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The decay KI ~~ ~ e+e is analyzed in a model containing (i) a CP-conserving amplitude associat-
ed with the M1 transition in KL ~~ ~ y, (ii) an indirect CP-violating amplitude related to the brems-
strahlung part of KL ~~ ~ y, and (iii) a direct CP-violating term associated with the short-distance in-

teraction sd ~e+e . Interference of the first two components produces a large CP-violating asymmetry
( —14%) in the distribution of the angle N between the e+e and ~+m planes. The full angular distri-
bution contains two further CP-violating observables. EfTects of direct CP violation are found to be nu-

merically small.

PACS number(s): 13.20.Eb, 11.30.Er

I. INTRODUCTION

The decay KL ~~+~ e+e can be envisaged, in the
first instance, as a conversion process related to the decay
KL ~~ ~ y. The latter is empirically known to contain
two components: a bremsstrahlung piece related to the
CP-violating decay KL ~~ ~ and a CP-conserving
magnetic dipole component. Interference of these terms
produces a CP-violating circular polarization of the pho-
ton in KI ~~+ vr y. The conversion process
KL~~ ~ e+e may be viewed as a means of probing
this polarization by studying the correlation of the e+e
plane relative to the ~+~ plane.

In a recent paper [1], a calculation of the decay
KL ~m ~ e+e was carried out in which the ampli-
tude was determined by the two empirically known com-
ponents of the radiative decay [2]. In addition, a virtual
photon component KL +7r+rr y* (ab—sent for a real pho-
ton) was introduced, in the form of a K charge-radius
contribution. The branching ratio was determined to be
—3 X 10 . A significant CP-violating asymmetry was
found in the N distribution of the process, N being the
angle between the e+e and w+~ planes

Here W+ is the phase of the CP-violating parameter

g+, 5o(Mx. ) is the I =0 mm s-wave phase shift at
s =M+, and 6& is an average a~ p-wave phase shift in
the domain 0(s (Mz. The result (1) represents one of
the largest calculable CP-violating effects in the decays of
the K -K system.

The effect found in Ref. [1] arose entirely from the
bremsstrahlung decay of the K, admixture in the KL
wave function. In this sense, it is an example of "in-
direct" CP violation. One of the purposes of the present
paper is to examine the consequences of a "direct" CP-
violating amplitude in KL —+~+ vr e e associated with
the short-distance interaction sd ~e e . In addition,
we extend the analysis of Ref. [1],by looking at the com-
plete angular distribution of the Anal state. This enables
us to identify two further CP-violating observables. The
method of calculation adopted here is quite different from
that followed in Ref. [1], and permits an independent
check of the results presented there.

II. MATRIX ELEMENT

The decay amplitude of

Kl (P)~a+(p+ )vr (p )e+(k+ )e (k )

= 15% sin[A+ +50(mt' )
—5, ]

= 14%%

in our model has the form

where

Present address: Institut fur Theoretische Tielchenphysik,
Univ. Karlsruhe, D-W 7500 Karlsruhe, Germany.

'An error in Ref. [1], which led to a cosine instead of a sine
factor in Eq. (1), and a correspondingly lower asymmetry
(-4%), was corrected in the Erratum [1]. ~For a recent review of direct CP violation, see [3].
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Ab, =e~fs~gb, " — ",u(k )y"u( +),br S br

derivation of the amplitude A, sD from the short-distance
Hamiltonian is explained in the Appendix. The
coeKcient gsD is given by

W .,=e~fs~, e„...k p&+p, u(k )y~u(k+), v~gs~D' =i (s,s,s, )&2 e (7)

~cR=e~ fs ~
[k P„—(P k)k„]

M~

1 e
u(k )y"u (k+ ),

s —M~ k

v, ~M sD
= —slilO err gsD (p + —p )

2 MK

Xu(k )y"(ci,—clays)u (k+ ),

The terms Atb„JR,g, and A, cR denote the bremsstrah-
lung, magnetic dipole, and K charge radius contribu-
tions discussed in Ref. [1], and the coefficients appearing
therein are

i bo(, M~ )

gbr I+ —e

i6]
gM& i (0.76)e

g, = —
—,'(~') M'e "",

with fs ~
defined by

fs I'
r(K, ~+~ )=- 1—

16mm~

4m
2

mg
(5)

