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Cabibbo-allowed nonleptonic weak decays of charmed baryons A,+, :-,", :-,+", and 0, into an octet
baryon and a pseudoscalar meson are analyzed. The nonfactorizable contributions are evaluated under
the pole approximation, and it turns out that the s-wave amplitudes are dominated by the low-lying—

resonances, while p-wave ones are governed by the ground state —'+ poles. The MIT bag model is em-

ployed to calculate the coupling constants, form factors, and baryon matrix elements. Our conclusions
are the following: (i) s waves are no longer dominated by commutator terms; the current-algebra method
is not applicable to parity-violating amplitudes. (ii) Nonfactorizable W-exchange effects are generally
important; they can be comparable to and sometimes even dominate over factorizable contributions, de-

pending on the decay modes under consideration. (iii) The large-N, approximation for factorizable am-—0
plitudes also works in the heavy baryon sector and it accounts for the color nonsuppression of A, ~pK
relative to A,+—+A~ . (iv) A measurement of the decay rate and the sign of the a asymmetry parameter
of certain proposed decay modes will help discern various models. (v) p waves are the dominant contri-
butions to the decays A,+~:- K+ and:-, ~X+K, but they are subject to a large cancellation; this
renders present theoretical predictions on these two channels unreliable.

PACS number(s): 13.30.Eg, 11.40.Ha, 12.40.Aa, 14.20.Kp

I. INTRODUCTION

With more and more data of charmed baryon decays
becoming available at ARGUS, CLEO, CERN, and Fer-
milab, it reaches the point that a systematica1 serious
theoretical study of the underlying mechanism for non-
leptonic decays of charmed baryons is called for [l]. The
experimental progress in this area is best summarized in
the recent concluding remark by Butler [2]. "Our
knowledge of the charmed baryons has taken another
leap forward. This is a field whose time has Anally ar-
rived. " Indeed, in the past few years, new and high-
statistics measurements of the nonleptonic A,+ decays
have been carried out, and new decay modes of:"," and

0, also have been seen recently.
Theoretically, a11 nonleptonic weak decays of mesons

and baryons can be classified in terms of the following
quark diagrams' [3]: the external W-emission diagram,
the internal 8'-emission diagram, the 8'-exchange dia-
gram, the F-annihilation diagram, and the F-loop dia-
gram. The external and internal 8'-emission diagrams

are usually referred to as factorizable contributions. It is
known for meson nonleptonic decays that the factoriz-
able contribution dominates over the nonfactorizable
ones such as 8' exchange and 8' annihilation. For
baryon decays, a priori the nonfactorizable contribution
can be as important as the factorizable one since 8' ex-
change, contrary to the meson case, is no longer subject
to helicity and color suppression.

How do we handle the 8'-exchange contribution in the
baryon decay? In principle the 8'-exchange amplitude
can be expressed as a sum of all possible intermediate ha-
dronic states. In practice, one assumes pole approxima-
tion, namely, that only one-particle intermediate states
are kept; that is, the 8'-exchange contribution is assumed
to be approximately saturated by pole intermediate
states. Among all possible pole contributions, including
resonances and continuum states, one usually concen-
trates on the most important poles such as the low-lying
J =

—,'+, —,
' states. In general, nonfactorizable s- and p-

wave amplitudes are dominated by —,
' low-lying baryon

resonances and —,
'+ ground-state baryon poles, respective-
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The W-annihilation diagram is absent in the baryon decay.
The W-loop diagram does not contribute to the Cabibbo-
allowed weak decays of hadrons.

In general, there are two distinct internal W-emission dia-
grams and three W-exchange diagrams for the nonleptonic
baryon decay [4]. However, only the internal 8'-emission dia-

gram with the meson formed along the parent quark which de-

cays weakly is factorizable. At the hadron level, the factoriz-
able internal W-emission graph corresponds to a meson-pole
contribution.
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ly. Evidently, the estimate of the s-wave terms is a
difficult and nontrivial task since it involves weak baryon
matrix elements and strong-coupling constants of
baryon states, which we know very little. Nevertheless,
there is one exceptional case: For hyperon nonleptonic
decays, the evaluation of s waves is no more difficult than
the p-wave amplitudes. This comes from the fact that the
emitted pion in this case is soft. As a result, the parity-
violating pole amplitude of the hyperon decay is reduced,
in the soft-pion limit, to the familiar equal-time commu-
tator terms. The magic feature with this current algebra
approach is that the s-wave amplitude can now be mani-
pulated without appealing to any information of the
cumbersome —,

' poles.
Traditionally, the two-body nonleptonic weak decays

of charmed baryons is studied by utilizing the same tech-
nique of current algebra as in the case of hyperon decays
[5—13]. However, the use of the soft-meson theorem
makes sense only if the emitted meson is of the pseudo-
scalar type and its momentum is soft enough. Obviously,
the pseudoscalar-meson final state in charmed baryon de-
cay is far from being "soft." Therefore, it is not ap-
propriate to make the soft-meson limit. Moreover, since
the charmed baryon is much heavier than the hyperon, it
will have decay modes involving a vector meson, ' this is
certainly beyond the realm of current algebra. Because of
these two reasons, it is no longer justified to apply current
algebra to heavy-baryon weak decays, especially for s-
wave amplitudes. Thus, one has to go back to the origi-
nal pole model, which is nevertheless reduced to current
algebra in the soft pseudoscalar-meson limit, to deal with
nonfactorizable contributions. The merit of the pole
model is obvious: Its use is very general and is not limit-
ed to the soft-meson limit and to the pseudoscalar-meson
final state. Of course, the price we have to pay is that it
requires the knowledge of the negative-parity baryon
poles for the parity-violating transition. This also ex-
plains why the theoretical study of nonleptonic decays of
heavy baryons is much more difficult than the hyperon
and heavy meson decays.

Recently, a calculation of the nonfactorizable s- and p-
wave amplitudes of charmed baryon decays through the
pole contributions from the low-lying —,

' resonances and
ground-state —,

'+ baryons has been presented by us [14]
and by Xu and Kamal [15]. We use the MIT bag model
to tackle both —,

' and —,
' baryon poles. By comparing

the pole-model and current-algebra results for the s waves
of B,~B+P, we reach an important conclusion: the
parity-violating amplitude of charmed baryon decays is
no longer dominated by the commutator terms. That is
to say, away from the soft-meson limit the correction to
the commutator terms is very important. This correction
will affect the magnitude and sometimes even the sign of
the asymmetry parameter u. Needless to say, the pole
model also allows us to treat the weak decays,

It is a "model" because of the assumption of pole approxima-
tion: The nonfactorizable contribution is approximately sa-
turated by one-particle intermediate states.

B,~B+V(1 ) on the same footing as B,—+B+P(0 )

decays.
In a previous publication [14] we have applied the pole

model to some selected decay modes, namely,
A, ~pK (K' ), A~+(p+), X sr+(p+), X+~ (p ). The
main purpose of the present paper is to complete the
pole-model analysis for all two-body Cabibbo-allowed
weak decays of the antitriplet charmed baryons A,+,

and the sextet charmed baryon 0, . Owing to
large theoretical uncertainties associated with the
vector-meson case, as elaborated on in detail in Ref. [14],
we will confine ourselves to the decay modes B,~B+P.

The present paper is organized as follows. The general
framework of the pole model is recapitulated in Sec. II.
Numerical results of the decay rate and the asymmetry
parameter a for Cabibbo-allowed two-body nonleptonic
decays of charmed baryons are presented in Sec. III with
some model details given in Appendices A —D. In Sec.
IV, we then compare our results with current algebra as
well as recent theoretical calculation [15,16] and then
draw conclusions.

