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The proton Dirac form factor is calculated using the modified factorization formula proposed by Li
and Sterman, which takes into account Sudakov suppression of elastic scattering for soft gluon ex-

change. The results for A«D=0. 1 —0.2 GeV are in good agreement with experimental data above the

energy scale of 3 GeV. The calculation involves no phenomenological parameters such as a gluon mass

and the conclusions are insensitive to different models of wave functions.

PACS number(s): 13.40.Fn, 12.38.Bx, 14.20.Dh

I. INTRODUCTION

The nucleon electromagnetic form factors have been
widely calculated to leading power in perturbative QCD
(PQCD) [2—10]. The main approach is based on the fac-
torization theorem, in which the asymptotic expression
for the nucleon magnetic form factor

G~(Q') =Fi(Q')+F2(Q')

is written as the convolution of a hard-scattering kernel
TH and nucleon distribution amplitudes P. Since
Fz(Q )=O(l/Q ) is much smaller than F, (Q )
=0 ( 1/Q ) in the asymptotic region [7], we concentrate
on the proton Dirac form factor F~&, as illustrated in Fig.
1:

F~i(Q )= J (dx)(dx')P*(x, ', p )T (H, x, 'xQ, p )
0

X(b(x, ,p ),
where p is the renormalization and factorization scale,
Q =2P P', and

3

(dx)=dx, dx~dx35 g x, —1

x, is the momentum fraction of the valence quark i in the
parton model, in which all the lines are thought of as
near or on the mass shell. T~ contains only lines that are
far off shell. Variables with and without a prime denote
the initial and final states, respectively.

The above perturbative calculation at currently acces-

H

sible Q has been criticized [6,11]. A modified factoriza-
tion formula for the pion electromagnetic form factor
with Sudakov effects included has been proposed, which
enlarges the applicability of PQCD down to the regime of
several GeV . In this paper we will extend this approach
to the proton Dirac form factor, and show that the
modified formalism gives reliable predictions which are in

good agreement with experimental data.
Before presenting out derivation, we review why the

applicability of PQCD to such processes is a subject of
controversy. It has been shown that the asymptotic pro-
ton wave function P(x, ,p )~xix2x3 fails to give the
correct sign for F~& and generates much smaller values
than data [3,10]. Highly asymmetric distribution ampli-
tudes [7,12,13) based on QCD sum rules reverse the sign
and enlarge the magnitude of predictions derived from
Eq. (1). Careful analysis reveals that the enlargement is
due to amplification of the contributions from the end-
point region of x [6,11]. TH for the proton form factor is

proportional to the product of two hard gluon propaga-
tors,

a, (p )/[x;x Q (1—x. )(1—x~')Q ],
to the lowest order as shown in Fig. 2. Higher-order
corrections in TH then produce logarithms such as
ln(x;x, 'Q ) and

ln[(1 —x )(1—x1')Q ] .

To eliminate the logarithms, the natural choices for p
are x;x Q and (1—xJ )(1—x~')Q for each gluon. These
choices can give closer results to data [8], but in the dom-
inant end-point region, the running coupling constants
a, (x,x,'Q ) or

a, [(1—xl)(1 —x')Q ]

diverge. The self-consistency of perturbative calculation
is thus in danger.

A modification to avoid the divergences has been pro-
posed by introducing a cutoff in the formula for ct, [8,14]:

FIG. 1. The basic diagram for the proton Dirac form factor.
a, (Q') =

13ln[(Q +4m')/A ]

OS56-2821/93/48(9)/4243(12)/$06. 00 48 4243 1993 The American Physical Society



4244 HSIANG-NAN LI

(a)

Furthermore, we find that the resummation of radia-
tive corrections behaves as

exp [ —const X ln( Q )ln(lnQ /lnb ) ]

(c)

(e)

FIG. 2. Independent lowest-order diagrams for the evalua-
tion of the proton Dirac form factor. The bottom line
represents the d quark, corresponding to x3 (x 3 ) for the incom-
ing (outgoing) proton.

where A =A&cD is the @CD scale parameter, and
P=11—2n&/3 for n& quark ffavors. m is interpreted as
a dynamical gluon mass which is acquired from the low-
momentum region of radiative corrections that induce
the Q dependence of a, . The leading-order PQCD pre-
dictions are then stabilized at low-momentum transfers.
The value of m has to be determined by matching the
predictions with data. However, the results from Eq. (1)
are sensitive to the variation of I around the best choice
ms =0.3 GeV [8]. The theory with this form of cutoff'
then becomes less predictive.