Here Fv and F~ are complex functions depending on the
quark-mixing angles and the mass of the top quark. The

The new term in the matrix element is the direct CP-
violating term Jttso, originating in the short-distance
Hamiltonian describing the transition sd —+e e

v~ GF
—sinOca[sy (1—y&)d ][ey"(Fv F„y&)e ] . —
2

and the couplings cv and c~ are approximately
ci, =c„=0.5 for m, =150 GeV [4]. (For numerical pur-
poses, we take s2s3$$ 0.5 X 10 .)

The phase factors e' appearing in the coe%cients gb„
gp and g sD are characteristic of final-state interac-

tions in the ~~ system. The phase of gb, is that of
Kl ~~+~, which is an exact result for low-energy pho-
tons, and an approximation in general. The phases of
gM &

and gsD are those of p-wave I= 1 m.~ scattering,
which is the leading partial wave in these amplitudes.
The charge radius term gp has the phase of Ks~m+m
at the relevant sr~ invariant mass. The factor of i in the
CP-conserving magnetic dipole amplitude g~& is a conse-
quence of CPT invariance [5]. The factor "i" in the
short-distance term gsD is a signal of CP violation. The
relative phases of the various terms in the matrix element
A, can be checked by confirming that in the absence of
final-state interactions the terms Afb„At,
transform homogeneously under the CPT transformation
(p+~p+, k+~k+ plus complex conjugation).

In the subsequent discussion, we have considered also a
modification of the K charge radius term gp that takes
account of the oA-shell behavior of the Ks —+~+~ am-
plitude predicted by chiral symmetry [6]: namely,

~(KS(pK) ~ (p+ )~ (p —)) 2pK p+ p—

For a virtual Ks and real pions, this amounts to replacing
gp with

s„—m 2

gp=gp
M~ —m

For further analysis, it is expedient to rewrite the ma-
trix element (2) in a form that is reminiscent of the matrix
element for K&& decay [7]:

F . 1G h
JN(K~ ~ir , ~ e e ) = — sinOc, f(P+ +P —)A, +g (P+ P )i.+'

2 ei.pP—Kp(P+ +P —) . (P+ P —)
2 MK M2 P~o P

Xuy (1 —y&)u+ f(p++p )&+g(p+ —p
1

M~

+i, ei.„pK„(p++P ),(P+ —p ) uy (1+y&)u - .
M~

(10)

The factor i in gM, was initially missed in Ref. [1],and inserted in the Erratum.
4A further term of the form

Hso= sinOca[s(im, o„~"(1—y, )+imdrr„~ (1+y, ))d] 2 [ey FMe]v'2 k

in the short-distance Hamiltonian is also possible, in principle, and is discussed in the Appendix.
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The coefficients f, f, g, g, h, h are given by
—1

GF
—s'n8c

1 gp 1
~alfsl ga, — —+2

p+ k p 'k sI M~ s„—M

GF
81110"c

K

1 1 1 i5,
~alfs gb, + +Mxa($2$3ss) e ' (cv+c~ ),

p+ k p —k 2

GF
g = ~—s1110" C

1 1 1 i5l
al fslgbr + +MKa($2$3$5) —e (cv cw )

p+ k p k $I 2

GF
h =h = + —sinOCV'2 Mx

I)gMI 1
rralfsl

Since cz=c~ = —,', we will replace c~+c~ by unity in g,
and omit the term proportional to c~ —c~ in g. We
proceed to discuss the differential decay rate in terms of
the form factors f, f, g, g, h, and h.