II. GENERAL CONSIDERATIONS

Since the general framework for treating the nonlep-
tonic weak decays of charmed baryons is already dis-
cussed in Ref. [14], here we will emphasize some main
points which are not thoroughly discussed in a previous
publication. The QCD-corrected eft'ective weak Hamil-
tonian responsible for the Cabibbo-allowed charmed-
baryon decays has the form

G~
—V„V d(c+0++c 0 ),

2 2

with 0+ =(sc )(ud )+(sd )(uc ), where (q, q2) =q, y„(1—ys)q2, and V, are the quark mixing matrix elements.
The Wilson coefBcients are evaluated at the charm mass
scale to be c + —-—0.73 and c -=1.90. In general, the de-

cay amplitude of the baryon decay B;~Bf+P can be
written in terms a sum over intermediate hadronic states.
As far as the vacuum intermediate state is concerned, the
amplitude will be factorized if the pseudoscalar meson P
can be created from the quark currents of 0+. (For a re-
view of factorization and the large N, approach, see, e.g. ,
Ref. [17].) Schematically,

M(B, ~Bf+P ) =M(B;~Bf+P )
"

+M(B;~Bf+P )" (2.2)

where the superscript nf stands for nonfactorization. It is
clear from the expression of 0+ that factorization occurs
if the final-state meson is ~+ or K . Explicitly,

M(B; ~Bf+'rr )"
—V„V„„c,+ '

&7r+~(ud)~O&&Bf i(sc)~B; &,

(2.3)
M(B;~Bf+K )"

—V„V„d cz+ &K [(sd)[0&&Bf[(uc)[B, &,
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where X, is the number of quark color degrees of free-
dom, and

Ci = ~(C+ +C ), C2 =T~(C+ C ) (2.4)

In quark-diagram language, the c, (c2) term of the fac-
torizable 8, ~Bf+a (8,~Bf+K ) amplitude comes
from the external (internal) W-emission diagram. The
8'-exchange diagram is, of course, nonfactorizable.

In the content of meson nonleptonic decay, it is cus-
tomary to make a further assumption, namely, the factor-
ization (or vacuum-saturation) approximation, in which
one only keeps the factorizable contributions and drops
the nonfactorizable ones. This approximation can be
justified in the large-X, limit [18] since the nonfactoriz-
able amplitudes are suppressed, as far as the color factor
is concerned, by powers of 1/N, . However, in the
X,—+ ~ limit, one should also drop the I/X, -suppressed
factorizable contribution [see, e.g. , Eq. (2.3)]. The large-
N, version of factorization is thus di6'erent from the
naive factorization approximation in that the Fierz-
transformed terms are taken into account in the latter ap-
proach. Nowadays we have learned from the nonleptonic
decays of charmed and bottom mesons that the naive fac-
torization method fails to account for the bulk of data,
especially for those decay modes which are naively ex-
pected to be color suppressed. The discrepancy between
theory and experiment gets much improved in the 1/X,
expansion method. Does this scenario also work for the
baryon sector? This issue is settled down by the experi-

I

mental measurement of the Cabibbo-suppressed mode
A,+~pP, which receives contributions only from the fac-
torizable diagrams. We have shown in Ref. [14] that the
large-X, predicted rate is in good agreement with the
measured value. By contrast, its decay rate predicted by
the naive factorization approximation is too small by a
factor of 15. Therefore, we should take the 1/N, ap-
proach for the factorizable amplitude of B;~Bf+P.

We next turn to the nonfactorizable contribution. It is
here we see a significant disparity between meson and
baryon decays. Contrary to the meson case, the nonfac-
torizable amplitudes of baryon nonleptonic decays are
not necessarily color suppressed in the N, ~ oo limit [16].
Although the W-exchange diagram, for example, is down
by a factor of 1/X, relative to the external 8'-emission
diagram, this seeming suppression is compensated by the
fact that the baryon contains N, quarks in the limit of
large X„thus allowing X, di6'erent possibilities for 8'ex-
change between heavy and light quarks. This leads to the
well-known statement that 8' exchange in baryon decay
is subject to neither color nor helicity suppression. Using
the reduction formula, the nonfactorizable amplitude can
be recast to

M [8,~Bf+P'.(q) ]"

lim i(m~ q) f d —x e'q'&BflTP'( )xA (uo)lB;)
q —+mp

(2.5)
or

M[B; Bf+P'(q))" = lim i(m —
q ) f d x e'q'

2 2
q ~mp

y ~(x') & Bf ly'(x) ln ) & n la~(o) lB; )
n

+g 0( —x') & Bf l&~(o) ln ) & n
l
P'(x) lB; ) (2.6)

where P' is the interpolating field for P'. Conventionally
one considers pole approximation so that only one-
baryon intermediate states are kept. Under the pole ap-
proximation, the nonfactorizable amplitude is nothing
but the contribution arising from two distinct pole dia-
grams. This can be seen from the identity

, &Bflj (o) 8„),
mp —

q

gBBS"f n

2 +f~y5~n ~

mp q
(2.7)

Hence, for example, the first term on the right-hand side
(RHS) of (2.6) represents the pole diagram in which a
weak transition 8, —B„ is followed by a strong emission
of the P'. Note that since the baryon-color wave func-
tion is totally antisymmetric, only the operator 0 con-
tributes to the baryon-baryon transition matrix element
as it is antisymmetric in color indices. As shown in Ref.
[14],at least for hyperon and charmed-baryon decays, the
s-wave amplitude is dominated by the low-lying —, reso-
nances and the p-wave one governed by the ground-state
—,
'+ poles. As a result, it follows from Eq. (2.6) that [14]

A" =— gBfB ~b
n n i +

m; m

bf ggB B p
n

mf —m
+ ~ ~ ~

(2.8)
gBfB„p ni

8nf

n

fngB„B,.P+ + ~ ~ ~

mf mn

where A and B are s- and p-wave amplitudes, respective-
ly, ellipses in Eq. (2.8) denote other pole contributions
which are negligible for our purposes, and a, . as well as
b. + . are the baryon-baryon matrix elements defined byI J

&8, l&~lB, ) =u, (a,, —b,,y, )u, ,

&8,'(-,'-)lW"lB, ) =ib...u, u, ,
(2.9)

with b, = b, . It should be—stressed that Eq. (2.8) is
Jl j

derived only under the assumption of pole approxima-
tion, and it is valid also for vector-meson emission.

Evidently, the calculation of s-wave amplitudes is gen-
erally more difficult than the p wave owing to the trouble-
some negative-parity baryon resonances. Nevertheless, a
simplification happens for hyperon nonleptonic decays
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where the final-state pion is approximately soft. Using
the Goldberger-Treiman (GT) relation (C2) for the cou-
pling constants gBBP and the generalized GT relation (CS)
for g, couplings (both relations being valid in the
soft-pion limit), Eq. (2.6) leads to [14]

' (a, ll g;,~"]l~, ) (2.1 )
pa

mf +m„

tl

m;+m„
m+ l n

(2.11)

X [A(')(x),&~(0)] .

(2.13)

Traditionally, the current-algebra results (2.10) and
(2.11) are derived from Eq. (2.6) together with the PCAC
(partial conservation of axial-vector current) relation

, a~~„'
V'2

(2.12)
f„mI,

and the Ward identity

i I d x e'~ Td" A„'(x)&'~(0)=q"f d"x TA„'( )x&~(0)

d x e' "Six )

importance of nonfactorizable contributions, and is more
difBcult to treat than the hyperon decay owing to the
presence of —,

' poles for s waves. In short, Eq. (2.8) is the
starting point for handling the nonfactorization ampli-
tudes of heavy-baryon decays.

III. NUMERICAL RESULTS

Among the two four-quark operators 0+ given in Eq.
(2.1), 0+ is symmetric in color indices where 0 is an-
tisymmetric. Therefore, the operator 0+ does not con-
tribute to baryon transition matrix elements since the
baryon-color wave function is totally antisymmetric. The
parity-conserving (PC) matrix elements a," and the
parity-violating (PV) ones b, have the expression

l J

a; = —(&;l0 j&,. )c
h

2 2

b, = —t
" (a, (i y2-)lo" la, )c

(3.1)

We employ the MIT bag model [20] to evaluate the
form factors appearing in factorizable amplitudes and the
strong-coupling constants and baryon transition matrix
elements relevant to nonfactorizable contributions. Some
model details are given in Appendixes A —D. In this sec-
tion we will first discuss the evaluation of the aforemen-
tioned ingredients and then present the results of decay
rates and the a asymmetry parameter for Cabibbo-
allowed nonleptonic weak decays of charmed baryons.

