
PHYSICAL REVIEW D VOLUME 48, NUMBER 1 1 JULY 1993

@CD and the relativistic Hum tube with fermionic ends
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We formulate a quantized relativistic flux tube model for mesons, in which the flux tube termi-
nates on fermionic quarks of arbitrary mass. A semirelativistic reduction shows that all relativistic
corrections correspond to the expectations of @CD.
PACS number(s): 12.40.Aa, 11.10.@r, 11.10.St, 12.38.Aw

I. INTRODUCTION

The search for a realistic model of hadronic matter
has evolved rapidly in the last few years. It now seems
clear that the standard potential model does not cor-
rectly account for the observed facts in heavy quarkonia
[1] or in the light states [2], and that the origin of the
diKcultly is with the long-range Lorentz scalar potential
which seems to be inconsistent with @CD [3,4]. Although
a semirelativistic potential can be formulated [5] which
does, through cleverly devised retardation corrections,
agree with @CD, we believe that it is more desirable to
look to a more fundamental approach.

In a classical analysis [4] we have demonstrated that
for large angular momenta the leading relativistic @CD
corrections can be interpreted as the angular momentum
and angular energy of a rotating flux tube. Thus, the
simplest interpretation of these relativistic corrections
implies that it is crucial to consider the momentum as
well as the energy of the interacting field.

The flux tube model in a nonrelativistic form was pro-
posed by Isgur and Paton [6] as a unifying concept for
quark spectroscopy, hybrid states, and glueballs. The
concept is closely related to @CD stringlike models in-
tended to bring together [7] the old @CD string [8] and
the quark model.

A relativistic string and/or flux tube model was ex-
plored by Ida [9] and LaCourse and Olsson [10]. In
the latter, a quantized version was developed which
for massless quarks yield a spectroscopy consisting of
a straight leading B.egge trajectory with parallel evenly
spaced daughter trajectories. Purthermore, the meson
states occur in energy-degenerate groups or towers.

In this paper we consider the construction of a rel-
ativistic flux tube model in which a straight flux tube
terminates on fermion quarks. Although the model is
stated in a form valid for all quark velocities, we will con-
centrate here on heavy quarks and consider relativistic
corrections. This is an important step since considerable
effort has gone into the development of @CD implications
for spin-dependent [11] and spin-independent relativistic
corrections [3]. For the spin dependence, our result is
that, as expected [12], there are no long-range spin cor-
relations and the tube only contributes to the kinematic

where a is the tube energy per unit length or the string
tension. The I2 coefficient in (1) is our previous classical
result [4] due to the rotating tube. The first term in (1)
arises from spin and commutation effects in the flux tube
model and agrees exactly with the expectation of @CD
[3, 4].

In the spirit of the Cornell model, we may augment the
flux tube with a singular short-range interaction which
reproduces the well-known Lorentz vector-spin and spin-
independent relativistic corrections.

In Sec. II we discuss the general formulation of the
relativistic flux tube model with spin-& quarks at the
ends. The reduction of the wave equation to exhibit the
relativistic corrections is worked out in Sec. III and our
conclusions are found in Sec. IV. Some details of the
symmetrization of the Hamiltonian are given in the Ap-
pendix.

II. THE FLUX TUBE MODEL WITH SPIN

Encouraged by the classical results [4] for the relativis-
tic corrections at large angular momentum, we consider
a more realistic situation. In this section we formulate
a quantized, relativistic straight flux tube model with
spin-2 quarks. We do this through the Dirac Hamilto-
nian, adding the required tube "field" momentum and
energy while preserving Lorentz covariance. With this
established we go to the two-particle Salpeter equation
which will be treated by standard reduction techniques
in Sec. III.

Let us begin with the free Dirac equation in position
space,

i g(r, t) = [ct p+—Pm]g(r, t) = H@(r, t) .
. 8

(2)

As we have previously emphasized, the flux tube carries
both energy and momentum. We introduce the tube by

Thomas precession type of spin-orbit interaction. For the
spin-independent corrections we obtain

a 1 1 8
Hsr —— , + , +36r m2i m22 mimz )

a 6 1 1 1.+ 12

6r (m', m,' mim2)

0556-2821/93/48(1)/417(5)/$06. 00 48 417 1993 The American Physical Society



418 M. G. OLSSON AND KEN WILLIAMS

the covariant transformation

+v ~+@

which means that the new canonical momentum p now
includes the momentum associated with the flux tube.
The above transformation (3) is a direct analog to the
standard "minimal substitution" used to introduce the
electromagnetic field.

