
the regular vertex graphs of Figs. 4 and 5 (which we will
call V„' &) the vertexlike pinch parts that arise from the
box diagrams shown in Figs. 6(b), 7(b), and 8(c). Clearly,

pinch

(23,24) (25) (26)

FIG. 5. The rest of the usual V„' & graphs contributing to the

y W+ 8' vertex.

(b)

FIG. 7. The pinch contribution of the box containing a y.



48 GAUGE-INVARIANT THREE-BOSON VERTICES IN THE. . . 4261

we must also include the mirror graphs corresponding to
Figs. 7(b) and 8(c) which are hooked on the external fer-
mions of the left-hand side, and are not shown explicitly.
To begin with, from the box diagrams of the type shown
in Fig. 6(a), only those with two W's in the loop will con-
tribute a vertexlike pinch part. The rest contain two neu-
tral gauge vector bosons (yy, y'Z, Zy, ZZ) and, unlike
Fig. 6(a), they also have crossed graphs, the pinch part of
which cancels the pinch part of the direct diagrams. This
is most easily seen in the framework of the PT formula-
tion of [17]; since the equal-time commutator of the

B„.g(q pi p2) g gvB p 13(q,pl, p2)
V

where 8„&is the integral

(3.5)

relevant currents J,Jz is zero [see Eq. (2.23)], their total
pinch contribution vanishes.

The total pinch contribution of Fig. 6(a) is proportional
to g y"PI and can be written as linear combination of J~z
and Jg, namely g y"Pl =

—,'(s J"+Jg). The first term
will be allotted to the y 8'8' vertex and the second to the
Z8'8'vertex. If we define

B„'~p(qp„p2) = f (dk)D;(k)D~(k +p, )D~(k p2) I g—„~(2p,p 3k')—+g~(3[k„——', (p, —p2)„]—g„p(2p ~2+3k~)] (3.6)

and the summation index V =y, Z refers to the internal y
or Z propagator, then the pinch contribution of these box
dlagl ams 1s

and

[Fig. 6(b)],~~=( g~)q—'B„s(q,p„p, ) (3.7)

[Fig. 6(b) ]z~~= ( gc)—[q Mz ]B &(q,p „p2 ) (3.8)

for the y 8'8'and ZR'8' vertices, respectively.
We next look at the pinch contributions of the box dia-

grams of the type shown in Figs. 7 and 8. There are two
such contributions, depending on whether the pinching
occurs at the side of the 8'+ or at the side of the 8'
[the latter are shown in Figs. 7(b) and 8(c)]. We call
them, respectively, 8„&and 8„&and they are connected
by the relation

B .g(q pi P2) B p (q P2 pl ) .+ (3.9)

p(q pl p2) XgvG p(q p'»p~)+ 2 V (3.10)

where G„&is the integral

It is clear from Fig. 8 that when the neutral vector boson
in the loop is a Z, we have a direct and a crossed graph.
These two graphs are diA'erent, since the internal fermion
is an e or a v, respectively. The pinch parts of the direct
and crossed diagram are again opposite to each other, but
since the couplings are di6'erent, their total sum is not
zero, according to (vWe)(eZe) —(vZv)(vWe)
= —gz(vie).

Then 8„+& is given by

Gp p(q&pl&P2)= f (dk)Dy(k)Dg (k +p& )Dg (k —p2)[g~z(3k +2p& —3p2)„+gz„(—k+4p2)~+g~„(3k —2p, )&]

(3.1 1)

and Vis again summed over the internal y and Z propagator. Finally, the pinch parts of the box diagrams of this type
are

(3.12)

(3.13)

[Fig. 7(b)]+ [Fig. 8(c)]= —gy(p~ M~)B„p, —

[mirror image of Fig. 7(b)]+ [mirror image of Fig. 8(c)]= —gz(p &

—M~)B„+g,
where gz is equal to gs or gc depending on which gauge-independent vertex (y W+ W or ZW+ W ) we consider. No-
tice the presence of the typical inverse-propagatorlike factor D~'(p& ) =p f —M~, which always multiplies expressions
originating from pinching. Before we proceed, we record the result of q acting on G„&of Eq. (3.11), which will be
used in the next section:

q G'.s=2g.~[1, (p, ) I,~(p, )]+f (dk—)D,(k)D~(k+p, )D~(k p, )[q.k, +q r —.~(
—p, +k, —kp, )], (3.14)