III. DIFFERENTIAL DECAY RATE

Using the formalism developed for KI~ decay [7], one
can obtain from the matrix element (10) the decay rate of
Kl ~w+~ e+e as a function of the following Ave vari-
ables: s =(p++p ) = invariant mass of Ir+Ir pair;
sI=(k++0 ) = invariant mass of l+l pair; 8 = an-

gle between p+ and (k++k ) as measured in the Ir+Ir
c.m. frame; 8&= angle between k+ and (p++p ) as
measured in the e+e c.m. frame; 4 is the angle between
the normals to the m. +~ and e+e planes. The precise

I

definition of the angles 0, 8&, and 4& is the following [8]:
I.et p1 be the three-momentum of the m. + in the w+~
center-of-mass system and p& the three-momentum of the
e+ in the e+e center-of-mass system. Furthermore, let
v be a unit vector along the direction of Aight of the di-
pion in the Kl rest system, and c(d) a unit vector along
the projection of PI(p&) perpendicular to v( —v):

c=(PI —vv'PI) j[PI (PI v) ]'

d=(PI vv PI)/[PI '(PI v) ]'

The angles are now given by

cos8 =v p, &IPII, coso, ——v p, &IPI I

(12)
cosC&=c.d, sin@=(cXv) d .

The differential decay rate is

G2
dI =, sin 0&Les 1—

2' mM~

4m,' 2

I(s, s&,8,8I, C&)ds ds&d cos8+ cos8&d@,
SI

where

4m
1/2

1X =(s —s $1)', s= —(M~ —s —
s&) . (13)

In Eq. (13) I is a quadratic function of the form factors f, g, g, and h which are functions of s, s&, and cosO only, and

may be rewritten as

i(s,+e ) 1 4pcos8 gp s,(s )

$1 s(1 —P cos8 ) Mz 2s —M~

4 i (5O+++ ) 1 4 i5lg= cd-lI)+ le
' + — +iI)de

$1 s(1 —P cos 0 )

i (5O+N+ ) 4
g=CM~lq+ le ' +-—

sr s(1 P cos 0' )

h =h = —CM —(0.76)e1 i5l
E'

I

where
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4 GF . 1
CM~ = — —sinOc

M~
~aI fs = —0.04M~, P=Xo Is,

(14)

'rjd — —S2$3s& =0.02s2s3Sst 5p=6p(S~=M~ )
2

Following Ref. [7] we define the following linear com-
binations of these form factors:

Fi =Xf+o~ cosO~,

F2=o. (s si)' g, (15)

&y2 h
F, =o~(s„s,)' '

and an analogous set F,„F2,F3 obtained by replacing
f,g, h by f,g, h. The distribution I then takes the form
[7]

I, =-,'[I IF, '+ ', (IF, I'+ IF31'»in'O j

+( 1,2, 3 F1,2, 3)]

I2= —
—,'[[ F, I

—
—,'(IF2I + IF3I ) sin 0 ]

+(Fi 2 3~F, 2 3)],
I3= —

—.'[I IF2I' —F3 ']+(F1,2, 3 F1,2, 3) l

I~ =
—,
' Re(F*, F2 ) sinO + (F, 2 3 ~F, 2 3 ),

I~=

I,=

I7=
I8=

—[Re(F,*F3)»nO —(F1,2, 3 +F1,2, 3)]

[ Re(F2 F3 )»n'0 —(F1,2, 3 ~F1,2, 3 ) ]

—
I Im(F1F2) sinO —(Fi 2 3 1 2 3)],

—,
' Im(F1F3) sinO +(Fi 2 3 ~F1 2 3 ),

I9 T~[Im(FzF3 )»n'0 + (F1,2, 3 ~F1,2, 3 ) ]

(17)

I =I, +I2 cos20l +I3 sin 0l cos2+

+I4 sin20l cos4+I5 sinOl cosN

+I6 cosO&+I7 sinO& sinN

The coeKcients I~ 6 7 vanish if the lepton current is pure
V: this is the reason for the minus sign between the
V —A contributions (involving Fi 2 3) and the V+ 2 con-
tributions (involving F1 2 3). Integrating over the angular
variables cosO&, cosO, and @ gives the distribution in

the invariant mass variables s and s&.