A. Baryon-Baryon transition matrix elements

Note that B can actually be read off directly from Eq.
(2.8) by substituting the GT relation for strong-coupling
constants. Therefore, the parity-violating amplitude is
reduced in the soft-pion limit to a simple commutator re-
lation and is related to parity-conserving baryon-baryon
matrix elements. In other words, no information of —,

'

poles is required for evaluating the s-wave amplitudes.
However, as explained in the Introduction, such
simplification is no longer applicable to heavy-baryon
weak decays for the meson there is far from being soft;
for example, the pion's momentum in the decay A,+ —+Am.

is 863 MeV, which is much larger than its own mass.
Writing

A=A' +(A —A' ), (2.14)

4As stressed in Ref. [14], the current-algebra expression for the
parity-conserving wave should read

CA fB = lim B"—i q T„+i q T„,
q~p

P a P a

which can be shown to be equivalent to Eq. (2.11).

it has been demonstrated in Refs. [14,15] that the on-shell
correction (A —A ) is very important for charmed-
baryon decays, and this clearly indicates that the s-wave
amplitude is not dominated by the commutator term.

To summarize, the dynamics of heavy-baryon decays is
more complicated than the meson decay because of the

a pg p= 3.81 X 10 (3.2)

a~+~+ = a~p p =a pg p
= 6.58 X 10

C C C

where the superscripts 3 and S denote antitriplet and
sextet charmed baryons, respectively.

In the bag model the low-lying negative-parity baryon
states are made of two quarks in the ground 1S,&2 eigen-
state and one quark excited to 1P&&2 or 1P3/2 Conse-
quently, the evaluation of the —,

' —
—,
'+ baryon matrix ele-

ments b. +. becomes much more involved owing to the
J

presence of 1P,&2 and 1P3&2 bag states. Assuming that
the —,

' resonances are dominated by the low-lying
negative-parity states, we have four (70, L =1) states
8,&2, 8,&2, 10«2, '1,&2 (see Appendix A for notation)

for uncharmed baryons and two states 6&y2 3~F2 for
charmed baryons. With the bag integrals given by Eq.
(3.7) of Ref. [14], it follows from Eqs. (3.1), (A3),
(B2)—(B5), and Eq. (A7) of Ref. [14] that [note that the
PV matrix elements b, , b ~ presented in Ref. [14] are

C C

for wrong SU(3) presentation (see also the footnote in Ap-
pendix A); they are corrected here in Eq. (3.3)]

with h —=GF V„V„d. Note that b, = —b, . With the
J1 1 J

bag integrals X& = —3.58 X 10 GeV and
X2=1.74X10 " GeV [14], the PC transitions are (in
units of c h GeV )

a + + =a p p= 3.76X10
C C
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b~+(p8)~+ 1 76 X 10 b~+(48)~+ 4 2 1 X 10 b+(p)0)~+ 1 47 X 10
C C C

b-o(28)-„o~ =4.77 X 10 b=o(48)=-OA=
—1.72X 10 ', b=o(210)=03=

—1.41X10 ',
C

0(28) OS
=3.55 X 10 b-o 4 -os=7.02 X 10 b-o, 2, ,

-os=2. 48 X 10 (3.3)

b ( 6)A = —7.97X10
C

b p p p=1.46X10, b + 2 + = —1.46X10
C C

b p 2 p=146X 10, b 0 23 0= —255X 10
C

b&0(26)&o
= 1.46X 10 ~ b&+(23)z+ 1 46X 10

C C

expressed in units of c h GeV .

B. Form factors and strong-coupling constants

Using the bag parameters given in Ref. [14],we obtain the following values for the overlap bag integrals appearing in
Eq. (D4):

f d r(u, u, +v, v, )=0.95, f d r(u„u, +v„v, )=0.88,

d r ( u, u, ——v, v, ) =0.86, d r ( u„u, ——v „v, ) =0.77 .~ ~ ~

1 3 1
c 3 0 c

(3.4)

The form factors f &
and g& [see Eq. (Dl)] at q =q,„=(m;—mf ) can then be determined directly from Eq. (D4) and

extrapolated to the desired q using Eq. (D3).
In current algebra, strong-coupling constants are related to the axial-vector form factors at q =0 via the

Goldberger-Treiman (GT) relations given by (C2) and (C8). With the bag integrals

Z& =0.052 Z2 =0.056 (3.5)

the numerical values for the form factors g~,~ and g ", can be read off immediately from Eqs. (C4) and (C6). Note that
C C

unlike the form factor g~ ~ (i.e., g, ), the q dependence of g~",~ and g, is quite weak because of smallness of q . In
C C C

what follows we list the coupling constants g, calculated in this way:
C C

g-+~-os + = —14.3, g-„oa-os o=10.3, g +&+&0=12.5
C C

g + p +=19 0 g +~ + —0=12 6
C C C C

(3.6)

g-OAg+g — 12.6
C C

g +-os&+ 12- ~ g ow o —0
C C C C

g -0A~ogo
C C

g-pg~ogp 22. 5
& gg+-OA + 0 ~

C C C C

The g~.~p coupling computed by the method of Ref. [21] are summarized in (Cl). The reader may check that the
current-algebra predictions for gg gp are smaller than those in (Cl) by roughly a factor of &2.

The coupling constants g ~ are obtained from Eq. (D9) of Ref. [14] together with the generalized GT relation

(C8). Taking the masses

620 MeV, m, 4, =1750 MeV, m, 2, ,
——1700 MeV, m, 2, -—1720 MeV,

m, 4, ——1900 MeV, m, &, ,
——1800 MeV, m, &,

——2750 MeV, m + ——2770 MeV,
C C

(3.7)

for low-lying —' resonances with:-,* denoting =, ( 6) or =, ( 3), we obtain

5The mass of X( 8) and X( 8) is taken from the Particle Data Group [22]. In Ref. [14] we took m z
—-2 GeV, which is unlikely to

be the mass of the lowest-lying (70, 10) state.
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g~+(2 )
—o

—0 52 ~ g~+(48) ~o
—2.49 ~ r+(zoo) z' 0.81, g~+(p8) O~+

= —0.47,

+(48) O&+ =0.33, g&+(2&o)-o&+
= —0.15, g&+(28)AO~+

— 0 63
& g&+(48)AO~+

= 1.59 „

gX+( 10)A + ' gX ( 8)X ~+ ' ' gX+( 8)X ~+ ' ' gz+('10) g
(3.8)

g-0(28)gonzo ' & g-0(48)gogo '
& g-0(210)X K

—0. 17 0(28) + o.4 1

o(48)+ 2 3 8 go(2&o)+=0.49, go(2)000.29, go(4, )oo= 1.68

g-0(2)o)-0 o ~ g-0(28)pgo ' g-O 48 ggo g-0(2)o)Ago

fol couplings, ~p, and

gg+( 6) ~+ ' gy+(&6)-+ Ago '
& gyo(26)-oA o & g-o(26)-+ A

g-o(23)-+ A — 0.26 y g-o(26)-oA 0 0 1 1
y g-o(23)-OA o 0 18 9 g-o(26)p+g—

C C C C C C

g o, 2- + —0.39, g o 2 + ——0.72, g o 2 o —o
—0.01, g o 23)gogo

—0. 17,
C C C C C C C C

(3.9)

for g, + coupling constants, where use has been made
C C

of the bag integrals

Y] =0.056 Y& =0.058 Y& =0.05 1 (3.10)

and Eq. (A7) of Ref. [14],and Y
&

= f r dr(u„u, —U„v, ).