(3.15)

where I; (p) has been defined in Eq. (2.26).
As we already explained at the beginning of this sec-

tion, in order to isolate the proper vertex we must sub-
tract half of the contribution of the self-energy pinch
graphs for the propagator of each leg. All such contribu-
tions are of the general form

r„p(q p»p'2)IJw(p»

where J= W, y, Z and p =q,p&,p2, I"„&is the tree-level
yW+W or ZW+W vertex [Fig. 6(d)]. We will not
reproduce the details of this last step here. (See [17] for
more details. )

Finally, the one-loop gauge-independent trilinear gauge
boson vertices (after we pull out a factor of igc or-

igs) are—
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f'„p= V„p —(q M— t, )B„p —(p, M—tt, )B„+p
—(p, M— ~)B„p 2—g I „p[Itv~(q)+s I ~(p, )+c Iz~(p, )

+&'I,w(pz)+&'Izw(p~)] (3.16)

where V„p=g, V„' p are the usual one-loop corrections
to the y8'+8' or ZR'+8' vertex in the Feynman
gauge (g; = l, i =y, Z, W). The one-loop diagrams of the

y W8' vertex in this gauge are shown in Figs. 4 and 5.
There are a few additional graphs for the Z8 + 8' ver-
tex, due to the tree level coupling of Z to the Higgs bo-
SOIl.

The vertex constructed via the S-matrix PT in the way
we described above represents the most general case,
since all three incoming momenta are o6' shell. If one is
interested in the simpler case, where the two incoming
momenta of 8'+ and 8' are on shell, and only the pho-
ton momentum is o6' shell, as is the case, for example, in
the process e+e ~W+W, Eq. (3.16) reduces to the
expression

1 „.pl, z, 2 M2 =V„.p (q' M—v»,—pP& P —P2 —M~

—2g I „pI~~(q) . (3.17)

This is of course the same answer one obtains by apply-
ing the PT directly to the 5 matrix of e+e —+8 +8'
Clearly, in that case the only vertexlike contribution
comes from graph Fig. 6(a), and is just gvB„pq,
whereas the term 2gt, g I „—pI~~(q) arises exactly as
before, namely as a leftover from the construction of
gauge independent yy, yZ, and ZZ self-energies. We
note that with the two 8 s on shell the B„&function be-
comes infrared divergent. This divergence, however, can-
cels against the infrared divergences that the V„' &

dia-
gram develops as well, when the two 8 s are considered
on shell. This will be shown in Sec. V.

recording the result, for the reader who wants a quick
tour through the paper. The gauge-invariant y8'+8'
vertex f'„p(q,p„p2) and the gauge-invariant W self-
energy ft p satisfy the Ward identity

q'f'„.p(q pt p2) =".p(p t )
—".p(p2» (4.1)

with

~ p(p') =n.p(p') 4g'—(p' Mw—)[c'Izw(p

+s'Ir ~(p') ], (4.2)

where II p(p) are the usual one-loop JV self-energy contri-
butions with tadpole contributions incorporated, in the
Feynman gauge. The second term is the pinch part,
which is given diagrammatically in Fig. 9 (pinch).

We now proceed to prove Eq. (4.1). In doing so, we
find it. more economical to act with q„directly on the
Feynman graphs, instead of first evaluating them and
then act with q„on the final answer. In this way, cancel-
lations among entire graphs become immediately ap-
parent. The 8'self-energy diagrams that are relevant for
the construction of the RHS of Eq. (4.1) are shown in
Fig. 9. Seagull and tadpole diagrams are omitted„since
they do not depend on the momenta p& or pz, and thus
cancel when we form the di6'erence of the two self-
energies in Eq. (4.1).

