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Z decay into charmonium via charm quark fragmentation
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In decays of the Z, the dominant mechanism for the direct production of charmonium states
is the decay of the Z into a charm quark or antiquark followed by its fragmentation into the
charmonium state. We calculate the fragmentation functions describing the splitting of charm
quarks into S-wave charmonium states to leading order in the QCD coupling constant. Leading
logarithms of Mz/m, are summed up using Altarelli-Parisi evolution equations. Our analytic result
agrees with the complete leading order calculation of the rate for Z —+ gcc. We also use our
fragmentation functions to calculate the production rate of heavy quarkonium states in W, top
quark, and Higgs boson decays.

PACS number(s): 13.38.+c, 12.38.Bx, 14.40.Gx

INTKOl3U CTION

Among the rare decay modes of the Z predicted by
the standard gauge theory are ones whose final states
include charmonium. Of particular importance are the
sSi charmonium states 1/g and 1it', since their decays
into lepton pairs provide easily identifiable experimental
signatures. The dominant production mechanism for vP

and g' is the decay of B hadrons; in fact, this serves as a
signature for B hadron production in Z decay. The di-
rect production of g and g' is therefore important in Z
decays as a background to B physics. It is also of inter-
est in its own right, since it involves both short-distance
and long-distance aspects of quantum chromodynamics
(@CD).The production of a charm quark and antiquark
with small relative momentum in Z decay is a short-
distance process with a characteristic length scale that
can range from 1/Mz to as large as 1/rn, The sub-.
sequent formation of a bound state from the cc pair is
a long-distance process involving all the complications
of nonperturbative @CD. The methods of perturbative
@CD can be used to calculate the production rates pro-
vided that it is possible to systematically separate the
short-distance eKects from the long-distance e8'ects.

Most previous work on charmonium production in Z
decay [1—3] has focused on short distance proc-esses in
which the cc pair that form the g is produced with a
transverse separation of order 1/Mz. Long-distance ef-
fects involved in the formation of the bound state are
factored into the nonrelativistic radial wave function at
the origin B(0). The best example of a short-distance
process is Z ~ Qgg, which has a branching fraction of
about 10 . This small branching fraction can be partly
attributed to a factor of iR(0)i2/(m, Mz2), which repre-
sents the probability for a cc pair that is produced in a
region of size 1/(m, M&) to form a bound state. This
probability factor suppresses the branching fractions for
short-distance processes by m,,/M&2, so that they can be

neglected in the limit Mz/m, ~ oo.
As pointed out by Kiihn and Schneider [4], the direct

production of charmonium in Z decay will be dominated
not by short-distance processes but by fragmentation pro-
cesses. The fragmentation mechanism is the decay of the
Z into a final state that includes a high energy quark or
gluon, followed. by the splitting of that parton into the
charmonium state plus other partons. In the fragmenta-
tion mechanism, the c and c that form the charmonium
state are produced with a separation of order 1/m, . The
probability that they form a bound state is proportional
to iR(0)i /ms. The branching ratio for such a process is
therefore not suppressed by the factor m2/M&2 associated
with short-distance processes. The fragmentation of a
parton is described by a fragmentation function D(z, p),
which gives the probability for a parton with invariant
mass less than p to split into the charmonium state with
longitudinal momentum fraction z. It was recently shown
that the fragmentation functions for the splitting of par-
tons into heavy quarkonium states can be calculated us-
ing perturbative @CD [5]. The fragmentation functions
Dg~y(z, p) and Ds~v (z, p) that describe the splitting
of gluons into S-wave quarkonium states were calculated
to leading order in o., at the scale p = 2m . They were
evolved to larger scales p by using Altarelli-Parisi evolu-
tion equations, which sum up leading logarithms of p/m, .
The production of g in Zo decay from the splitting of
virtual gluons has been considered by Hagiwara, Martin,
and Stirling [6], but they did not organize the calculation
in terms of fragmentation functions and were thus unable
to sum up leading logarithms of Mz/m .