ln deriving Eq. (1), one neglects transverse momenta
kT that Aow into the hard-scattering subprocess with
valence quarks because contributions due to kT are al-
ways suppressed by powers of Q for x not close to 0 and
1. The end-point difBculties encountered in the standard
formula indicate that these higher-power effects are cru-
cial to the analysis of the process. Hence, we kept kT at
the outset in the derivation of the new perturbative ex-
pression for the pion form factor proposed in Ref. [1].
We analyzed the amplitude in the Fourier transform
space of kT, denoted by b, the transverse separation be-
tween valence quarks. The quantity 1/b, now con-
sidered as one of the characteristic mass scales of the
hard scattering, should be substituted for the argument of
a, if 1/b )xx'Q . The soft region is then characterized
by large b and small x.

in the leading logarithmic approximation, which sup-
presses the elastic scattering at large spatial separation.
This property, the Sudakov suppression [15,16], makes
the nonperturbative contributions from large 6, no
matter what x is, less important, without introducing any
phenomenological parameters other than A. The
suppression of the end-point contribution by Sudakov
eff'ects has been pointed out by Lepage and Brodsky [2].
Note that the new perturbative expression will reduce to
the standard one in Eq. (1) as Q~~ but, at lower
momentum transfers, its extra b (or kT) dependence
makes the perturbative theory more self-consistent.

We concentrate only on the k T effects in this paper, ex-
cluding the contributions from extra partons that enter
TH, which are also of higher twist. We will apply the
new expression to the proton Dirac form factor, with the
use of the Chernyak-Zhitnitsky (CZ) [7], King-Sachrajda
(KS) [12] wave functions. The dependence of Q F~&(Q )

on a cutoff in b, instead of in x [11,17], is studied in order
to investigate the importance of the perturbative region.
It is found that the inclusion of Sudakov suppression pro-
duces results that are numerically similar to the standard
approaches [7—9]. Moreover, our results are reliable in
the sense that the perturbative contribution dominates,
and are consistent with experimental data [18].

The modified factorization formula for the proton
Dirac form factor is derived in Sec. II. In Sec. III, the
explicit b dependence of the distribution amplitude and
the complete expression of Sudakov logarithms are exhib-
ited. In Sec. IV, we insert the CZ and KS wave functions
to obtain numerical answers and analyze how the contri-
butions are distributed in 6 space. The results are also
compared with the data. We summarize our ideas in Sec.
V.

II. FACTGRIZATION

The standard factorization procedures for QCD pro-
cesses require investigation of leading regions of momen-
tum space in radiative corrections, where dominant con-
tributions arise. The leading regions depend on the
gauge. For the present work, it is simplest to choose a
physical gauge, such as the axial gauge, with the gauge-
fixing parameter n" a linear combination of dimension-
less vectors U" and U'", which are lightlike and in the
directions of the external protons. Our approach to fac-
torization follows a similar reasoning to that which leads
to Eq. (1) [19—21], but without the assumption
xx'Q ))kT. The basic analysis of factorization for ex-
clusive processes has been given in Ref. [22].

There are two types of radiative corrections to the
basic scattering process of Fig. 1. For two-particle reduc-
ible diagrams such as Figs. 3(a) and 3(b), both the col-
linear region, with an extra gluon parallel to either the in-
coming or outgoing proton, and the soft region, with the
gluon's momentum much smaller than Q, are important
on a diagram-by-diagram basis. The soft divergences will
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lines in TH approach the mass shell and the cancellation
mentioned above fails. The two-particle irreducible dia-
grams Figs. 3(c) and 3(d) contain only soft divergences,
which cancel similarly. Once the soft divergences are re-
moved, these types of corrections are dominated by mo-
menta of order Q and their contributions can be ab-
sorbed into the hard part. Such cancellation applies to
all orders in perturbative theory. Based on the above
reasoning, the factorization formula for the proton Dirac
form factor includes only three factors [1]

Fii'(Q2)= f (dx)(dx )(dkr)(dkz )Y && (k P p)
0

XH .«& (k;, k,', Q, p)Y &r(k, ,P,p),
(3)

(c)
FIG. 3. Radiative corrections to the basic scattering dia-

gram.

cancel between these diagrams, at least when all lines in
TH are far ofF shell. Their combination then produces a
single collinear logarithm which can be grouped into the
distribution amplitudes. In fact, these are the very radia-
tive corrections that generate Sudakov suppression when

where

3

(dkz, )=dkr dkz- dkr 5 g kz,
l =1

and the scale p is introduced by necessary renormaliza-
tions. The initial distribution amplitude Y «r(k;, P,p),
containing the nonperturbative dynamics of the proton, is
defined by the matrix element of three local operators in
the axial gauge [7,15]:

dyI dyI kl.y,Y.~, =
' f ~ ',"' e'"' "~' &O~T[u'(y, )u«(y )d'(0)]~P)

2&2N, i, (2~)

tv(p)
[(PC ) &( y-3N ) V( k;, P,p ) + ( I' y 5 C ) &N A ( k;, P,p ) (o„+"C ) —13(y"y 3N )r T( k;, P, p )],