We now contract the RHS of Eq. (3.16) with q". The
following identity is frequently used:

IV. THE WARD IDENTITY FOR THE y 8 W VERTEX

In this section we show that the one-loop gauge-
invariant y8'8' vertex I „&constructed in the previous
section via the 5-matrix PT satisfies a simple QED-like
Ward identity, which relates it to the gauge-invariant
one-loop self-energy A p of the 8', constructed in [17]
[Eq. (19)].

The proof of the %'ard identity is rather lengthy and
technically involved; we therefore start this section by

(1,2)

w+

1 Oz, H

))inch

CZ, Cp c CZ) C~

(10,11) (12) (pinch)
FIG. 8. The pinch contribution of the box containing a Z.

notice that the direct and the crossed graphs are not equivalent,
since the internal fermion is an electron or a neutrino, respec-
tively.

FIG. 9. The Feynman graphs contributing to the gauge-
independent 8'8'self-energy. The last graph denotes the pinch
contributions (in the g= 1 gauge).
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k~2I P (k„k 2, k 3)=P y(k, ) P— r(k3)

=g ~[D; '(k, ) D,—'(k3)] —k, k, +k, k, +g bM2,

with AM' =M' —M'
We start with the vertex pinch parts B„+&, B„&,and B„&',using Eq. (3.14) we obtain

(4.3)

'(P )= —D '(p&)ggv 2g ~[Ivw(p, ) —Ivw(p, )]+ f(dk)Dv(k)D (k+p, )D (k —p )

X[q k&+q~I &(
—p2+k, —k,p2)] (4.4)

and

q"B„ap—Dw (p2)= Dw'(p2) ggv 2g~&[Ivw(p& ) Ivw(p—2)]+f (dk)Dv(k)Dw(k +p&)Dw(k —p2)
v

X[qisk +q~I p(
—p, —k,p„k)] (4.5)

On the other hand q "8„&=0, since the J"current is divergenceless.
We continue with the self-energy pinch parts of the vertex; using Eq. (4.3), we get

2g g &[D—w'(p2) Dw'(p, —)][Iww(q )+s I w(p, )+c Izw(p i )+s Irw(pz )+c Izw(p2 )]

where terms proportional to p, or p2&, that are zero on shell, have been discarded [19].
The first terms of Eqs. (4.4) and (4.5) when combined with the last four terms of Eq. (4.6) give

g 2gvg~pt [Dw'(p, )+Dw'(p2)][Ivw(p, ) Ivw(p2)] ——[Dw'(p2) Dw'(p, )]—[Ivw(p, )+Ivw(p2)]]

(4.6)

=g 4gvg &[Dw (pi )Ivw(p, ) Dw'(p2)Iv—w(p2) }
V

(4.7)

We recognize in this last term the difFerence of the pinch contributions that render the 8 self-energies, defined at p&

and p2, gauge independent.
We continue by calculating the divergence of the diagrams of Fig. 4 (1,2) V„'

&
and V„&,given by

V"=—gv f (dk)Dv(k)Dw(k+p, )Dw(k —p, )

XI (q,p, +k,p2 —k)I z(p„k, —p, —k)1$ (p2, k —p2, —k) .

When contracting the expression above with q" the identity Eq. (4.3) is triggered and we get

q"V„'p= —g f (dk)D (k)D (k+p, )D (k —p )I~ (p„k, —p, —k)1$ (p, k —p, —k)

X [g [Dw'(p2 —k) Dw'(p, —k)]+—(p, +k) (p)+k) —(p2 —k) (p2 —k)

We first concentrate on the g term. It reads

g f (d—k)[D (k)D (k+p, )
—D (k)D (k —p )]I (p„k, —p, —k)1 $ (p, k —p, —k) .