The Dirac equation (2) becomes

We can now use the above Hamiltonian to describe a
two-fermion system. We go to the two-particle Salpeter
equation [13, 14], although we may well have chosen the
two-body Dirac equation [15], for example. The Salpeter
equation is

M —Hog(pg) —H02(p2) y(pg, p2)

i = [n (—iV' —pg) + Pm+ Hg] g,. cia
Bt

= [n (—iV') + Pm] g + A(r)g,
where

A= —n pg+ Hg,

(4)

dkG(k)P(pg —k, p2+ k) . (7)

Here G(k) is an interaction kernel for a potential type in-
teraction. For example, G(k) k for a Coulomb-type
interaction. In the above Salpeter equation (7) P(pq, pq)
is the Fourier transformation of Q(rq, r2) and

u~ = (H~ p~) .

The Fourier transform of both sides of (4) leads to the
Hamiltonian for the Dirac particle and flux tube,

H(p)P(p) = [n p+ Pm]P(p) + dkA(k)P(p —k)

= Hog(p) + dkA( —k)P(p + k),

where A(p) is the Fourier transform of A(r).

Ho, =m P+p, n, i= 1 2,
y(py, p2) = A+ A+ —A A y(p], p2),(1) (2) (1) (2)

A~~'l = (Ep, + Hp, )/(2EO, ),
Ep, ——+ m2+ p~,

and M is the state mass.
Introducing the flux tube by covariant transformation

as in (6), the Salpeter equation (7) becomes

[M —Hog(py) —Hog(pq)) y(py, p2) dk G(k)P(py —k, pg + k) + Ay( —k)y(py + k, p2) + A2( —k)y(py, p2+ k),

with A; the Fourier transform of A(r, ).
Finally, we may project out the positive energy solutions [14] to avoid the Brown-Ravenhall problem [16),

[M —Hog —Hog] P++(py, p2) = dk G(k)P++(py —k, p2 + k)

+p(1)p(2) dk Ag( —k)y(pg + k, p2) + A2( —k)y(pg, p2 + k) (10)

In the above G(k) might represent the short-range,
Lorentz vector, interaction whose semirelativistic reduc-
tion is the well-known [14] Breit-Fermi terms. Since the
flux tube only contributes to A, we will suppress the po-
tential interaction G(k) in the next section where we con-
sider the reduction of (10).

H =HP + H1 + H2+ H3+ H4,
/+2 p2

Ho=m&+m2+ —
]

' + ' +H, (r, )+H(r, ),2 qm& m2

1 4 4 gH = ——
8 m~ m~p

III. RELATIVISTIC CORRECTIONS
OF THE FLUX TUBE

By the standard Pauli reduction approximation [14]
the Salpeter equation becomes

1 61 Xpi &2 Xp22= ——
2 m2 m2

~ S1+ 2
1 2

P1'E1 P2'&2
3 —— +

4 m2 m2
1 2

hi . S1 h2 S2 pgi pi
ml m2

Pt2 ' P2
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where we define

e; = V-'; H, (r,),
(12)

Substitution of (19) into (ll) then gives to lowest order

!Ho =mi+mz+ +ar+ ! ~+
2p 6r (mi m~ mims )

h, =V, x p, (r, ) .

In previous work [4, 17] the energy and momentum of
the ith flux tube segment has been calculated as

p'( I +
8 qm', m',

Hi(r, ) = ar,
arcsin v~i a fL Sq L Sa)H2 =—

2r i, m', m, ',
(2o)

L, ar, ('arcsin v~,
pi(r,

r~ 2v~i ( v~i

Expanding in vgi (( 1 we obtain

1 2H, (r, ) ar, + ar, vz—, +
6

1
p, (r;) = ar, v~;v—g, + .

3

1 )
vis )

a f'I 11
4r (mi m2)

a (L Si L S2)
H4 = ——

r ( mi m~2 )
a12 t 1 1 1

!, +
3r (mi m2 mrm2 )

Adding the above together then gives

Li miTi vgi z,
and from (15) we then find

aL,
Hi(r, ) = ar, + 6m'r

(15)

(16)

a
pq(r, ) L, x r, +.