8&ZN,
(4)

where ~P ) is the incoming proton state with momentum
P =(Q /&2, 0,0), u and d are quark fields, a, b, and c are
color indices, and o., I3, and y are spinor indices. The
loop momentum k, , with the longitudinal component
k,+=x;P+ and transverse component kz. , is carried by

the valence quark i. In our notation, 1 and 2 label the
two u quarks and 3 labels the d quark. The second form
with the explicit Dirac matrix structure shown [7] is ob-
tained from the spin property of quark fields, where

X,= 3 is the color number, X is the proton spinor, C is
the charge conjugation matrix, and o„=[y„,y„]/2. The
dimensional constant f&, analogous to the pion decay
constant f, is determined by the normalization condi-
tion of the distribution amplitude [23]. Y,« .(k, P', p) is

defined similarly for the final state with P'=(0, Q /&2, 0)
and k,

' =x,'P'
From the permutation symmetry between the two u

quarks, one obtains the relations [7]

V(k„k3, k3, P,P)= V(k3, k„k3,P,P),
A(k„k2, k3, P,p)= —A (k2, k„k3,P,p),

T(ki, k3, k3, P,p) = T(k2, ki, k3, P,p) .

The requirement that the total isospin of the three quarks
be equal to —,

' leads to the further relations among the

functions V, A, and T [7]:

2T(ki k2 k3 P,P)=g(ki, k3 k2 P,P)

+g(k2, k3, k„P,P),
where

itj(k„k3, k3, P,p)= V(k„k2, k3, P,p)

A (ki k2 k3 P,P)

Combining Eqs. (5) and (6), we have

V(k„k2, k3, P,p) =
—,'[1t(k2, k, , k3, P,p)

+Q(ki k2 k3 P,p)]
A (k„k2,k3, P,p) =

—,
' [g(k3, k „k3,P,p)

—f(k„k2,k3, P,P)] .

(7)

Hence, the analysis in fact involves only one independent
wave function 1(|.

The hard-scattering kernel

H .p «(k, , k,', Q, p)

can be calculated perturbatively in terms of the diagrams
in Fig. 2. To the lowest order of a, with two hard ex-
changed gluons, 42 diagrams can be drawn for the proton
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Dirac form factor. This number is reduced to 21 when
the permutation symmetry between the incoming and
outgoing protons is considered. Those 21 diagrams are
further divided into two categories which can be
transformed into each other by interchanging the two u

quarks, so that it is enough to calculate only 11 of them,
as shown in Fig. 2. The diagrams with three-gluon ver-
tices vanish at leading twist and are thus neglected. A
typical calculation of the integrand

~a'P'y n'/3'y'aPy o.Py

for one of these diagrams, using the property of the Dirac
and charge conjugation matrices, is presented in Appen-
dix A in detail. Here, we just display the results in Table
I. The index of the wave function ]t] denotes the sequence
of the arguments k,-. Note that the formulas in Table I
are derived through the approximation that the trans-
verse momenta carried by the virtual quarks in the hard-
scattering subdiagram are neglected [1] since, compared

to the virtual gluons, they give linear, rather than quad-
ratic, divergences in x. This approximation, as explained
in Appendix A, equates the initial and final transverse
distances between all pairs of valence quarks. The com-
plexity of the analysis is then reduced and numerical
evaluation becomes possible. At the same time, fermion
energies such as x;Q will not be among the characteris-
tic scales of the hard scattering, and the evolution of H in
Q is simpler. The accuracy of this approximation will be
discussed in Appendix B.

Applying a series of variable changes as shown in
Table I, the summation of the contributions over the 42
diagrams in Eq. (3), can be carried out easily. For in-
stance, we observe that the formula (a}, if the variables
with indices 2 and 3 are interchanged, will be the same as
(b) except for the sequence of the arguments in the wave
functions. Repeating such variable changes on every for-
mula in Table I, all the contributions to F~](Q ) can be
summed into only two terms

TABLE I. The expressions of the integrand Y &T H, f3T ]3T Y &T
for the diagrams in Fig. 2. ]t]]23 is

the brief symbol for t(]k]„k k2„P,p) and ]t/]23 for ]t](k'],k2, k'3, P', p) For each dia. gram, (a) —(k), row
(1) is the original expression. Row (2) is the necessary series of variable changes to bring row (1) into
the desired form. Row (3) is the expression after variable changes. The detailed derivations refer to
Appendix A.