+I, sin20l sin4+I9 sin Ol sin2%, (16)
d I GF

sin OcXO.„1—
ds dsl

4ml
2

Sl

where the functions I, . I9 are given by (dropping
terms proportional to m& ) with

1X —(H, +H2+H3)+(H, 2 3~H, 2 3), (18)

2 2

H, =X C M~ 8I2)+ I
&3+42 2 8 2 1 P 1

Sl $ M~ (s„—M~ )

+s cr . 8C Mzlg+ I 2 2 A3+ q, +4CM~lri+—2 2 2 8 4 1

sls Sls

—Xso . 16C Mlr I 2)+ I', , W 3+4CM~ I ri+ I rid & 2 sino'
sl s s,s

H2 s s/tr ' 8C Mir g+ I, , ( ~~ ~3)+ r)d+4CM~I )+ —q„(&, —&2 ) sin~2 2 8 4 1

sls Sls

H =—s o~ C —(0.76)
3 SSl

1 1+P 1 1 1+P—ln —2+ —ln
p 1 p' p—' P 1 P—
p3 1 p2

1 1+p =1 p +11 1+p
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where +=50+@+ —5, and H$ 2 3 are obtained from
H $ 2 3 by setting gd =0. The resulting spectra in s„and
si are shown in Figs. 1(a) and 1(b). These are in good
agreement with those in Ref. [1]. Note that dI /dsi is
dominated by small values of si, while dI /ds has a
broad distribution. These spectra are essentially insensi-
tive to the charge radius and direct CP-violating contri-
butions being dominated by the bremsstrahlung and M1
terms in the amplitude. The integrated decay rate is

8(K m+vr e+e )=(1 1X10 ),+(1 7X10 )

+(4.6X10 )CR

Replacing gp by gz, as indicated in Eq. (9), changes the
third term to 9.2 X 10 ' . The contribution of direct CP
violation to the branching ratio is 1.8 X 10 ' (case V, A)
and 6.4X10 ' (case M).

IV. CP-VIOLATING OBSKRVABLES

As shown in the previous section [Eq. (12)], the
di6'erential decay spectrum of KL ~++~ e+e has the
form

d r-I(s. , s, , cose., cose, , C )ds„ds, d coseg cose, dc,

—5
x 10

=2.8X10 '. (19) where I has the expansion given in Eq. (16). To identify
the CP-violating terms in this expansion, we note that un-
der the CP transformation p+ —+ —p+, k+~ —k+ so
that

0.08

0.06

0.04

Sum (a)
cosO" „~—cosO"

sinO —++ sinO„,

cosOt ~—cosOt,

sinS& —++ sinO&,

cos4 —++ cos4,
sin%~ —sin+ .

(20)

0.02

0.55

—4
x 10

0.16
+

I

+ 0.14

1'

~0. 12

0.08

0.6 0.65 0.7 0.75 0.8 0,85 0.9 0.95 1

~x

invariant mass of pions/M,

It follotos that the terms I4, I6 I7, and I9 are CP Violating
Referring to the expression for I6 in terms of the form
factors f, f, g, g, h, and h we find that
I6 —[Re(F2F3)—Re(FzF3)] is zero. We are thus left
with three observable CP-violating coefficients: I4, I7,
and I9. Similarly, the CP-conserving term
I5 —[Re(F,"F3)—Re(F*,F3)] vanishes, so that there are
only four CP-conserving coefficients: I, 2 3 g.

Integrating over s„,sI, and cosO, we have

dI
H H=X, +K2 cos20)+K3 sin OI cos2@

d cosOId4

+K4 sin20& cos2++K& sinO& cos4

+K6 cosO& +K7 sinO& cosN+ K8 sin20I

0.06

0.04

0.02

I

I

I

I

I

(I

— f

I

I i i i t I & s i i I i i « I i t ia I w-i-i —r I-i-r—~ i —I~-i~—i

0 001 002 0.03 004 005 006 007 008 009

invariant mass of leptons/M,

Xsin++K9 sin OI sin2% . (21)

CP violation manifests itself in the constants K4, K7, and
K9 ~ These constants have been evaluated numerically
and are listed in Table I). The only significant CP
violating coefficient is K9. This is the term that is respon-
sible for the CP-violating asymmetry in the N distribu-
tion which was calculated in Ref. [1]. The value of
K9/K, corresponds to an asymmetry A. [defined in Eq.
(1)] equal to

FIG-. 1. DiAerential spectrum (a) dI /d&x and (b) dI /d&y
for KL ~m+ m e +e, where &x and &y are the invariant
masses of m+~ and e+e, normalized to M~.

~In Fig. 2(b) of Ref. [1], the threshold should be at
Qsl =0.002M'.