The production rate of g via the process Z ~ gcc has
been calculated by Barger, Cheung, and Keung [7] with
a rather surprising result: it has a branching fraction of
about 10 . This is almost 2 orders of magnitude larger
than Z + egg, in spite of the fact that both rates are
the same order in n, . A similar result was found earlier
in e+e annihilation by Clavelli [8]. An explanation for
the relatively large branching fraction of Z —+ gcc was
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provided in Ref. [5], where it was pointed out that this
process includes a fragmentation contribution that is not
suppressed by a factor of m, /Mz. This contribution can
be factored into the rate for the Z to decay into a cc pair
multiplied by the probability for the c or c to fragment
into g.

In this paper we calculate the fragmentation functions
D,~@(z,p) and D ~„(z,p) for a charm quark to split
into an S-wave charmonium state. The fragmentation
functions at the scale p = 3m are calculated to leading
order in n, (2m, ). Altarelli-Parisi equations are used to
evolve them up to the scale p = Mz/2 appropriate for Z
decay. Our simple analytic result for Z ~ yacc agrees
with the complete leading order calculation of Barger,
Cheung, and Keung. We also use our fragmentation func-
tions to calculate the direct production rates for g in W+
decays and for T in top quark and Higgs boson decays.

So DECAY VIA FRAGMENTATION

The fragmentation contribution to the inclusive decay
rate of the Z into charmonium is the term that survives
in the limit Mz/m, ~ oo. The general form of the frag-
mentation contribution to the differential decay rate for
the production of a g of four-momentum p is

the c —+ c splitting function for a charm quark with en-
ergy much greater than its mass is the usual splitting
function for quarks:

P, ,(x, y) = '
~

— + 4 $(1 —x) ~

. (3)
n, (p) /8 1+ x2

The boundary condition on the evolution equation (2) is
the initial fragmentation function D;~y(z, po) at some
scale po of order m, . As shown in Ref. [5], it can be
calculated perturbatively as a series in n, (2m, ).

We can easily count the order in o., for the fragmen-
tation contributions to @ production in Zo decay. The
subprocess rate I' for producing gluons is of order o.„
while that for producing quarks is of order 1. The frag-
mentation function for a gluon to split into Q, which was
calculated in Ref. [5], is proportional to n, . A light quark
can split into a g only by radiating a gluon which splits
into a g, so its &agmentation function is of order n, . In
contrast, the fragmentation function for a charm quark to
split into a g, which will be calculated explicitly below,
is only of order o, Thus the fragmentation of charm
quarks into g dominates by two powers of n, over the
fragmentation of light quarks or gluons.

Keeping only the charm quark and antiquark contri-
butions to (1), the energy distribution of the Q reduces
at leading order in o., to

dr(z'~ y(&)+x) =)
+~ V) D' ~(z V)

where the sum is over partons of type i and z is the
longitudinal momentum fraction of the @ relative to the
parton. The physical interpretation of (1) is that a @ of
momentum p can be produced by first producing a par-
ton i of larger momentum p/z which subsequently splits
into a Q carrying a fraction z of the parton momentum.
The expression (1) for the differential decay rate has a
factored form: all the dependence on the energy of the
@, or equivalently on the mass Mz, is in the parton sub-
process decay rate dt', while all the dependence on the
charm quark mass m is in the fragmentation function
D,~y. To maintain this factored form in spite of the
logarithms of M, /m, that arise in perturbation theory,
a factorization scale p must be introduced. The depen-
dence on the arbitrary scale p cancels between the two
factors. Large logarithms of Mz/p in the subprocess de-

cay rate I' can be avoided by choosing p on the order of
Mz. Large logarithms of p/m, then necessarily appear
in the fragmentation functions D,~y(z, p), but they can
be summed up by solving the evolution equations [9]

dz
(Z m Q(E)+A ) = 2 I (Z -+ ec) D,~q (z, Mz/2),

2E
z = . (4)