C. Decay rate and asymmetry parameter

Armed with all the necessary ingredients we are in a
position to compute the PC and PV amplitudes from Eq.
(2.8) and Eq. (2.8) of Ref. [14] for all Cabibbo-allowed
nonleptonic decays B,—+B +P with B,=A,+,

, Q, . The calculated results are summarized in
Table I. (The formulas for the decay rate I and the de-

I

cay asymmetry parameter a are given in Ref. [14].) In
order to have a feeling for the size of the branching ratio,
we also calculate this quantity using the lifetimes (except
for A, )

r(A,+)=1.9X10 ' s,
7(:", )=1 OX10 ' s,
r(:-,+ "

) =4. 1 X 10 ' s,
(3.1 1)

where r(A+ ) is taken from the Particle Data Group [22],
r(:-,+") and r(:-,") from the central values of recent
E687 measurements [23]. Experimental results for the
decay rates of A,+ —+pK, Am+, X ~, :- E (see Table
III) are from Refs. [22,24].

TABLE I. Numerical values of the predicted s- and p-wave amplitudes of B,—+B+P decays in the
pole model in units of G+V„V„d X jLO GeV . The predicted a asymmetry parameter, decay rates (in
units of 10" s '), and branching ratios (in percent) are given in the last three columns. Lifetimes of
charmed baryons are taken from Eq. (3.11). As discussed in Sec. IV C, no reliable predictions can be
made for the decays A,+~:"K+ and:-, ~X+E

Reaction

A,+ —+pE
A,+ A~+
A,'-r'-
A, X++

~c
OA

OA go~
OA y+~—
OA 0 0
C

OA — +~c
no, ~=-o~

g fac

—5.73
—5.40

0
0
0

—3.75
6.99
1.34
2.65
0
0

—7.18
1.72

g pole

3.91
2.10
2.20

—2.20
0.10
0.01

—0.06
0.31
0.12
0.16
1.13
1.55

—0.06

g tot

—1.82
—3.30

2.20
—2.20

0.10
—3.74

6.93
1.64
2.77
0.16
1.13

—5.63
1.66

B"
14.33
18.09
0
0
0

12.99
—24.90
—4.72
—9.19

0
0

25.10
2.75

Bpole

3.23
—4.87

14.63
—14.63

4.26
—12.50

14.24
—6.04

6.39
3.53

—12.76
—3 ~ 80

—10.20

B tot

17.56
13.22
14.63

—14.63
4.26
0.49

—10.66
—10.76
—2.80

3.53
—12.76

21.30
—7.45

—0.09
—0.77
—0.73
—0.59

0.19
0.89
0.24
0.12

—0.54 0.25
—0.99 1.12
—0.93 0.13

—0.49 0.63
—0.95 0.44

0.78 0.36
0.78 0.36

(Br~theory

1.20
0.84
0.68
0.68

0.78
3.65
0.24
0.12

0.25
1.12

6The average value of r(:-,+")=(3.0+o 6)X10 ' s cited by the Particle Data Group [22] is pulled low by the old NA-32 result

v( + A) —(0.20+ '
) ps



HAI-YANG CHENG AND B.TSENG 48

It is clear from Table III that the pole-model predic-
tions are in good agreement with experiment except for
the decay A,+~:- K . In Sec. IVC we will argue that
presently we cannot make reliable predictions for the de-
cay modes A,+ —+= K+ and:-, ~X K . A detailed
discussion of our results and a comparison with other
works will be presented in Sec. IV.

IV. DISCUSSION AND CONCI. USION

Before drawing conclusions and implications from our
predictions for charmed-baryon nonleptonic decays, it is
pertinent to compare our results with the traditional ap-
proach (pre-1992), namely, current algebra, and the most
recent theoretical calculation (post-1992) presented in
Refs. [15,16].

A. Comparison with current algebra

Except for Refs. [5,10] most previous studies on the dy-
namics of charmed-baryon two-body weak decays are
based on the current-algebra technique. The predictions
are shown in Table II. The factorizable amplitudes are
the same as Table I. As for nonfactorizable contribu-
tions, the s-wave amplitudes are calculated by using the
commutator terms [Eqs. (E3) and (E4)], while the p-wave
one by Eq. (2.11).

Although the current-algebra and PCAC methods
were widely employed before for the study of 8,—+8+8,
several important improvements are made in the present
current-algebra calculation.

(1) As discussed in Sec. II, the large-X, approximation

rather than the naive factorization approximation, the
former being supported by the experimental measure-
ment of A, ~p P decay, is utilized for describing the fac-
torizable amplitudes. This has an important consequence
that the factorizable amplitude of 8,~B +K, which is
naively expected to be color suppressed, is no longer sub-
ject to color suppression and has an equal weight as the
factorizable amplitude of 8, —+8+~+. This helps ex-
plain why the observed ratio of I (A, +An—+

) /
I (A,+ ~pK ) is smaller than unity.

(2) Form factors f, and g, evaluated by the static bag
or quark model, for example, Eqs. (C3) and (D2), are in-
terpreted as the predictions obtained at maximum q
since static bag- or quark-model wave functions best
resemble the hadron state at q =(m; —mf ) where both
baryons are static. As a result, form factors at q =0 be-
come smaller than previously estimated. The decay rate
of A, ~Am, which was overestimated before by an or-
der of magnitude or so (see Table III of Ref. [14]), is now
significantly reduced.

(3) Strong-coupling constants and baryon matrix ele-
ments are calculated using the bag model so that their
relative signs are fixed. The relative signs are important
when di6'erent pole contributions are combined. In many
earlier publications, couplings and hadron matrix ele-
ments are often related to each other through SU(3) sym-
metry. Sometimes this will result in a wrong relative sign
if care is not taken. A prominent example is the decay
A, ~:"K+, which receives very little contribution for
its s waves (see Table II) and has the p-wave amplitude
given by

~ cA( A+ o~ +
)

m ++m o

f z=m —m z+Ag +-o a
K w+ r+ c

c

m OA+m
c c+a -0-0 A

m-o m-oA

m-os+ m +

g -„oA&+ ~ a -o-os g -ps&+
c c c m p m pS c c

Since g o& + =0 [see Eq. (C7)], only the first and third
c c

terms in (4.1) contribute to the current-algebra PC ampli-
tude. From Eqs. (3.2), (C4), and (C6) we find a large can-
cellation between these two pole terms. By contrast, a
large constructive interference was found in Ref. [6] ow-
ing to wrong relative signs.

A
v'2 g~f~ a„;

(m;+mf ) g
P m; —m„

n

Aafng8 B.
+ n i

mf mn
(4.2)

(4.1)

(4) The PC amplitude derived from the pole contribu-
tion of i &2q /f p has the familiar expression [19]

TABLE II. Same as Table I except that predictions are made by current algebra.

Reaction

A,+ —+@K
A, A~+
A,'-r'-
A,'-X -'

+A y+~
+A 0 +
c

OA yp~
OA y+~—
OA 0 0~c

~OA — +

no, ~=or

g fac

—5.73
—5.40

0
0
0

—3.75
6.99
1.34
2.65
0
0

—7.18
1.72

g corn

—4.44
0

—7.66
7.66

—0.06
4.47

—5.48
5.55

—3.20
0.06
7.76
5.49

—11.05

g tot

—10.17
—5.40
—7.66

7.66
—0.06

0.72
1.51
6.89

—0.55
0.06
7.76

—1.69
—9.33

B"
14.33
18.09
0
0
0

12.99
—24.90
—4.72
—9.19

0
0

25.10
2.75

BPole

2.10
—4.14

6.42
—6.42
—2.98

—12.50
14.24

—6.78
6.13

—0.92
—12.20
—2.74
—9 ~ 54

Btot

16.43
13.95
6.42

—6.42
—2.98

0.49
—10.66
—11.50
—3.06
—0.92

—12.20
22.36

—6.79

—0.90 1.82
—0.99 0.73
—0.49 0.88
—0.49 0.88

0.43 0.01
—0.77 0.19
—0.88 0.89

0.85 0.02

—0.78 1.12
—0.47 0.74

0.44 0.98

3.46
1.39
1.67
1.67

0.03
0.78
0.89
0.02

1.12
0.74



48 CABIBBO-ALLOWED NONLEPTONIC WEAK DECAYS OF. . . 4195

As discussed in footnote 4, the contribution due to
4m~ o[&" —&(&2/f~)q"T„] should be taken into ac-
count and it leads to Eq. (2.11) when combined with (4.2).
This correction is important for the decay modes
A,+ X m+, = E+ and=, X E X+E AE

Recall that the predicted ratio of I'(Arr+)/1 (pE ) in
earlier attempts is considerably larger than unity, ranging
from 2.3 to 13 (see Table III of Ref. [14]), while experi-
mentally it is only 0.36+0.20 [21]. The improved
current-algebra computation yields a value of 0.40 for
this ratio and a smaller absolute decay rate for
A,+ ~Am. +, both being in the right ballpark.