Diagram YHY/(4rr a,f~/27)

(a) (1)
( ((1231 123+ T]23 T123 )

(1—x, )(1—x', )[(1—x, )(1—x', )Q'+(kT —k'T )'][x3x3'Q'+(kT —k'T )']

(2) 2~3

eu (]t]]32]t'»2+ 4T]32 T»2 )

(1—x, )(1—x', )[(1—x, )(1—x', )Q +(kr —k'T ) ][x2x2Q +(kT —k'T ) ]

e„(]tr]23]t]23+4T]23 ]23 )

(1—x])(1—x', )[(1—x, )(1—x', )Q +(kr —k'T ) ][x2xzQ'+(kT —k'T ) ]

(2)

(3)

None

eu ( ]t 123]t 123+4T]23 T 123 )

(1—x, )(1—x] )[(1—x, )(1—x', )Q +(kT —k'T ) ][x2x2Q +(kT —kT )']

(c) (1)

(2)

e„4T,23 T]23

x])( 1 x2 )[x2x2Q +(kT2 kT2) ][x3x3Q +(kT3 kT3 )

1~3,2~1,3~2
e 4T3&2 T3~2

(1—x, )(1—x', )[x,x', Q +(kT k'T ) ][x,x2Q +(k—T kr ) ]

(d) (1)

(2)

(3)

(e)

eu (t 123]t'123

( 1 x] )( 1 x 3 )[x2x2Q + (kT2 kT2) ][x3x3Q + (kT3 kT3
)

eu A2] 6'2]

( 1 x3)( 1 x])[x]x1Q +(kT] kT] ) ][x2x2Q +(kT2 kT2)
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TABLE I. (Continued).

Diagram YH Y/(4''a, f~ /27 )

(g) (&)

(h) (&)

e 02134213

(1—x3)(1—x2)[xzx2Q +{kT —kT ) ][x3x3Q +(kT —k'7 ) ]

1+-+3, X;~X;

{{2311231

(1—x, )(1—x', )[x,x', g'+(k, —k', )'][x,x,'g'+(k, —k', )']

ed {01230123+421 31t213 )

(1—x, )(1—x, )[xzxzg +(kT —kz ) ][(1—x3)(l —x3)g +(kz —kz ) ]

(3)

(2)

(3)

ed {$3214321 + t{2311 231 )

(1—x, )(1—x', )[{1—x, )(1—x', )g +(k —k' ) ][x x'Q +(k —k'z ) ]

ed 1{1234123

{1 x3)(1 x1)[x1x1Q +(kT kz ) ][xzx2Q'+(kz —kT ) ]

None

ed 0123{{123

(1 x3)(1 x1)[x1x1Q +(kz kz ) ][xzx2Q +(kz kz ) ]

ed4T123 T123

(1—X2)(1—x', )[X,X',g +(kz —k7 ) ][xzxzg +(k7. —kT ) ]

(2)

(3)

None

ed4~123 ~123

(1—x2)(1—x, )[x1x1Q +(kz. —kz- ) ][xzxzg +(kz. —kz ) ]

2 2

F71(Q')= f (dx)(dx')(dkT)(dk'T)[f117(1M)]' g ~, (k;, k Q p)+, {k; k;» ~' P) .
27 0

Here we define

2a, (p )

3[(1—x1)(1—x1)Q +(kz kz ) ][xzxzQ +(kz. —k'7, ) ]

2~2(p2)

I x1x1Q +(kT1 kT1 ) )I x2x2Q +(kT2 kT2)

and

)]23+8( TT )123+2( M )132+ ( TT )132 1 1 321 1 1 231

(1—xi)(1—x', )

2(pf')132 —2( TT')123 (QQ')123 —8( TT')132 —2(tpztz')32$+
(1—x2)(1 —x', ) (1—x3)(1—x', )

which group together the products of the initial and final @eave functions in the notation

( tp'z)z2 731t (k k1q, k P3,p)1t(k z' k1k23 I' Iz, )

The values of electric charge e„and ed have been inserted. Note that the propagator proportional to

1/[xx'Q +(kz —k'7. ) ]
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in Eq. (10) can be thought of as an approximate form to the exact one 1/(k —k') with k and k'+ neglected, which is
correct to the power kT/Q . These expressions for the hard scattering difFer from those given in previous works by in-
cluding transverse momentum effects, which are not negligible in the end-point region.

III. SUDAKOV SUPPRESSION

As mentioned in the Introduction, we now reexpress Eq. (9) in the Fourier transform space
2 2

F~i(g )= g f (dx)(d x')(db)(db')[f~(p)] H. (x;,x,b;,b,', Q, p)% (x;,x. ,b;, b,', P,P', p)27 0

8m f (dx)(dx')(db)[f&(p)] H/(x;, x,b;, Q,p)+z(x;, x,b;,P,P', p),27 0
(12)

where 1; is the conjugate vector to kT, and
l

(db) =db, dbms/(27r)

In the second equation, we have performed the 1' integrations using the fact that H 's depend only on the differences of
the initial and final transverse momenta.