This fragmentation formula is of course applicable only
for a g of energy E that is a significant fraction z of the
energy Mz/2 of the charm quark and much greater than
the mass My of the @. In (4), the factor of 2 accounts
for the contribution from the fragmentation of the c. We
have set the factorization scale p, to Mz/2 to avoid large
logarithms from higher orders in perturbation theory. At
leading order in o.„only the diagonal term in the evolu-
tion equation (2) survives:

0 I'g
0(z &) = P (z/V p) D 4(»p) .

Qp, g

Integrating (4) over the energy, the total rate for inclusive

g production is

dz D, @(z,3m, ) .

where P;~~ (x, p) is the Altarelli-Parisi function for the
splitting of the parton of type i into a parton of type j
with longitudinal momentum fraction x. For example,

We have set the fragmentation scale equal to 3m by ex-
ploiting the fact that at leading order in o., the Altarelli-
Parisi splitting function (3) satisfies J dxP ~ (x, p) = 0.
The evolution equation (5) then implies that the frag-

mentation probability I dzD ~~(z, p) does not evolve
with the scale p.
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FRACMENTATION FUNCTION FOR c m @

We proceed to calculate the initial fragmentation func-
tion D ~@(z,3m, ) for a charm quark to split into a @ to
leading order in n, (2m, ). Our strategy is to isolate the
contribution I'q to the decay rate for Z —+ gcc that
arises from the fragmentation of the charm quark. We
can then obtain the fragmentation probability j dzD(z)
by dividing I'q by the rate I p for Z ~ cc:

I'p [dq][dq] (2~) b (Z —q —q) —) lAol2Mz 3

where Z, q, and q are the four-momenta of the Z, c,
and c, and [dq] = d q/(l&r qo) is the Lorentz-invariant
phase-space element. The square of the amplitude Ap
for Z + t-c, averaged over initial spins and summed
over Anal spins and colors, is

x(y'+ m )], (8)

where I is the Z ce vertex whose explicit form is not
required. In the limit Mz )) m, the factors of m in
the trace can be neglected.

The rate for the decay Z —+ yacc is

1c

FIG. 1. The four Feynman diagrams for Z —+ gcc at lead-
ing order in o, The outgoing momentum assignments are
p/2 and p/2 for the parallel c and c lines and p' and q for the
other c and c lines.

[dq] [dp] [dp'] (2vr) 4b4 (Z —q —p —p')

where q, p, and p' are the four-momenta of the c,
and c. The four Feynman diagrams that contribute to
the amplitude Aq at leading order in o., are shown in

I

Fig. 1. The contributions to the process Z m vjcc that
correspond to the fragmentation of the charm quark come
from the region of phase space in which the g —c system
has large momentum q = p+ p' of order Mz and small
invariant mass 8 = q of order m . To facilitate the
extraction of the fragmentation probability, we write the
three-body phase space for the outgoing particles in an
iterated form by introducing integrals over q and over s:

[dq][dp][dp'] (2~)4b4(Z —q —p —p') = [dq][dq] (2vr) b (Z —q —q) [dp][dp'] (2vr) 8 (q —p —p') . (10)
27r

We also express the two-body phase-space integral over p and p' in terms of the longitudinal momentum fraction z
of the Q. In a frame in which the virtual charm quark has the four-momentum q = (qo, 0, 0, qs), the longitudinal
momentum fraction of the g is z = (po + ps)/(qo + qs) and its transverse momentum is p&

——(pq, p2). Expressed in
terms of these variables, the Lorentz invariant phase space element is [dp] = dzd p~/(167r z). Integrating over the
four-momentum p' and over p&, the two-body phase-space integral reduces to

[dp][dp'] (2 ) b (q —p —p')
Her

4m.'