We now compare our work with current algebra. To
compute the PC amplitudes from Eq. (2.8) we actually
apply the GT relation for the g, couplings and Eq.

C C

(Cl) for the coupling constants gg gp ~ The difference be-
tween Tables I and II for the nonfactorizable p waves
thus comes from the difference between gz.&~ and
&2(m~ +m~ )g~ ~ /fr . It is clear that PC amplitudes 1n

Tables I and II are generally the same except for the
channels A,+ —+X m. +,X+~, :- E+ and:- X+K . In
both approaches, the nonfactorizable 8'-exchange effects
are not negligible; they are as important as the factoriz-
able ones in the decays =,+ ~X+E,:" ~+, :-, —+X E
and even dominate in the reactions ","—+AE and
0, :-E.

The crucial difference between current algebra and the
pole model lies in the PV sector. By comparing Table I
with Table II, it is evident that (i) the s-wave amplitudes
are no longer dominated by the commutator terms, that
is, the on-shell correction (2 —A ) is quite important
and has a sign opposite to that of 3 [14,15]; (ii) the
sign of the nonfactorizable PV amplitudes is opposite to
that predicted by current algebra for the decays
A+ ~pg', r'~+, r+~', indicating that)

~
A

~
in these cases; and (iii) for =,+ and:-, decays,

the commutator terms are of the same equal weight as
factorizable contributions, whereas nonfactorizable s
waves are always suppressed in the pole model.

The current-algebra method for s waves is drastically
simple as it does not require the knowledge of excited —,

resonances. However, we see that such a simplification is
certainly not applicable for describing the PV amplitudes
of charmed-baryon weak decays as the pseudoscalar
meson is no longer soft. We also see that the predicted
signs of the total s-wave amplitudes of A,+~X m. +,X+~,

~X E, and Q, —+= E relative to the correspond-
ing p waves are different in the pole model and current
algebra. Hence, even a measurement of the sign of the o,'

symmetry parameter in above-mentioned decays would
provide a very useful test on various models. Experirnen-
talists are thus urged to perform such measurements.

B. Comparison with most recent theoretical calculation

quark model to tackle the three-body transition ampli-
tudes (instead of two-body transitions) directly. In this
section, a comparison of our work with Refs. [15,16] will
be made in order.

Though XK employ the current-algebra expression Eq.
(4.2) to evaluate the nonfactorizable p-wave amplitudes,
they do consider the —,

' pole contributions to the s
waves. Their s-wave pole formula Eq. (14) is identical to
our Eq. (2.8) after applying the generalized GT relation
(C8) for the couplings g + and g „.XK used SU(3)

C C

and SU(4) symmetries to relate the form factors g~".~p and

gz, to the SU(3) parameters F and D, which are in
C C

turn determined from a fit to hyperon semileptonic de-
cays, and the diquark model to calculate the PC baryon
matrix elements. It is the s-wave sector where the XK's
work deviates mostly from ours. XK argued that the
product of form factors and PV matrix elements for

—
—,
'+ transitions can be related to PC baryon matrix

elements. Moreover, under the assumption that
(F +D )/(F D)=—0, with F and D being the
analogous of the F and D parameters for —,

' —
—,
'+ transi-

tion form factors, they claimed that the s-wave pole con-
tributions are completely determined from the commuta-
tor terms of the masses of —,

' resonances without intro-
ducing further new parameters. In our analysis, we have
applied the MIT bag model to compute all the form fac-
tors and baryon-baryon matrix elements involving —, in-

termediate states.
A comparison of Table I with Tables I and II of Ref.

[15] shows that we are more or less in agreement with
XK on the 2 "' amplitude in A, decays except for

+~pE, but our Q I"' for =, , =+ decays are
dramatically different from those of XK not only in sign
but also in magnitude: ours being smaller by roughly an
order of magnitude. It is not clear to us what is the
source of discrepancy. Since XK has a larger 2 ~"' for
A,+ —+pE, which dominates over 3 ",their cx is opposite
to ours in sign (see Table III). Hence, a measurement of
the sign of a(A,+~pIC ) will furnish a useful test on the
importance of on-shell corrections to the s-wave ampli-
tude. Finally, we note that in spite of the disparity on the
cx parameter, the predicted decay rates by XK are never-
theless in accordance with ours within a factor of 2.

%'e next switch to the work of KK. Instead of decom-
posing the decay amplitude into products of strong cou-
plings and two-body weak transitions, KK analyze the
nonleptonic weak processes using the spin-Aavor struc-
ture of the effective Hamiltonian and the wave functions
of baryons and mesons described by the covariant quark
model. The nonfactorizable amplitudes are then obtained
in terms of two wave-function overlap parameters H2 and
H3 which are, in turn, determined by fitting to the exper-

There are two recent works [15,16] in which a com-
plete analysis of B,—+B +I' is performed and factorizable
amplitudes are evaluated under the large-X, approxima-
tion. Among these two works, the framework adopted by
Xu and Kamal (XK) [15] is most close to ours, while
Korner and Kramer (KK) [16]chose to use the covariant

A possibility is that the PV ~
+ —2+ baryon matrix elements

b;, [cf. Eq. (2.9)] are important for =,+ ", =,", Q, decays. It has
been shown [8,9] that b;J are in general small for A, —+8+P de-

cays, but they have not yet been examined for other antitriplet
charmed baryon decays.
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TABLE III. The predicted decay rates (in units of 10" s ') and the a asymmetry parameter (in parentheses) for B,~B+Pdecays
in various models.

Reaction

A,+ ~pE
A,'-A-

C

A,+ 2+m

+ A y+go
+A 0 +

~0 A yp~
~OA y+~—

OA 0 0~c
OA — +~c

no, ~=-pX'

Current algebra
(This work)

1.82( —0.90)
0.73( —0.99)
0.88( —0.49)
0.88( —0.49)

0.01(0.43)
0.19(—0.77)
0.89( —0.88)
0.02(0.85 )

1.12( —0.78)
0.74( —0.47)
0.98(0.44)

Pole model
(This work)

0.63( —0.49)
0.44( —0.95 )

0.36(0.78)
0.36(0.78)

0.19(—0.09)
0.89( —0.77)
0.24( —0.73 )

0.12( —0.59)

0.25( —0.54)
1 ~ 12( —0.99)
0.13(—0.93)

Xu and Kamal
[15]

0.60(0.51)
0.81( —0.67)
0.17(0.92)
0.17(0.92)
0.05(0)
0.10(0.24)
0.76( —0.81)
0.33( 1.0)
0.09( —0.99)
0.11(0)
0.50(0.92)
1.55( —0.38)

Korner and Kramer
[16]

input ( —1.0)
input ( —0.70)
0.16(0.70)
0.16(0.70)
0.13(0)
1.46( —1.0)
0.80( —0.78)
0.11(—0.76)
1.05( —0.96)
0.11(0)
0.03(0.92)
0.93( —0.38)
1.75(0.51)

Experiment
[22,24]

0.84+0.21
0.30+0.08( —1.03+0.29)
0.29+0. 14

0.13+0.04

imental data of A,+~pK and A,+ —+A~+, respectively.
Despite the absence of first-principles calculation of the
parameters Hz and H3, this quark-model approach has
fruitful predictions for not only B,~B+P, but also
B,~B+V, B'(—,'+)+P, and B"(—', +)+ V decays.
Another advantage of this analysis is that each amplitude
has one-to-one quark-diagram interpretation.