(4.8)

(4.9)

(4.10)

It contains only two internal propagators and could be identified with the self-energy graphs II'& of Fig. 9 (1,2) if the
I & I & factor had the appropriate momenta arguments. To convert this term to the desired form, we use

p&+p2+q =0 to write

I y(k —p2, —k,p2) =I "p(k +p, , —k, —p, )+2q g$ qg i3 qpg— —

for the first part, and

I z (p&, k, —
p&

—k)=I & (p2 —k, —p2, k)+2qzg qg 2
—

q gz—

(4.11)

(4.12)

for the second part. After bringing the I 's in the correct form, we recognize that the terms leftover in Eqs. (4.11) and
(4.12) are equal to —g,.q" V„'

& for i =21, 22, 23, 24, namely the negative of the divergence of the diagrams in Fig. 5

(21, 22, 23, 24); thus all these contributions will cancel in the left-hand side of Eq. (4.1).
So, the term proportional to g is equal to
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[111,2( ) 111,2( ) ] P V21,20 P V23, 22

We next examine the term (p&+k) (p&+k) —(p2 —k) (pz —k) of Eq. (4.9). Contracting each momentum of this
p

term with the appropriate vertex in order to exploit Eq. (4.3), we obtain

gv f (dk)Dv(k)Dtv(k+p, )D~(k p2—)[q~I~i&(k —p2, —k,p2)[[Dw (pi) Dv'(k))g +~Mwv& +k k ]

+q~l i (p„k, —p, —k)[[Div'(p2) Dv—'(k)]gp+AMivvgp+kpk ] ], (4.14)

where we have omitted terms proportional to p, or p2&
that are zero on shell. Using the identity

where the diagrams

9 11 8 10H p=H p, Hp=Hp (4.21)—eg~hM~~ = —b~g sin OM~ (4.15)

where b = + 1 and bz = —1, we recognize that the terms
of Eq. (4.14) proportional to b,M~v are equal to
—g;q" V„'

&
of Fig. 4 (3, 4, 5, 6); all these contributions

will also cancel in Eq. (4.1).
We continue by noticing that in the Dv (k) terms of

Eq. {4.14) the V=y, Z propagators cancel, and the result-
ing expression depend on V only through the coupling
gz, namely

—gv f (dk)D~(k +p, )D~(k —p, )

are the ghost one-loop corrections to the 8' self-energy,
and are shown in Fig. 9 (8, 9, 10, 11). Evidently, the ver-
tex ghost diagrams contribute only half of the necessary
self-energy ghost diagrams, while the other half will be
provided by the last two terms of Eq. (4.18).

In a straightforward way we also arrive at the follow-
ing results.

Higgs diagrams

q"V'4p=II3p(p, ) —II p(p~) q"V' —
p q~V„' —p,

(4.22)

xq 1 p(q, p, —k,p, +k) . (4.16) q~V„' p=II p(p, ) —II p(p~) . (4.23)

=g f (dk)D~(p, +k)D~(p~ —k)(4q k)g p

2g gap[Dw (p2) Dw (pl)]ILAW(q) (4.17)

which will cancel against the first term of Eq. (4.6).
For the k k and k&k" terms of Eq. (4.14) we perform

the contractions k I ppp and k I
p p and we get

=gv f (dk)Dv(k)D~(k+p, )D~(k —p2)

X[k qpD~'(p2)+kpq D~'(p, )+q(k —p2)k kp

+q(k+p, )k kp] (4.18)

and terms that are zero on shell have been omitted. Col-
lecting the terms proportional to D~'(p&) and D~'(p2)
from the above equation and from Eq. (4.14), we immedi-
ately see that they cancel against the second terms of Eqs.
(4.4) and (4.5). It is now important to recognize that the
two remaining terms of Eq. (4.18) are equal to the diver-
gence of the vertex diagrams containing a ghost 1oop
[Fig. 4, diagrams (10, 11, 12, 13)], and their presence is
crucial for recovering the 8' self-energies on the RHS of
Eq. (4.1). Indeed, from the vertex graphs with ghosts we
obtain

q "( V„' p+ V„' p ) = II„p(p i )
—II g(p2 ) (4.19)

q~( V„"p+ V„' ~)=II p(p, ) —II p(p2), (4.20)

So, when we add the diagrams of Fig. 4(1,2), the cou-
plings will give —g, and after using Eq. {4.3) in Eq.
(4.16), and shifting the integration variables, we get, for
this last term,

Goldstone boson diagrams

q"V„p=II g(p, ) —II p(p~),

q "V„p = II p(p, ) —II p(p ~ ),
q"V„g= II p(p, ) —II p(p ~ ) .