6The results given in Table I are compatible with the prelimi-
nary results for K;/K, reported in [9], except that K&/K&
should be zero.
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TABLE I. (a) CP-conserving coefficients in the differential decay spectrum of Eq. (21), normalized to
K&, for different values of the E charge radius coefficient. (b) CP-violating coefficients, normalized to
K&. (c) Ratio of direct to indirect CP violation in the coefficients K4 and E9 for the cases HsD and H»
for Qsi & Zm„+si & 100 MeV, and Qsl & 180 MeV, respectively. The total branching ratio for the
three different cuts in the invariant e+e mass is also indicated.

(a) CP-conserving coefficients

gs

K2/K)
K3/K)
K8/E)

0.297
0.180

0

0.282
0.178

—3.1X10

0.294
0.180

—2.8X10

(b) CP-violating coefficients
Comment

K4/K,
1&7/&i I v, ~

K9/K,

0
0
0

—0.309

—1.33 X 10
2. 1X10

0
—0.305

—8.68 X10-'
0.9X 10

0
—Q. 308

Dominant indirect gP
Direct CP only

Dominant indirect gP

(c) Direct versus indirect CP violation
'(/sr &2m' Qs~ & 100 MeV Qsi &180 MeV

(E4) direct

(K4) indirect
V, A: 0. 15X10

M: 5.43 X 10

3.64X10-'

1.39X 10

4. 5 X10-'

9.07 X 10-'

(E9) direct

(E9) indirect
V, A: 0.95X10

M: 4. 18 X 10-'
2.06X 10

8.43 X 10

5.29 X 10

1.07 X 10

B(Kq~a+m. e+e ) 2.8X 10 4.0X 10 2. 3 X10-"

=14

,'(K, /K, )—
. 1 —

—,'(K~/K, )

(22)

7The ratios refer to the coefficients which appear in an expan-
sion of dI /d cosO&deeds or dI /d cosOId@dsI analogous to
Eq. {21).

in complete agreement with the result in [1J. The depen-
dence of this asymmetry on Qs and Qsi is shown in

Figs. 2(a) and 2(b), where we have differentiated between
the cases g~ and gz. Note that the asymmetry for large
e+e masses is particularly sensitive to the magnitude of
the charge radius term. Since the rate is dominated by
small values of Qsl, however, the integrated asymmetry
is almost insensitive to the choice gp OI gp.

It may be noted that the coefficient K7 depends on the
existence of an axial-vector electron current ey„y~e in
the matrix element of KL ~~+~ e+e, which is in-
duced by the short-distance Hamiltonian. In this sense,
K7 is a measure of direct CP violation. As seen from
Table I, (K7/K& )v z =10, which is negligibly small.
The CP-violating ratios E4/K&, K7/Ki, and K9/K& are
also plotted as functions of +s and +s& in Figs. 3(a)
and 3(b).

A perusal of Table I shows that the ratio of direct to
indirect CP violation in the coefIicients E„and K9 is at
most of order 10 —10 . This is the case for the V, A

type short-distance interaction given in Eq. (6), as well as
the "magnetic"-type interaction discussed in the Appen-
dix.

It is encouraging to note that 20 events of the decay
Kz~n+ne+e hav.e recently been recorded [10], and
that considerable increase of statistics is expected. It is
likely that some of the characteristics of this decay calcu-
lated in this paper (and in Ref. [1])can soon be compared
with data. It would be gratifying if the large asymmetry
in the 4& distribution, given in Eq. (22), could be verified,
since it is one of the few cases of a CP -violating observ-
able where a quantitative prediction is possible.
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APPENDIX

1.Short-distance matrix element: Case V, A

The she short-distance Hamiltonian given in Eq (6'

Hvd= F—sin8cn[sy„(1 —y&)d ][ey~(F&—F~ y&)eAy5 e

~ ~ ~

is a local interaction of the curr turren sy„—y~)d with a
linear combination of the V and currents ey e and
ey„y&e. The coeKcients F and Fz an ~ are complex func-

ecay

(Al)
I

A(E ~ir ~ e e )= — sana0 + — + +——
~—s»ac~& Isy„(1 y, )—dire &uy"(F F—yv F~ysU.