It is clear from Table III that the predicted decay rates
of:-,+"~%+K, :-,"—+X K, Q, —+= E by KK are
larger than ours and that of XK by an order of magni-
tude, whereas the decay =, —+ = ~+ is strongly
suppressed in the scheme of KK. Therefore, a measure-
ment of the ratios

Bpole(A+ OIt +
)

Bpole( OA y+~ —
)

X Ir: X A+
C

m+ —m+
C

a-0-OAgA+-OA&+
C C C

m p m pA
C

a -0-OSg p+ -OS~ +
C C C

m-„o m-„os

(4.4)

I (
+A y+g0)

R 1 I( +A 0 +)

g-0~+~ —& -OA O
C

m pA m 0

& &+&+g-0 A&+&-
C C C

m+ —m+
C

I( OA 0 0)
R2= I( OA — +) (4.3)

I (
OA yOgo)

R3=
OA — +)

C. A+ —+= E and:- "~X E

which are predicted to be, respectively, 0.21, 0.22, 0.11 in
the pole model, and 1.83, 0.03, 1.13 in the covariant
quark model, will be quite helpful to test those two
schemes.

[The first line of Eq. (4.4) is identical to Eq. (4.1) after the
use of the GT relations. ] A substitution of Eqs. (Cl),
(3.2), and (3.6) into Eq. (4.4) clearly indicates a large des-
tructive interference in the p-wave amplitudes, resulting
in rather small decay rates for both modes. The fact that
the naive prediction I (A, ~:- K+)=1.1X10 s ' is too
small compared to the recent CLEO measurement [24]
(1.3+0.4)X10' s ' shows that our predictions for those
two decay modes are unreliable. The situation becomes
even worse in the framework of current algebra (see
Table II).

The CLEO data thus suggest that the destructive in-
terference in the p wave of A, —+ = K is not as severe as
originally expected. There are several possibilities for al-
lowing the alleviation of large cancellation. For example,
the Goldberger- Treiman relation for the coupling

The decays A,+~:"K+ and:-, —+X+K share some
common features that they do not receive factorizable
contributions and that their s-wave amplitudes are very
small and p-wave ones are subject to a large cancellation.
More explicitly,

sThe discrepancy is improved in Ref. [15], but the prediction
there is still too small by a factor of 3 (see Table III). As noted
in passing, the p-wave formula used in Ref. [15] is that of Eq.
(4.2).
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g + 0& + may not work well, or the g + o& + coupling
C C C C

constant is not strictly zero, or the —,
'+ resonances may

make important contributions to the PC amplitudes or it
requires the combination of above mechanisms. This is-
sue should be seriously concerned in future study.

It is worth mentioning that the predicted
I (A,+ —+ = K+ ) by KK is in remarkable agreement with
experiment. In the scheme of KK, the decay modes
A,+~:- E and:-, "—+X+K receive contributions only
from the quark diagrams IIa and III (see Ref. [16]for no-
tation). KK observed that the effect of diagram III is
strongly suppressed relative to IIa. In other words, these
two decay modes proceed essentially through diagram
IIa; strong cancellation occurs only in diagram III.

In the pole model, diagram IIa corresponds to the pole
diagram in which a weak transition is followed by a
strong emission of a meson, while diagram III contributes
to both different pole diagrams. Unfortunately, we do
not know how to separate diagram IIa from diagram III
in pole language. At any rate, our goal is to understand
the suppression of diagram III in the pole model in order
to resolve the aforementioned problem.

D. Conclusion

We now draw some conclusions from our analysis of
nonleptonic weak decays of charmed baryons into an oc-
tet baryon and a pseudoscalar meson.

(i) The large-X, approximation for factorizable ampli-
tudes, which works well in the charmed- and bottom-
meson sector, is also efFective in the heavy baryon sector
as borne out by the experimental measurement of
A,+~pP. This accounts for the color nonsuppression of
the decay A,+~pE relative to A,+ ~Am+.

(ii) Nonfactorizable contributions are evaluated under
pole approximation so that they are saturated by one-
particle intermediate states. It turns out that s-wave am-
plitudes are dominated by the excited —,

' resonances, and
p-wave ones by the ground-state —,

'+ poles. In the soft
pseudoscalar-meson limit, the parity-violating amplitude
is reduced to the current-algebra commutator term. We
find that s waves in charmed-baryon decays are no longer
dominated by commutator terms; this is not surprising
since the meson is far from being soft. The important
on-shell correction (A —A ) will affect the a asym-
metry parameter and changes its sign for the decays
A+~X m. + X+~:" ~X E, an Q, ~:"E . Hence,
even a measurement of the sign of a in these decay modes
will be helpful to discern current-algebra and other
theoretical models.

(iii) Nonfactorizable W-exchange effects are not negli-
gible; they are comparable to the factorizable ones in the
decays "+ ~X+E,:- m+, =, ~X E, and even dom-
inate in the reactions =,"—+AE and O, ~:- E .

(iv) Form factors f, and g, evaluated by the static bag
or quark model are interpreted as the predictions ob-
tained at maximum q where both baryons are static.
Consequently, form factors become smaller at q =0 than
previously expected. The decay rate of A,+ —+A~+,
which was largely overestimated before, is now
significantly reduced.

pole model: A = —2.20, B= —14.63,
current algebra: A =7.66, B= —6.42 .

(N3)

It is evident that the current-algebra prediction is incon-
sistent with both of the experimental values given in (N2)
since it predicts a large decay rate
I (A,+~X+m )=0.88X10" s '. In order to pin down
which solution of (N2) is chosen by nature, experimental-
ly one has to measure another asymmetry parameter:

(Ef +Mf )I A I' (Eq M—f )I& I'

(Ef+Mf) A( +(Ef Mf)~8~

where E& (M&) is the energy (mass) of the daughter
baryon in the rest frame of the charmed baryon. Unfor-
tunately, a measurement of y, which characterizes the
transverse polarization of the daughter baryon, is di%cult
at present since it requires the charmed baryon be polar-
ized. Theoretically, we believe that the real experimental
value is that of the first set in (N2). Clearly, the p-wave
amplitude predicted by the pole model is in excellent
agreement with "experiment. " In the pole model, the s-
wave amplitude receives important on-shell corrections
as the pion is no longer soft [see Eq. (2.14)]. The on-shell
effect is calculated in the MIT bag model to be
A

p &
A && 2 20 7 66=9.86. The experimental

value of A =1.06, when compared to the soft-pion pre-
diction A~A =7.66, clearly indicates that on-shell effects
are indeed destructive but not large enough to change the
sign of the PV amplitudes. We conclude that (i) the
agreement of current algebra with experiment for the de-
cay asymmetry parameter a is somewhat an accident be-
cause its predicted decay rate is too large, and (ii) if the
first set of (N2) is proved in the future to be the true ex-
perimental result, this will imply that the pole model is

(N4)

(v) The decays A,+~:- K+ and:-, "~X+IC receive
dominant contributions from nonfactorizable p waves.
Owing to a large cancellation in the pole amplitude, we
cannot make reliable predictions on their decay rates and
asymmetry parameters. An effort to resolve this problem
is urgently needed.