The leading behavior of the transformed wave function P(x;,b;, P,p) in b has been explored in Ref. [15],where radia-
tive corrections of the type in Figs. 3(a) and 3(b) were analyzed and resumed according to renormaliza-
tion-group methods. The results are given in the form of an exponential suppression that is found to suppress the distri-
bution amplitude at large b:

2

P(x;,b;,P,p)= f (dkT)exp i g kT b& g(k, ,P,p)
1=1

3=-p —g (,, b, , g)+ f" ""y,[g(p')] y( „)+O(,( ')),
1=1 1/1 P

(13)

where b, = b, ~
is the distance between the first and third quarks since b3=0 as defined in Eq. (4), bz= ~bz~ and

b3 = ~b, —bz are defined similarly. y (g )= —a, /~ is the anomalous dimension in axial gauge. The wave function P,
obtained by factoring the Q and b dependences from P into the exponent, coincides with the standard one in Eq. (1).
a=min;(1/b, ) is the evolution parameter. The Sudakov exponent s(g, b, g), with g=x„xz, or x3, are expressed
below in terms of

Q
=—in[kg/(V2A)],

b =—1n(bA) .

A"' q A"'
s(g, b, g)= Qln +

4pi

Then s, to the leading and next to leading logarithms, is given by [15]

2pi 16p, b—ln(2$)+1

g (2)

4p2

(1)A 1

4Pi 2

(1)A Pi
[ln (2$)—ln ( 2b)] . —

32P,
(14)

~ (1) ~ (2)
3 9

10 8
27 ~n +—Pln —er

The coeflicients A" and p; are function, is independent of the sequence of b; in P. The
dimensional constant fz, associated with the wave func-
tion P, has the same evolution parameter w.

The renormalization group analysis of 0 gives

33 2ny 153—19nf
24

(15) 2
H (x;,x,b;, Q,p)=ex. p 3 g f y [g(P )]

1=1 j' P

where n&, which takes the value 3 here, is the quark
flavor number and y is the Euler constant. Note that the
lower bounds of p are arranged in a symmetric way in
Eq. (13) so that the exponential suppression, which still
obeys the renormalization-group equation of the wave

XH (x, , 'bx, , g, i, rt &) .

Similar to Eq. (13), two lower bounds are inserted for P.
We adopt this form in order to assign to each hard gluon
its individual largest mass scale as the argument of the
corresponding a, . The explicit expressions for t's are
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t„=max[+( 1 —x, )( 1 —x ', )Q, 1/b, ]

t2i =max(Qxix i Q, 1/bi )

t, 2
= t22 =max( Qx2x 2 Q, 1 /b2 )

( 17)

A detailed discussion about this arrangement will be
I

given in Appendix C . The running coupling constant
may be still large when the gluon energy and 1 /b are
both small . However, this nonperturbative region is Su-
dakov suppressed by the wave functions in Eq. ( 1 3) and is
not important.

Inserting Eqs. ( 1 3) and ( 1 6) into Eq. ( 12), we have

2

F~i(g )= g f (dx )(dx') f b, db, b, db, f d8[f~(w )] H, (x, ,x,'. ,b, g, t, „t,, )W. , (x, ,x,', w )
27 o

where

X exp[ S(x—, ,x,', b;, Q., tJ„t,2 ) ] ( 1 8)

H, = —',a, (t»)a, (ti2)Ko[V(1 —x, )(1—x', )Qb, ]Eo(+xzx2gb2)

pl )a ( 22 )+0(+xix 1 Qbl )+0(+ 2 2 Q 2

are derived from the Fourier transform of Eq. ( 10). In
Eq. ( 1 8), 0 is the angle between bi and bz, whose depen-
dence resides in b 3 . Eo is the modified Bessel function of
order zero. The expression for 4 is the same as that in
Eq. ( 1 1 ) but with P( k;,P,p ) replaced by P(x;, w ). The ex-
ponent S of complete Sudakov suppression is given by

a, (w )
fx(w)=fx(po) za, (po)

where

f~(po)=(5. 2+0.3)X 10 GeV

(2 1 )

S=g s(x&, b„g ) —f yt[g(P ')]
I = 1

1 /bI p
3

+ps(x, ', b, , g) —f y[g(P)]
1 = 1

1 /bjp
( 19)

a, (w )
b . /P

P(x;, w )=P„(x;) g X
,=o ' a, (Vo)

a~ AJ(x; ) (20)

where po = 1 GeV. The constants X, a, and b are given
in Table II. P„(x;) = 120x, x 2x 3 is the asymptotic form
of P. The evolution of the dimensional constant f~ is
given by

For the wave function, we will primarily consider the
CZ model . Another proton wave function, the KS model

[12], is also studied in order to test the sensitivity of our
perturbative expression to the choice of different wave
functions. Both the CZ and KS models are decomposed
in terms of the first six Appel polynomials A J (x; ), which
are eigensolutions of the evolution equation for the nu-
cleon wave function [2,4]

(Ref. [7]) and /3= 1 1 —2nf /3 =9 for nf =3.
Before proceeding into numerical evaluation we exam-

ine the convergence of the integral in Eq. ( 18). It is ap-
parent that P and fN, due to evolution, increase without
limit as w ~ 1 /A. In fact, the coefficients of the Appel
polynomials become so large near this end that the series
expansion of P loses its accuracy. However, this region is
suppressed by the Sudakov factors again. At the same
time, the end-point singularities contained in + and
modified Bessel functions are also removed by P„(x; ) and
P„(x,.' ). Therefore, the integral is well defined.