We have set M~ ——2m, which is accurate up to relativistic corrections. If s = q is of order m, the delta
function b (q —p —p') constrains p& to be of order m . From the mass-shell condition, the component po —ps ——

(p& + 4m )/(po + ps) is of order m, /Mz. Thus, to leading order in m /Mz, we can set p = zq.
We proceed to isolate the contribution to the amplitude Aq from the fragmentation of the charm quark. In covariant

gauges, this contribution comes from both of the diagrams in Figs. 1(a) and 1(b), while the diagrams in Figs. 1(c) and
l(d) contain contributions from c fragmentation. In the axial gauge associated with the four-vector n = (1, 0, 0, —1),
the contribution from fragmentation of the charm quark comes only from the diagram shown in Fig. 1(a). The
amplitude for Fig. 1(a) in this gauge can be reduced to
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Ai = ' e (Z)e„(p)* u(p') 2m, p" (g+ m, ) + '
g p" (P+ 2m, ) I v(q) .

C C

We have used standard covariant Feynrnan rules [1] for projecting the amplitude for production of a cc pair with equal
four-momenta p/2 onto the amplitude for production of a @ with four-momentuin p. The parameter B(0) is the value
of the nonrelativistic radial wave function at the origin. Averaging over inital spins and summing over Anal spins and
colors, the square of the amplitude reduces to

3 27m, (s —m2)4 ( Mz2

where D is a Dirac matrix that depends on q, q, and p. We need only keep the terms in D for which the Dirac trace in
(13) is of order m4Mz2. While q, q, and p all have components of order Mz, s = q is of order m, in the fragmentation
region. Simplifying the Dirac matrix by dropping terms which are suppressed by powers of m /Mz, it reduces to

D = (s —2m, s —47m, ) g —(s —m, )(s —9m, ) yt

8 —m 2
2 2 2 ( s —m.2

2

+4 ' [(s+7m ) n q yf — (s —5m, ) n. p yt —8m, n q (+12
~

'
~

n. pn (q —p) P.
n (2q —p) (n (2q —p))

(14)

We have exploited the fact that while P and g are both of order Mz, their product yl'g' is only of order m Mz. The
coefficients of P and g in (14) are all manifestly of order m„so we can substitute p = zq for all the remaining factors
of p. The Dirac trace in (12) is then proportional to tr(I' g I'pg). It is now easy to divide I'i by the decay rate I'o
given in (7) to obtain the &agmentation probability:

8~.'l&(0) I'
dzD, g(z) = ' ds

277l mc o 8 —m

1

dzHis— 4m
1 —z)

x (s —2m, s —47m, ) —z(s —m, )(s —9m, ) + 4 s(s —m, )
2 2 4 2 z(1 —z) 2

z'(1 —z)
4 m, (s —m ) + 12 (s —m, )2 —z 2 —z 2 (15)

Note that the upper limit on the integral over s has been increased to oo. Since the integrand behaves like 1/s2 at
large s, this only changes the integral by an amount of order m2/Mz2, which we have been systematically neglecting.
Evaluating the integral over s in (15), we obtain our final expression for the initial fragmentation function:

8 2 iB(0)
~

z(1 —z) (16 —32z + 72z —32z + 5z )D, g (z, 3m, ) = o., (2m, )
C

(16)

We have set the scale p in the fragmentation function to p = 3m, which is the minimum value of the invariant mass
of the fragmenting charm quark. We have also set the scale in the running coupling constant to p, = 2m, which is
the minimum value of the invariant mass of the virtual gluon. Integrating over z, we obtain the total fragmentation
probability

dz D q(z, 3m, ) = n, (2m, ) ~

—57ln2
~f 8 2 iB(0) [

(1189
27~ ms g 30 j

FRAGMENTATION FUNCTION FOR c —+ g

The fragmentation function for a charm quark to split into the So state of charmonium g can be calculated in
the same way as for g. The starting point is the expression (9) for the decay rate for Z —+ g, cc, except that the
amplitude Ai in (12) must be replaced by