Rote added. After the paper was submitted for publi-
cation, we learned that the decay asymmetry parameter a
in the decay A,+~X+m has been measured by CLEO
and a result of a= —0.43+0.23+0.20 was reported [28].
At first glance, this experimental result seems to agree
with the prediction of current algebra, but is in disagree-
ment in sign and magnitude with most recent theoretical
calculations (see Table III). However, a more detailed
analysis gives a different theoretical implication. Using
the CLEO result for the decay rate [29]

I (A+ 2+m. ) =(0.33+0.08+0.07) X 10" s ' (Nl)

together with the measured value of a, we find two solu-
tions for s and p waves (only central values are quoted):

(i) A =1.06, 8 = —15.21,
(N2)

(ii) A =4.73, 8 = —3.42,
in units of G~ V„V„d10 GeV, where the relative sign is
fixed by a. For a comparison, theoretical predictions are
given by (see Tables I and II)
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indeed in the right ballpark for both s and p waves. A
1arge and destructive on-shell efect is inevitable for un-
derstanding the PV amplitudes. The moral we learned
from the above analysis is that the present bag-model ca1-
culation seems to overestimate the on-shell corrections.
In retrospect, this is perhaps not surprising since it is
known that the bag model is not successful in reproduc-
ing the quantitative features of the observed spectrum of
low-lying negative-parity —,

' baryon resonances [26].
Therefore, a better understanding of the —,

' states, which
are responsible for s waves, is called for.
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APPENDIX A: BARYON WAVE FUNCTION

To Ax the relative sign of the coupling constants, form
factors, parity-conserving, and parity-violating matrix
elements, it is very important to employ the baryon wave
functions consistently. In the present paper, we use the
isospin baryon-pseudoscalar coupling convention given in
Ref. [25] (see Appendix C) to fix the sign of the ground-
state —,

'+ octet baryon wave functions. In the following,
we list those wave functions relevant to our purposes:

p = —[uudy, +(13)+(23)],1

3

X+ = — —[uusg, +(13)+(23)],1

3

X = —[(uds+dus)y, +(13)+(23)],o 1

6

A = — —[(uds —dus)y„+(13)+(23)],o

where abc', =(2a tb tc i —a tb tet —a ib tc t)/3/6 and
abc'~ =(a "b ct —a "btc t)/&2, and the superscripts A

and S indicate antitriplet and sextet charmed baryons, re-
spectively.

The low-lying negative-parity —,
' noncharmed baryons

belong to the (70,1.= 1) multiplet in the liavor-spin SU(6)
basis, which can be decomposed into SU(3) multiplets as

170,210„,&e I70, '1„,&, (A2)

8
3/2& 316 i/2& (A3)

where the superscript and subscript denote the quantum
numbers 2S+1 and J, respectively. In the MIT bag
model these states are made of two quarks in the ground
1S»2 state and one quark excited to 1P»2 or 1P3/2.
That is, the SU(6) (70,L =1) states can be constructed
from the I8 i/2 & 18 i/2 &b I P3/2 & I10 Pi/2 &

~
10,P3/2 & configurations [26], where

P 1/2 ( 1~1/2 ) 1P1/2 3/2 ( 1Si/2 ) 1P3/2' The explicit
wave functions for the —,

' resonances of X+ are given by
Eq. (A8) of Ref. [14]. The wave functions for the low-

lying negative-parity states of the octet baryons can be
easily obtained from that of X+(—,

'
) by an appropriate

replacement of quarks. For example, the = ( —,
'

) wave
functions may be obtained from X+(—,

'
) wave functions

by the substitution u ~s.
As for the charmed baryons, the charmed quark in the

low-lying —,
' state does not get excited, while the two

light quarks of the charmed baryons are either in the
symmetric sextet or antisymmetric antitriplet state in the
SU(3) flavor space. The wave function of the —,

' sextet
charmed baryon, say X, ( —,

' ), is simply given by

—[ssuy, +(13)+(23)],1

3

—[ssdy, +(13)+(23)],1

3

A,+ = — —[(udc —due )y~ + (13)+ (23)],1

6

X,+ = —[(udc+duc)y, +(13)+(23)],+ 1

6

X, = —[ddcy, +(13)+(23)],o 1

v'3

—[(dsc —sdc )y„+(13)+(23)],OA

6

—[(dsc+sdc)y, +(13)+(23)],-os
v'6

1—[(use —sue )gz +(13)+(23)],
6

-+s —[(usc+suc)g, +(13)+(23)],v'6

Q, = —[sscg, +(13)+(23)],p 1

V'3

(A 1)

X (6 P )=—'[2(d d "ct+dtd ct) —d d "ct

—d'Td Tc' —d'd'c' —d'd'c'

+ (13)+ (23)],
(A4)

X,(6,P3/2)= —,'I3/3(d "d tc i+d fdic i) —d d c

d ld Tc T+d Td lc T d Td Tc 4

—d "d ic t+d id "ct+(13)+(23)]

where the 1Pi/2 (1P3/2) quark is denoted by a tilde (un-

dertilde), the s, =—', quark state is remarked by q, and

(ij ) means permutation for the quark in place i with the
quark in place j. The low-lying —,

' resonance of the anti-
triplet charmed baryon, e.g., =, ( —,

'
) has the form

The SU(3) representation of charmed baryons given in Ref.
[14] is erroneous.
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c( 31/2r 2 ) c(3r 2 ~Pl/2 )

d "s "c 1 —d ts "c1+0 ts tc "—d s tc 1 —s td "c1+s td "c"—s d tc t+s d tc 1+(13)+(23) . . (A5)
2V'6

The explicit spatial wave functions of the quark states
1S)~2, IPi~2, and 1P3/2 are given in Appendix A of Ref.
[14].

for = ( —,
'

) —:-," transitions,

&=-'«, P„,).lo" I=- &

APPENDIX B: PARITY-CONSERVING
AND -VIOLATING MATRIX ELEMENTS

&
r+ lo" lx,+ &

= —&r'lo" r', &

2&2
( —X, +9X2)(4'), (81)

&:-'IO"
I

=-', "&
= —(X, 3X )(4~),

6

Since the evaluation of the parity-conserving (PC) and
parity-violating (PV) matrix elements in the MIT bag
model is already elaborated on in detail in Appendix 8 of
Ref. [14], here we just summarize the matrix elements
relevant to the present paper. The Pc matrix elements
are found to be'

&r+IO A+&=&A'O r'&= — —(X +3X )(4m)
4

6

=i (4n. )( —,'X, —3X2 —
—,'X„—3X2, ),

6

0( 10 P ) IOPv
I

os& (83)

=i —(4')( —,'X, —3X2 —
—,'X„+3X2, ),

6

&:- (8,P3/2)lo:-, & =i —3/2n. (
—2x1 —x„),

9 3

&:-'(10,P )IO I:-, & =i 3/'4n-( —X, +X„),
9 3

for ='( —,
'

) —:-',transitions,

&X,(6,P, )Io IA &= '2v'3(4 )( —,'X, +X ),

&:- (8,P, /2)blO I:-, &=i (4m)( —,'X, —3X + —,'X„),
6

&-" IO I= &= — —(X +9X )(4n. )
3 2

where Xi and X2 are the four-quark overlap bag integrals
defined by Eq. (83) of Ref. [14].

The evaluation of the parity-violating matrix elements
for —,

' —
—,
' transitions is much more involved because

the physical —, baryon states are linear combinations of
($1/2) P1/2 and (S1/2) P3/2 quark eigenstates. Conse-
quently, the number of the related bag overlap integrals is
largely increased. The relevant PV matrix elements for
our purposes are

&x, (6,P, )Io IA &=i 3/4'( —x', ),
9

&X,(6,P, /2) 0 IX &=i2{4~)(—,'X1 —3X, ),

&X,(6,P, )Io "IX & =i 3/2'( —X )—,

&r,+(in-)lo' Ir+ &= —&r', (in-)lo' Ir'&,

for X, ( —,
'

) —A and X, ( —,
'

) —X transitions, and

&:-,(6,P, /2)lo I:-0&=i2(4~)(—,'X, —3X2),

(84)

&=-'(8,P„,). O' I=-', "&

= i23/2(4m )( —,'X1+X2+—,'X„—X2, ),
&:- (8,P, /2)b IO I:-, & =i23/2(4~)( —,'X1+X2 —

—,'X„),
= (10 P )IOPvl QA& (82)

&:- (10,P / )IO I:-,"&=i 1/477(x, —X„),—

' Note that there is a sign misprint in Eq. (84) of Ref. [14]
which is corrected here in Eq. (B1).