IV. NUMERICAL RESULTS

The typical behavior of Sudakov suppression on the
line b

&

=b 2
=b is shown in Fig. 4. Note that we have set

the Sudakov exponential exp( —S ) to unity in the small b
region where it includes a small enhancement, since in
this region it should be considered as the higher-order
corrections to the hard scattering [1]. Therefore, we have
also set any factor e ' &' ' ~ ' to unity whenever

&2/( Qb ). Then, exp( —S ) decreases and vanishes as

TABLE II. Appel polynomial coefficients in Eq. (20) for the nucleon wave function P(x;, w ) of the
Cz and KS models [7,12] with the scale po = 1 GeV [8].

a~ (CZ)

1 .00
0.4 10
0.550
0.357
0.0 12 2

0.00 1 06

a~ (KS)

1.00
0.3 10
0.370
0.630
0.003 33

0.063 2

2 1

2
7
2

63
10

567
2

8 1

5

20
9

24
9
32
9

40
9

42
9

(x; )

X 1 X 3

2 —3(x1+x3)
2 —7(x1+x3)+8(x 1+x 3)+4x 1 x3
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g4FP (g2 )

KS1

close to the data as shown in Fig. 7, where the values of
Q Fii for A=O. 1 and 0.2 GeV obtained from the CZ and
KS wave functions are displayed. Therefore, the data are
still located in the range of our predictions.

V. CONCLUSION

0 9— CZ1
Hh

KS2
CZ2

0.6—

0.3—

0.0—

Q2 (GeV )

10 20 30

FIG. 7. Dependence of Q~F((Q2) on the momentum transfer

Q . CZ1 (CZ2) denotes the curve corresponding to 4 =0. 1 (0.2)
GeV for the use of the CZ wave function. KS1 and KS2 are
defined similarly for the KS wave function.

experimental results, which are extracted from the data
of elastic electron-proton cross section [8,18]. The in-
crease of our predictions with the cutoff b, is sho~n by a
set of curves. The match between the curve for which
b, =1/A and the data is obvious, not only in magnitude
but also in the trend of variation on Q, arising at lower
momentum transfers and then decreasing slowly with
logarithmic dependence. For Q (3 GeV, the agreement
is not quite as good. We observe that, from Fig. 5 and 6,
the transition to PQCD as Q increases is somewhat
slower for the proton form factor than for the pion one.
This is because the hard gluon exchange diagrams in the
former case give leading contributions of order (a, lm. ),
rather than a, /m. , so that soft contributions, always
suppressed by a power of M /Q with M a typical ha-
dronic mass, become relatively stronger [17].

Figure 6 also shows that the use of the KS model gen-
erates values which are larger than those from the CZ
model only by a factor of about 20%. Referred to the re-
sults derived from the leading-order leading-power for-
mula in Ref. [8), our expression is less sensitive to the
choice of different wave functions. The third model, the
Gari-Stefanis wave function, is also inserted into Eq. (18)
and produces a similar curve located between the CZ and
KS ones. We do not exhibit it for simplicity.

The sensitivity of our predictions to the variation of
the QCD scale parameter A is easily examined We find.
that the increase of A to 0.2 GeV enlarges b&i2 and
reduces Q I'~& by factors of about lo%%uo when Q-5 GeV.
The resu1ts derived from the KS wave function are then

The motivation for this work comes from the observa-
tion that the approach of the standard leading-order
leading-power descriptions [2,19,21] to perturbative
behavior is relatively slow and they are not reliable even
at the highest available energies [6]. We have been able
to explain self-consistently the experimental data of the
proton Dirac form factor for Q) 3 GeV. The essential
feature of our perturbative calculation is the inclusion of
Sudakov effects, from which the distribution amplitude is
found to be suppressed in the large-b region. With the
help of Sudakov suppression, the divergences in the run-
ning coupling constant, and in the evolution of the wave
function are controlled and PQCD enlarges its range of
applicability down to accessible energy scales. We should
emphasize that QCD results must contain both perturba-
tive and non-perturbative parts. Therefore, we do not
propose a fully perturbative expression in this paper but
the one in which the nonperturbative region denoted by
b —+1/A does become less important. Clearly, u, is not
so small that we should consider the perturbative result
as exact, but it is sensible to compare it to experiment
and to consider agreement as a success of the theory.