4g2R(0), 1
(Z)e„(p)* u(p') (yt+ 4m, ,) ps (y'+ m, ) +

3 6vrm ~ s —m2 2

8 —m
g ps (P+ 2m, ) I' v(q) . (18)

n 2q —p

The square of the amplitude has the form (13), except that the Dirac matrix D reduces to



4234 ERIC BRAATEN, KINGMAN CHEUNG, AND TZU CHIANG YUAN

D = (s+3m )(s —5m, ) g —(s —m, )(s —9m, ) /+4 ' [(s —m, ) n q — (s —3m, ) n. p]Pn (2q —p)
t' s —m'.

+4~
~

n pn (q —p) P.
(n (2q —p) )

(19)

Following the same path as in the g calculation, we find that the initial fragmentation function for rl, is

D, „(z,3m, ) = n, (2m )z8,~R(0)~' z(1 —z)'(48+ 8z' —8z'+ 3z')
81' m 2 —z 6 (2o)

Integrating over z, the fragmentation probability is8, ~R(0)~' (773
dz D,~„,(z, 3m, ) = cr, (2m, ) ~

—37 ln2
~27ir m' i 30

DECAY OF Z INTO CHARMONIUM

From (6), the branching ratio for the decay of the Zo
into @ relative to the decay into cc is

I'(Z -+gcc), iR(0)i'0.0234 n. (2m, )I' Zo yacc

The value of the parameter R(0) can be determined from
the Q electronic width to be ~R(0)~ = (0.8 GeV) . Tak-
ing m = 1.5 GeV and n, (2m, ) = 0.26, we find that
the branching ratio (22) is 2.4 x 10 . The simple result
(22) agrees with the complete leading order calculation
of Z ~ yacc in Ref. [7] after taking into account the dif-
ferences in the values of R(0), n„and the charm quark
mass. The authors of Ref. [7] used a larger value for the
wave function at the origin, R(0)

~

= (0.92 GeV), and
a smaller value for the quark mass, m = 1.35 GeV. It
was also assumed implicitly in Ref. [7] that Z i gcc is a
short-distance process, so the running coupling constant
was taken to be cr, (Mz) —0.15. As we have shown, the
dominant contribution comes from a fragmentation pro-
cess, and the appropriate scale of the coupling constant
is de6nitely on the order of m . Corrections to the frag-
mentation approximation are suppressed by (4m /Mz)z,
which is about 0.4%. This is inuch smaller than the error
due to the uncertainty in the quark mass.

The rate for production of g by fragmentation diR'ers

by less than 3% from that for @. From (21), we obtain

I'(Z m rkcc) z iR(0)i0.0227 n, (2m, )I Zomcc m.'

(24)

where R(0) is the radial wave function at the origin for
the Y, which is determined from its electronic decay rate
to be ]R(0)~ = (1.8 GeV) . Taking mb = 4.9 GeV and
n, (2mb) = 0.19, we find that the branching ratio (24)
is 4.2 x 10 . The fragmentation approximation for T
production in Z decay is not as accurate as it is for g
production. Corrections are approximately (4mb/Mz)
which is about 4%.

3.0

2.5

p, = 3m
C

p, = M/2

2.0

The result is shown as the dotted line in Fig. 2. The evo-
lution softens the energy distribution, shifting the peak
in the fragmentation function from z = 0.75 to z = 0.68.
The energy distribution shown in Fig. 2 should be accu-
rate provided that the energy of the g is large compared
to its mass, or equivalently z )) 0.07. The fragmentation
function for g production is also shown in Fig. 2. It has
a slightly softer distribution, but its behavior is otherwise
similar to that for the g.

The expression (22) also applies with minor modifica-
tions to the corresponding branching ratio for T produc-
tion:

This agrees with the calculation of Ref. [7] after taking
into account the diB'erences in the values of cr„R(0), and
m, , and an apparent algebraic error of a factor of 3.