= i23/2(4n. )( —,'X, +X2+—,'X„+X2,),
&:" (8,P3/2)lo I:-,"&=i—3/'2n(2x, +x„),rv -ow

& =-;(6,P„,)lo" I=-') =i—&2~( —x', ),PV -0
9

&:-0(3,P1/2) IO" I:-'& = i23/3(4~)(-,'X1 —Xz l,

(85)

APPENDIX C:
STRONG-COUPLING CONSTANTS

The octet baryon-pseudoscalar meson BBP coupling
constants can be reliably evaluated using the method of
Ref. [21] which employs the null result of Coleman and
Glashow for the tadpole-type symmetry breaking. In ad-
dition to (D 1) of Ref. [14], the results related to the
present paper are

for =,( —,
'

) —:-transitions, where the bag integrals X„X„
X„,X„,X„X„,X;, X are defined in Appendix 8 of Ref.
[14]. The PV matrix elements for X+( —,

'
) —A+ transi-

tions can be found in Appendix C of Ref. [14].
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g 0,—0= —18.1,
g 0 + = 6 1

(Cl)

gs z = (B' t lbqibq2u lB 1 ) f d r(uqiuq2 vqivq2)

(C3)

g 0 —0=5.6,

g -0-0 0 4

where u (r) and v (r) are, respectively, the large and small
components of the wave function for the quark state
1P)~2. We find

where the sign of the coupling constants is fixed by the
isospin coupling convention given in Ref. [25]. As shown
in Ref. [21], the above gs gp couplings are in good agree-
ment with experiment. The quantity of interest in the ap-
proach of current algebra is gB B, the axial-vector form
factor at q =0, which is related to the BBP coupling
constant via the Goldberger-Treiman (GT) relation

A & A
g~+ qg~+-„0— g xo 0 /3g -opo

2 g ~2 „4'
A — A — A1

g ~0~— 2g ~0~0 g ~+ Q~'6

1 A 4m
g y+go pg x+g+

(C4)

—mg +ms
ga'ap'

JPa
(C2) where

where f . is the decay constant of the pseudoscalar

meson P' (a =1, . . . , 8) in the SU(3) representation.
Note that the axial-vector current corresponding to, for
example, P, is —,'(uy„y~u —dy„y~d ). In the bag model

the axial form factor in static limit is given by

Z, = f r dr(u„——,'v„),

Z2= f r dr(u„u, —
—,'v„v, ) .

(C5)

As for charmed-baryon-pseudoscalar B,B,P coupling,
we will rely on the GT relation (C2). The results are

A 1 A
g -+-Os 2g-QA-Os ~—g ~+~+

c c c c v 2 c c

1 A 4m

Q2 g A,+x',
(C6)

A A A A1
g -+g+ g -OAg+ g -Osp+ g g -OHIO

c c c c v 2 c c

A1
g -OAxo

4m
Z2

and

~+ OA +A
3 e ~ c ~ c (C7)

Interestingly, Eq. (C7) is a rigorous and model-
independent statement in the infinite charmed-quark
mass limit. This comes from the fact that the light di-
quark in the 3 multiplet has spin parity 0+ and that the
pseudoscalar meson is emitted solely from the light
quarks in the heavy-quark limit. Since the transition
0+~0++P does not conserve parity, it leads to vanish-
ing B3B3Pcoupling.

To evaluate the s-wave amplitudes we also need to
know the B*BPcoupling constants (B*: —,

' resonance).
We shall use the generalized GT relation

m —mB
gB +BP r gB +BI Pa

(C8)

APPENDIX D: FORM FACTORS

To evaluate the factorizable amplitudes of baryon weak
decays requires the information on the form factors f,
and g, defined by

to estimate the couplings g + .. Note that

gBB*P=gB*BP, while gBB*= gB*B. For an evaluationA A

of g ~ in the bag model, see Appendix D of Ref. [14].

(B/I V„—~„IB;) =u/(p/) [fiy„+ifpu„.q"+f3q„

gled pT5 Lg2&pvq 75
—g3q„ys]u;(p;) (D 1)

and Eq. (C3). However, contrary to the conventional in-
terpretation, (D2) and (C3) should be regarded as the
bag-model predictions obtained at maximum four-
momentum transfer squared, i.e., q = (m, —mI ) . This is
because the static-bag wave functions best resemble ha-
dronic states in the frame where both baryons are static.
This can be achieved by choosing the Breit frame where

p; =py =q/2=0.
For definiteness, we will assume a dipole q depen-

dence for the form factors

fi(0), gi(0)f, (q') = . . . , g, (q') = '. . . , (D3)
(1—

q /mi, ) (1—
q /m„)

where the pole masses are m i, ( 1 ) =2.01 GeV,
m„(1+ ) =2.42 GeV for the pole with the quark content
(cd) [22], and m&(1 )=2. 11 GeV and m&(1+)=2.54
GeV for the pole with the (cs ) quark content. We find at
q =q,„=(m;—m&) that

with q =(p; —p&)„. In the static limit f, and g& are de-
rived in the bag model to be

f i~ ' = (B&T lbtib 2lB T ) f d r(uqiuq2+vqivq2)

(D2)
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A A -0A-— -+ A-0f ' =(2)' f ' = —(2)' f ' = f d r(u, u, +u, u, ),
go-0 ~+ -+ Ay+ 2 -OAgo -OApf c —

(
Q )1/2f c

(
2 )1/2f c — f c —2f c f d3r(u u +U U )

~+a -OA-— -+ A-0

g
' =(—')' g

' = —( —')' g
' =fdr(uu ——'vu)

go-0 p+ -+ Ag+ 2 -QAgo -OAp—3g' = —( —')' g' = —
( —')' g' = —g' =2g' =fdr(uu ——'UU)

(D4)

With the overlap bag integrals given by Eq. (3.4) it is
straightforward to check that our numerical results for
form factors extrapolated to q =0 are in agreement with
Table VI of Ref. [27] for A,+~A, :-,+"~:-, and

—+= transitions. Form factors induced by the c~u
current are not given in Ref. [27]. If (D2) and (C3) were
interpreted as bag predictions at q =0, the calculated
branching ratio of the exclusive A,+~A decay would
have been enhanced by a factor of 3.5, which is in violent
disagreement with experiment [14]. This is another indi-
cation that the static-bag calculation of form factors is
indeed carried out at maximum q rather than at q =0.

g CA(A+ 0~+ )—
&
X+~a"~A,

+
&

( 0~~PC~ OA )

/I c"(A+ PrCO) =
&

X+ ~upc~A+ &,
1

fx
~ c"( A+~A~+)=O,

g CA(A+ yp +
)
— g CA(A+ y+ 0)

C C

(r ~&"~A, ),

APPENDIX E:
CURRENT-ALGEBRA COMMUTATOR TERMS

gCA( +A 0 +) ( 0~~PC~ OA)

In current algebra the nonfactorizable s-wave ampli-
tude of the decay B,~B+P' in the soft-meson limit is
governed by the commutator term

g CA

g CA( + A y+gp)

g CA( OA ypgp)— l

2

( y+ ~~PC A+ )

( 0~~PC~ OA )

(E4)

where f = 132 MeV and fit =1.22f . As an example,
consider the decay =, ~AK,

g CA( OA y+It —
)

g CA( OA Agp) & Alga ~PC~-oA
& (E2)

+ &r+~m"~A+ &,

K 3 1/2 OFrom Eq. (Al) we obtain (A Q =(—,
')'/ (:-0~ and hence

g CA( OA 0 0) ( 0~~PC OA )

( Ag )
—

(
3 )1/2 ( -0~~PC~ OA) (E3) g CA( OA — +

) ( 0~~PC~

The remaining s-wave commutator terms are summarized
below:

g CA(~0 -Ogp) ( 0~~PC~ PS)
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