The suppression of hadron wave functions at large spa-
tial extent is also crucial to the idea of "color transparen-
cy" [25] in the PQCD treatment of scattering processes
involving nuclei. Our approach provides a careful check
on the validity of the idea. If it is found, by a similar
analysis, that main contribution comes from the region of
sufBciently small b, for example, compared to the radius
of a nucleus, hadronic systems can be thought of as car-
rying small color dipole moments, and thus interact
weakly with the nuclear matter they pass through.

It is worth reemphasizing that our predictions, valid to
O(a, ), can fit the experimental data without introducing
an adjustable parameter into the calculation and are rela-
tively insensitive to different models of wave functions.
The cutoff preventing a, from being singular is imple-
mented by taking into account the transverse momenta,
instead of inserting a gluon or quark mass [8,24]. From
this point of view, our expression is more predictive.
However, our approach still has to be complemented by
the other derivations of the form factors, for instance
those based on QCD sum rules [26] at moderate energies,
where the perturbative contributions have not dominat-
ed.
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APPENDIX A C~=C '= —C,
In this Appendix, we present the explicit calculation of

the integrand
it is easy to derive the distribution amplitude Y for the
final state,

~ 'P'r™'P'r' Pr Py

for Fig. 2(a). Contributions from the other diagrams can
be obtained by similar procedures.

In terms of the functions g and T, the distribution am-
plitude Y pr(k;, P, p) in Eq. (4) is reexpressed as

1 2 3
apr i ( aprtt 123 ~apr0213+~aprT)23)16& 2X,

0 0 0
~ aPy ~aa'~ PP'~ r y' ~ a'P y'

fN 2 3

16~ 2X,
(~aPrf)23+~aPr4213+ ~aPr 123 )

where

Jkapr=(C g)ap(Nys)r (C rsvp')apNr,

(A3)

where

~'pr=(PC) p(y, N)r (Pysc—) pN

~'pr = (Pc ) p(y sN )r+ (J'y s C ) pN

(~„~—C).p(y~r, N), .

(A2)

From the properties of the Dirac matrices and charge
conjugation

~ p =(C 'P') p(Ny, ) +(C 'y, y') pN

~ pr= 'C '~-pP ) p(Nrsr")r.

Note that AL'& in Y &r is defined as

(A4)

A, 'pr=(gc) p(ysN)r (P'ysc—) pNr .

The hard-scattering amplitude H" for Fig. 2(a) is
given by

(y~ )r r[y~(i" —I''1 —k'3)y)„]PP[y (7' I'+11)y"—]H.', ), ,„(k,, k,', P, P') =ee„g'p'r'"pr " " ' " (p —kl —k3)2(P —P+k )2(P —kl —P, +k. )2(k k. )2
(A5)

where the color factor C is evaluated to be

C=e, ,b,~,(T ),,~(T T')bb(T'). ..eab,
—— (A6)

for the color number 1V, =3. T' is related to the Gell-Mann matrices by T'=X'/2. In fact, all the hard-scattering sub-
diagrams have the same color factor.

There are nine terms in the expansion of the integrand YH"K The first term is, using the same techniques of deriv-
ing Ffrom F, written as

fN P)234123 —lg, (a) 1
eug fN t('123(t'123 JV

460g
a'p'r' a'p'r'apr apr g64 (a) (A7)

where

~'=Tr[yl'(P' kI —k—3)y2Py"(7' P+k) )y—J']N(P')y p'(P)

+Tr[y~(P' —k', —k3 )y)y sl'y"(7' I"+ k') )y P"'—]N(P')y sr pN(P),

2)"=[(I—x, )Q +kz ][x3(1—x', )Q +(kz —k'T ) ]

X[(1—x, )(1—x', )Q +(kz —kT ) ][x3x3Q +(kT —k'T ) ] .

In order to simplify the calculation, some approximation has to be made. It is observed that the fermion propagators
are only linearly, instead of quadratically, divergent in x. Therefore, the transverse momenta associated with the virtual
quarks are expected to be less important than those with the gluons, and are neglected. In this approximation, the
traces of the Dirac matrices in JV" can be easily carried out. We have

e„g fNQ)231/123P'P [P'PN(P')y"N(P)+i e "P+ N(P')y «r&N(P )]
54 (1—xl)(l —x', )Q [(1—x, )(1—xl)Q +(kT —k'T ) ][xsx3Q +(kT —k'T ) ]

(A9)

Applying the explicit expressions for P, P', N(P'), and N(P), it can be shown that the two spinor products in Eq. (A9)
have the same form.

The other terms can be derived similarly and their summation gives the complete expression

Y pr H"p' p Y p =N(P')y("N(P)I", (A10)
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4tr /27e„a, fN($123$123+4T123 lp3

(1—xi)(1—xi)[(1—xi)(1—xi)g +(kT —k' ) ][x x'g +(k —k' ) ]

The coeKcient of the electromagnetic vertex Ny"N, I",will be integrated to calculate F~&(g ). Therefore, we list it in
Table I.