The energy distribution of the Q's produced by the
fragmentation of charm quarks in Z decay is given in (4).
It is proportional to the fragmentation function evaluated
at the scale Mz/2. The initial fragmentation function
(16) at the scale 3m,, is shown as a solid line in Fig. 1. It
must be evolved up to the scale Mz/2 using the Altarelli-
Parisi equation (5) in order to sum up the leading loga-
rithms of Mz/m from higher order radiative corrections.

1.0

0.5

0.0
0.0 0.2 0.4 0.6

z = 2E/M

0.8

FIG. 2. The fragmentation functions D,~~(z, y) and
D ~„(z,p) as a function of z for y, = Bm,, (solid lines) and
p, = Mz /2 (dotted lines) .
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DECAY OF W+ INTO Q DECAY OF BIG,G.S SOSON INTO

About 1j3 of the decays of the W+ will proceed
through the channel TV+ m cs. The mass of the W
is sufBciently large that the dominant production mech-
anism for charmonium will be R + —+ c8, followed by
the fragmentation of the charm quark into charmonium.
Fragmentation of the strange antiquark into g is sup-
pressed by a factor of n, . The branching ratio for decay
into g relative to decay into cs is therefore smaller than
(22) by a factor of 2:

If the Higgs boson mass is below the threshold for de-
cay into W pairs, than its dominant decay mode will be
H ~ bb. The dominant production method for bottomo-
nium in Higgs boson decay will be H ~ bb, followed by
the fragmentation of the 6 quark or antiquark into bot-
tomonium. The branching fraction for the direct decay
into the T is twice (26), because both the b and b can
fragment into T:

I'(II -+ Tbb) 2 ]B(0)i2

I'(W+ -+ pcs) ]B(0)]20.0117 o, (2m, )r w+ ~ ~u m.' (25) This branching ratio is 4.2 x 10, which is probably too
small for this decay mode to be useful as a signal for an
intermediate mass Higgs boson.

Numerically this branching ratio is 1.2 x 10 . Our ana-
lytic calculation of the fragmentation contribution is con-
sistent with the full leading order calculation of Ref. [7]. CONCLUSIONS

DECAY OF TOP QUARK INTO T

The top quark will probably decay almost exclusively
into W+ 6. If the top quark is heavy enough, the dom-
inant production mechanism for bottomonium in top
quark decay will be t —+ TV+ 6, followed by the fragmen-
tation of the b quark into bottomonium. The branching
fraction for the direct decay into the Sy state T is one
half of (24):

(26)

which has the numerical value 2.1 x 10 . The complete
leading order calculation of the rate for t ~ TV+ bT gives
a branching &action of 4 x 10 for a top quark with a
mass of 100 GeV [7]. The fragmentation formula (26)
does not apply to such a small value of the top quark
mass, since the maximum momentum of the T —6 sys-
tem is only 13 GeV, too small for the decay rate to be
dominated by fragmentation. The simple result (26) is a
good approximation if the mass of the top quark is closer
to 150 GeV.

We have shown in this paper that the dominant mech-
anism for the direct production of charmonium in Z
decay is fragmentation, the production of a high en-
ergy charm quark or antiquark followed by its splitting
into the charmonium state. Most previous calculations
of charmonium production have considered only short-
distance production mechanisms which are suppressed
by a factor of m, /M&. We calculated the fragmenta-
tion functions D(z, p) for charm quarks or antiquarks
to split into S-wave charmonium states to leading or-
der in n, . The fragmentation functions satisfy Altarelli-
Parisi evolution equations which can be used to sum up
large logarithms of M~ jm . These fragmentation func-
tions are universal, applying to the production of heavy
quarkonium in any high energy process that can produce
heavy quarks with transverse momentum large compared
to their mass. We applied them to the production of char-
monium and bottomonium in decays of the Z, W+, top
quark, and Higgs boson.
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