(4.24)

(4.25)

(4.26)

For the fermion diagrams the Ward identity is trivially
satisfied in a QED-like fashion. For the rest of the vertex
diagrams that have not been treated thus far, the result of
their contraction with q" gives zero on shell. Adding all
relevant equations together we arrive at the advertised
Ward identity of Eq. (4.1), a major result of this paper. It
is important to notice that the pinch contributions have
been instrumental for the validity of Eq. (4.1).

V. MAGNETIC DIPOLE AND ELECTRIC QUADRUPOLE
MOMENTS OF THE W

In the last two sections we constructed the gauge-
independent yR'+8' vertex and we proved the Ward
identity it satisfies. In this section we will proceed to ex-
tract from this vertex its contributions to the magnetic
dipole p~ and electric quadrupole Qiv. Following the
parametrization of Eqs. (1.4) and (1.5), we need to deter-
mine the quantities be~ and EQ~, or equivalently ~~ and

Since they originate from the new yR'+8' vertex
they will be manifestly gauge independent. The restora-
tion of the gauge independence of the final answer results
in automatically two additional very important improve-
ments; unlike the expressions for the bosonic contribu-
tions to b,v recorded in [7], the respective quantities de-
rived in this section are (a) infrared finite and (b) well
behaved for high values of the momentum Q .
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Specifically, regarding point (b), we show that b, i~&~0
as Q ~ ~; this is to be contrasted to the asymptotic
behavior of the respective expression given in [7], which,
due to the presence of gauge-dependent contributions, ap-
peared to violate perturbative unitarity. It is important
to emphasize that, as we explicitly demonstrate in this
section, all the pathologies listed above, which appear to
be artifacts inextricably connected to gauge dependences,
are immediately cured once the S-matrix pinch technique
is used, without any further assumptions.

As we explained in Sec. III, the new gauge-invariant
vertex is built up from the usual vertex diagrams calculat-
ed in the Feynman —'t Hooft gauge and the vertexlike
pinch contributions we extract from box diagrams. So, if
we denote by b, i~P "and b, Q'~ ", respectively, the con-
tributions of the usual vertex diagrams (/= 1), by b, i~

I'and b, Q~ the analogous contributions of the pinch parts,
and use carets (b,ar and EQ&) to indicate the new gauge-
independent quantities, we clearly have the relations

2

2 471 M~ 0 0

with az =gv/4m. and

F„&=(', +—at)g &(p, —pz)„+(3at+2)g»pz

(5.5)

and

2
L~ =t t a(1——a)

W

M~+(1 t)—
M~

(5.7)

=t t a—( 1 —a) +(1 t) z—2 2 4Q2 M~

M~ M~

from which immediately follows that

(3at —+2)g»p,

=2( ', +a—t)g &6 +2(3at+2)[g „Q& g»—Q ] (5.6)

and

a~ =a~'&="+a~p
r r r

b, Q =EQ'~="+bQr r r

(5.1)

(5.2)

a (Q')= —1 Q g f id f i(2tdt) 2(3/2+at)
2M&2 v ~ 0 0 I.v2

(5.8)

The task of actually calculating hi~~ and b, Qr is greatly
facilitated by the fact that the quantities Aa'~ " and
b, Q'~=" have already been calculated in [7]. It must be
emphasized however that the expression for b, i~'&=" (but
not b, Q~~ ") is infrared diuergent for Q %0 due to the
presence of the following double integral over the Feyn-
man parameters (t, a), given in Eq. (26), of [7]:

o p(Qp) 1 Q ~ v f id f i(2tdt) 2(2+ 3at)
M+7 p' & 0 0 Li y

(5.9)

o P(Q2) —() (5.10)

and since there is no term proportional to b,„Q Q& in Eq.
(5.6),

Q' i i dtt

Miv 0 0 t t (1—a—)a(4Q /Miv)

So, using Eqs. (1.7) and (1.8) we have, for ha and
gQP

a Q da & dx

Miv o 1 —(1—a)a(4Q /Miv)