3m'r

In terms of quark c.m. coordinates

P:P1= P2 ~

(17)

miri

V, r,

PT +
mim2

m1+ m2
V', r + ~ a ~

p

(18)

the quantities appearing in (11) can be evaluated [18] as

&i x Pi—

h,
mir

p,aL2
p~(r') p'=

3mir

ia
p ~

r '

where the + signifies higher-order terms not required
for the present work. In the heavy-quark limit most of the
momentum is carried by the quark from which it follows
that to leading order the total angular momentum of the
ith tube-quark segment is

L2

sym

L 4+-
3T ' (22)

where the L2 on the right side may now be regarded
as a constant when operating on an angular momentum
eigenstate. Inserting (22) into (21) then provides our
anal result:

p2 p4
H = m1+ m2+

2p, 8
a fL Si+ar ——

! 2 +
2r g mi

!(ms' s)!
L S2)

mim2)
a 1 ( 1 1+ + +r 36 (m2 m2

1(1 +
6 i, m', m', m, m') (23)

To the above we may add a short-range Lorentz vector
part as previously discussed [4].

IV. CONCLUSIONS

p' ('1

a (L Si L. S2) a f' 1 1+, +ar+ —,+2r ( mi m2 4r (m2i m22)

aL,' ( I I
6r (m m mim ) (21)

A final and critical step must be taken. The Hamiltonian
should be totally symmetrized in order that products of
coordinates and momenta will be Hermitian. This is rel-
vant only for the last term of (21). As demonstrated in
the Appendix, total symmetrization yields

aL2 t' I 1
Hg(ri) + Hi(r2) = ar + ! 2 +6r (mi m2 m1m2

Comparison of our spin-independent long-range rela-
tivistic corrections in (23) with the Wilson loop expan-
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sion results [3, 4] shows that both terms are correctly
accounted for. The L2 term follows from the classical
rotational energy of the flux tube, while the other term
has two sources. The Lz independent term is the sum
of Hs, a Darwin-like term originating from the fermionic
nature of the quarks, and a commutator term from the
symmetrization (22) of the Lz term. We also note that
the effective Hamiltonian (23) contains no hyperfine or
tensor interaction and hence no long-range spin-spin cor-
relations. This is an inescapable result of the original
fiux tube substitution (3) so that only linear spin oper-
ators will occur. The resulting spin-orbit interaction of
the Thomas type follows directly from the expansion (16)
and (17). We note that in our formulation the fiux tube
has no relation to the so-called "scalar confining poten-
tial" other than the spin dependence turns out to be the
same. In fact, the substitution (3) treats the long-range
interaction as if it were a Lorentz vector.

Led by the attractive features of the spinless flux tube
model [4, 10 and the result of the present paper, we have
some confidence that a full numerical solution of (10)
will lead to an improved description of much of meson
spectroscopy.

[pak rb] = & 6ab ~ ( 2)

Other useful commutation identities following from (A2)
are

(A3)

rbre
rPa)

i 2r rbr, )= ——, 16.br, +4,rb-
r2 r ( 4)

From (A3) we see that (Al) is unique in that i Lz
L~ L2 1
r r'

Total symmetrization of (Al) gives

where the 6~k term vanishes due to the antisymmetry of
e,~j, . In the above we have used the commutation relation
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rjr+ Peanr (A5)

Using (A2) —(A4) to commute "'„" to a position between
pI, and p„yields, by comparing with (Al),

APPENDIX

We establish here the total symmetrization of the op-
erator ~ as stated in (22). To accomplish this we begin
by expressing this quantity in terms of coordinates and
canonical momenta and symmetrizing the result

1 1= r X p — r X p = Cijk&imn rj pk rmpnr r
r r . r—~i~I limn Pa Pn + ~~~k Pnr r

L2

sym

L +—k'jkk' Pk 4k + P 'tk )r 3 r r

(A6)

- sym

1 rearm——(6~ 6I,~
—

6~~ 6k ) 61,3r r

where again we take advantage of the antisymmetry of
From (A3) and by relabeling dummy indices we

obtain our result

rearm

= &iqA limn Pa Pnr
L2 4+-
r 3r (A7)
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