APPENDIX 8

In the derivation of the integrand YHY for the dia-
grams in Fig. 2, the transverse momenta carried by the
virtual quarks have been neglected. This approximation
is necessary because the exact manipulation involves a
high-dimensional integral which is almost impossible to
compute. However, we have to examine the accuracy of
the approximation to ascertain that our predictions are
still reliable. We investigate a simpler case, the pion elec-
tromagnetic form factor, from which some rough estima-
tions can be acquired about the errors associated with the
results obtained in this paper.

The parallel formula to Eq. (18) for the pion form fac-
tor F (Q ) has been derived in Ref. [1]. We just quote
the result here:

F (Q )=16nC„J dx, dx2$(x, )P(x2)

X J b db a, (t)Ko(+x,x2gb)
0

X exp[ —S(x„x2,b, Q )],
where

2

S= y [s(x, , b, g )+s(1 x„b,g—) ]
1=1

2 ln(t /A)
ln

P, —ln(bA)

t = max[+ x, x2Q, 1 /b] .

It is straightforward to obtain its exact form from the
complete expression of the hard-scattering kernel. We
have

1 oo

F~(g ) 16~~F dx~dx2$(x~ )p(x2) J b&db, b2db2a, (t)Ko(+x, x2gb, )exp[ —S(x, x b, b g)]
X [8(b

&

—b )K (Qx, Qb, )I (Q, gb, )

+~(b2 b) )Ko(+x)gb2)Io(+x, Qb, )], (B2)

where

TABLE IV. The values of Q'F (Q ) derived from the for-

mulas with and without approximation for the use of the CZ
wave function [7] p (x)=(15f /1/'2N, )x(1—x)(1—2x) .

Energy
Q/A Approx

QZF (Q2)
Exact Err

S= g [s(xI, br, g ) +s ( 1 —xl, bi, g ) ]
1=1

1
1

ln(t/A) + ln(t/A)
P, —ln(b, A) —1n(bzA)

t =max[+x, x2Q, 1/b„ 1/b2] .

Both integrals in Eqs. (Bl) and (B2) can be done nu-

merically and the results are listed in Table IV for com-
parison. We find that the values for g F (Q ) derived
from the exact formula Eq. (B2) are smaller than those
from the approximate one Eq. (B1), because reinstate-

ment of transverse momentum into the quark propagator
wiH reduce the integrand. At the same time, the correc-
tion becomes less apparent as Q increases. The errors are

only 10% for Q ) 3 GeV. We estimate that the errors in

the proton case are roughly of the same magnitude.
Hence, the approximation does not weaken our con-
clusions.

APPENDIX C

In Eq. (16) we assign different arguments to a, 's corre-
sponding to the two exchanged gluons in the hard
scattering 0 instead of applying renormalization-group
analysis to it as a whole. In this appendix we give more
detailed explanation to support the legitimacy of Eq. (16)
and investigate the sensitivity of our results to different
choices of the arguments.

We separate the hard-scattering subdiagram into two
parts as shown in Fig. 8, each box containing a single ex-
changed gluon. Then H is written as

10
20
30
50

0.27
0.27
0.26
0.25

0.20
0.23
0.23
0.23

26%
15%
11%
8%

a=I'Gr'
where 1 ' (I ") is the amplitude with four external quarks
corresponding to the left-hand (right-hand) box, and the
amplitude 6 is associated with the virtual quark line.
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The renormalization-group equation for H leads to

Q(I lG I/2) Q(l "G &/2)
+ =6@

p~G &~2 pr6 1/2

where

(C2)

+(I !G1/2) —
37 I lG &/2

q

~( I rG 1/2) 3y I rG 1/2
q

(C4)

Certainly the solution to Eq. (C4) does not sum up all the
logarithms included in H due to radiative corrections.
However, Eq. (C4) may be thought of as an approxima-

2) —=p +P(g)a a
(C3)

0p Bg

Equation (16) is obtained if we use the individual
renormalization-group equations for the boxed diagrams
of Fig. 8:

I

I

I

I

I

L

L
FIG. 8. One of the hard-scattering subdiagrams for the

derivation of Eq. (16).

tion, and we can examine the sensitivity of the predic-
tions to this approximation.

If the exact solution to Eq. (C2) is employed, a single t
will be chosen for the arguments of a, 's, for example, as
the maximum of the averages of scales

t, = t» =t» =max —Q(1 —x, )(1—x', )Q+ Qx,x,' Q,1 2

1 2

t2=tz~ =tq2 =max — & x,x', Q+ y' x2xz Q
b, +b2

It is found that the results for Q F, (Q ) based on this assignment are decreased only by a factor of 7%, which are still
in agreement with the data. Therefore, our predictions are not sensitive to di6'erent choices of the arguments of a, s.
For the purpose of truly reflecting the individual virtuality of each hard gluon, Eq. (16) is thus an appropriate form.
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