(5.3)

b, i~r = —— g f da f (2tdt)
1 Q av» (at —1)
2 ~~2 ~ ~ 0 0 L 2

(5.11)

which originates from the graph of Fig. 4 (1,2), when one
of the internal prop agators is a virtual photon.
(ar =e /4n. is the fine structure constant. )

We only need therefore to determine the expressions
for AQ and hii. ; this is equivalent to determining ther . . r'

2 2pinch contributions to the functions a, (Q ),az(Q ), and
a3(Q ) defined in Eq. (1.6), which we will call a, (Q ),
az(Q ), and a3 (Q ). For on-shell IV and W pinch
contribution originate only from the B„&term in Eq.
(3.17). To establish contact with [7], we use the following
identity to parametrize the denominator of the integrals:

2t
da dt

j [ 3 (1 —a)+Ba]t + [C(1—t) ]]'

(5.4)

b Q =0 . (5.12)

Q2

2

It is important to notice that even though b, Qr =0
both piv and Qiv will assume values different than those
predicted in the g= 1 gauge. That this is so may be seen
from Eqs. (1.3) and (1.2); clearly, even though the value of
kr does not change, the value of ~r changes, and this
change affects both piv and Qiv through Eqs. (1.4) and
(1.5). In the expression given in Eq. (5.11) the first term
(for V=Z) is infrared finite (since Mz&0), whereas the
second term (for V =y ) is infrared divergent, since
Mr =0. Calling this second term 8 we have

The momentum integration can be immediately per-
formed (We remind the reader that B„ ti is ultraviolet
finite, so no regularization is needed. ) In the limit of in-
terest, namely p, =p 2 =M~, we find

t [1—a(1 —a)(4Q /Miv)]

which can be rewritten as
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Q'
da

a

Mw 0 1 —a(l —a)(4Q /Mw)

(5.14)

where R is the infrared divergent integral defined in Eq.
(5.3). On the other hand, the second term in Eq. (5.14), is
infrared finite. Clearly, including the first term of Eq.
(5.14) in the value of b,a exactly cancels the infrared
divergent contribution of Eq. (5.3), thus giving rise to an
infrared finite expression for A~&. So, after the infrared
divergent part of Eq. (5.13) is canceled, bKPy is given by
the expression

0.05

0.00

I I I I I I I I I I I I I

a~', =e,+e (5.15)
—0.05

with 8 the second term in Eq. (5.14), and ez the second
term in Eq. (5.11), namely

ar Q' a
da

Mw 0 1 —a(1 —a)(4Q /Mw)

—0.10
2.0

I I I I I I I I I I I I I j
2.5 3.0 3.5

log, (Q) (GeV)

Q2
Z

8'

&z» t(at —1)
da dt

o 0 I.z2

(5.16)

(5.17)

FIG. 10. The bosonic contribution h~~ to the 8'magnetic di-

pole moment for timelike momenta. The dashed line corre-
sponds to hK~ and is the sum of the two solid lines. Notice that
the dashed line approaches zero asymptotically.

and, from Eq. (5.1),

a~, = [a~~P="],f+e, +ez, (5.18)

where the subscript (if) in the first term of the RHS indi-
cates that the contribution from the g=l gauge is now
genuinely infrared finite (the authors of [7] removed the
infrared divergent contribution by hand). Finally, the
magnetic dipole moment pw and electric quadrupole mo-
ment Qw are given by

for timelike Q, where b, =+(Mw/~Q ~)+ l.
The double integral Oz can, in principle, be expressed

in a closed form in terms of Spence functions (see for ex-
ample [22]); instead, we find it more convenient to evalu-
ate this integral numerically, after performing the first in-
tegration exactly. The momentum variable Q is defined
as Q=—sgn(Q )+~Q ~. We used the same values for the

0.02—
Vw= (2+~&, )

W
(5.19)

Q w = — ( I +b i~r+ 2AQy ) .
MW

(5.20) 0.01

Both b, Q'~ " and b,v'~ " have been computed numeri-
cally in [7]. We now proceed to compute the integrals in
Eqs. (5.16) and (5.17), which determine b, v . It is elemen-
tary to evaluate e . Setting e = —(a&/vr)e we have

0.00a

2 1 —1
arctan ——arctan for Q (Mw

—0.01

ey= —4 for Q =Mw (5.21)

ln 5+1 for Q )Mw
—0.02

—200 —400

for spacelike Q, where 6 ='l/ ~Mw/Q —1~, and

6 =—ln 5+1 (5.22)

q (reV)

FIG. 11. The bosonic contribution hey to the 8'magnetic
dipole moment for spacelike momenta. The final answer
(dashed line) approaches zero asymptotically.
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TABLE I. The values of b,a„ for timelike Q'.

Q {GeV) (10 ) Day

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
500

—42.0
—32.1
—24.5
—18.7
—14.3
—11.0
—8.5
—6.5
—5.0
—3.8
—3.0
—2.3
—1.8
—1.5
—1.2
—1.0
—0.9
—0.8
—0.7

VI. CONCLUSIONS

In this paper we have undertaken a study of the struc-
ture of the trilinear gauge boson vertices in the context of

constants appearing in our calculations as in [7], namely
cxy &pg M~ 80 6 GeV, Mz =9 1 . 1 GeV and s =0.23.
As in [7], we only consider the real contributions of the
integrals.

The result of the computation is rather interesting, at
least from the theoretical point of view. Aa. , which orig-
inates from pinching box diagrams, furnishes exactly the
contributions needed to restore the unitarity of the final
answer. Indeed, as the authors of [7] emphasized,
b,~&~=" is an increasing function of Q, which essentially
reflects the fact that A~'~ " is by itself not a gauge in-
variant object in the limit Q ~ ~, where the local
SU(2)XU(1) is restored. As we show in Fig. 10, for
large values of Q, ha, is nearly equal in magnitude and
opposite in sign to h~'~=". Therefore, when according to
Eq. (5.1) both contributions are added, the resulting ex-
pression for h~ approaches zero asymptotically, as
Q~ —woo. The same mechanism of unitarity restoration
takes place for Q —+ —~. (See Fig. 11).

For completeness, we record in Tables I and II, several
values of the final answer for Azz, for timelike and space-
like values of Q, respectively. Its numerical contribu-
tion is comparable to the respective contributions from
ferrnion and Higgs graphs; its relevance will clearly de-
pend on the accuracy achieved in the next generations of
experiments. Regardless of that, however, from the
theoretical point of view our results augment those of [7],
rendering them gauge fixing parameter independent, in-
frared finite, and asymptotically well-behaved, in a natu-
ral way.

TABLE II. The values ofb, ~~ for spacelike Q .

Q (GeV) (X10 ) A~y

—20
—40
—60
—80

—100
—120
—140
—160
—180
—200
—220
—240
—260
—280
—300
—320—340
—360
—380
—400
—420
—440
—460
—480
—500

31.8
28.2
22.8
17.8
12.3
8.6
6.5
4.2
2.0
0.2

—2.3
—4.2
—5.9
—7.6
—9.0

—10.2—11.3
—12.2
—12.9
—13.5
—13.9
—14.2
—14.4
—14.3
—14.2

the standard model. Using the 5-matrix pinch technique
we constructed to one-loop order gauge-independent
y8'8' and ZWR' vertices, with all three incoming mo-
menta off shell. In the limit p&,p&~M~ the gauge-
independent vertices give rise to expressions for the mag-
netic dipole moment p ~ and electric quadrupole moment

Q~, which, unhke previous treatments, are suitable for
comparison with experimental observation [23). The
main effect of the pinch contributions is to render the re-
sults gauge independent, infrared finite, and asymptoti-
cally well-behaved, while their numerical contribution to
the final answer turned out to be small.

The gauge-independent off-shell y 8'+ 8' vertex was
shown to satisfy a simple QED-like Ward identity, which
relates it to the gauge-independent 8' self-energies intro-
duced by Degrassi and Sirlin. It would be interesting to
determine whether or not the gauge-independent
ZR'+ 8' vertex satisfies a similar %"ard identity. Calcu-
lations in this direction are already in progress.
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