We parametrize the matrix element & 7r+rr 's 1—en 7r rr lsy„ 1 —y~)dlK & in the standard way:

(A2)

&~+~-lsy (1—y )dl&'&=p 5
MK

F(p+ +p )„+6 (p+ —p ) +i —ep + —~ ~~~ 2 ~ ~K~ (p+ +p —) (p+
K

where I 6 H, 6, H are real, in the absence of fine of final state phases. The amplitude (A2) then becomes

(A3)

40
Y.

32

28

(a)
I K,/ K, I

io

—2
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24 —3
10

20
-4I
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~x
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I
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invariant mass of pions/M, invariant mass of pions M K

20

&C

18
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IK,/K, I

10
(b)

-2
10

—3
10

—4
10

-5
10

-6
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invariant mass of leptons/M,

—7
10
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vy

FIG. 2. CI'- '
CP-violating asymmetry in the N die distribution as

o a x and (b) &y for gp (solid line) and gp (dotted

invariant mass of leptons M K

FIG. 3. CP-violating ratios K4/K, , K, /K, , and K /K as
functions of (a) &x and (b) &y.
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A (K ~qr+qr e+e ) = — —sinO&a F(p++p )&+G(p+ —p )„
Mx-

pvpvpI'c(p+ +P - )'(P+ P-—) u y"(Fv —FA ys)v (A4)

We now use CPT invariance to obtain the amplitude for K —+++a e+e

A(K ~qr qr e e )=+ —sinO&a F(p++p )„—G(p+ —p )„
2 Mx.

+i, e„...p~(p++p )'(P+-—P-) uy"(Fv F—Ay»v .~2 P~P~ (AS)

Taking the difFerence of (A4) and (AS), we obtain the decay amplitude of K2 = (K K)l—&2i as

A (K2~rr+rr e+e ) =— —sinOca — F(P + +P )„2Reu y"(Fv FA y—s)v
Mx

+iG (p+ —p )„2Imu y"(Fv F„ys—)v
4+,He»«p&(p++p )p(p+ —p ) 2Reuy"(Fv FAys)v

(A6)

The terms proportional to F and H in Eq. (A6) are CP
conserving, representing I =0 $-wave and I =1 p-wave
configurations of the qr+ qr pair (analogous to the
charge-radius and magnetic dipole contributions). Our
interest resides in the third term proportional to 6, which
involves the imaginary parts of the functions Fv and Fz,
and accordingly represents a direct CP-violating effect.
In the notation of Dib, Dunietz, and Gilman [4], the
imaginary parts of Fv and Fz are

2. Short-distance matrix element: Case M

M
HsD = —a g Vq*, VqdFM(xq )Qp 2

ey"e,
q=u, c, t

(A10)

In addition to the local V, 3 coupling given by Eq.
(Al), the short-distance interaction gives rise to a mag-
netic coupling of the form $~d+y, which produces an
effective Hamiltonian for $ ~de+e

lmFvA Im (
vA vA)

$2$3$gCV A (A7)

For a top quark of mass 150 GeV, the parameters cv z
are approximately cv=c„=—,

' [4]. The form factor G
which appears in the matrix element

sy„(1—ys)d~K ) can be related by isospin to the
corresponding form factor in the matrix element
(qr+qr ~sy„(1—ys)u ~K+ ) which describes KI4 decay.
This yields G =M@If (with f =130 MeV). Altogeth-
er, therefore, the direct CP-violating contribution to the
decay K2 —+m+m e +e is

~V, A ~ „V,AGF
SD .—» Oca M g SD (P+~2

where

Q„=s[imso q (1 ys)+im—da„q (1+ys)]d,

and the function FM is given by [4]

(Al 1)

(8x +Sxq —7)xq
FM(x ) =

24qr(x —1 )

(3x —2)x
lnx, (A 12)

4rr(x —1 )

with x =m /I ~. For a top-quark mass of 130 GeV, we
have FM(x, ) =0.051, which is the dominant contribution
to Eq. (A 10).

To evaluate the contribution of H sD of the decay
KL ~a+ m e e, we require the matrix element
(rr+qr ~Q„~K ). For a rough estimate we use

with

X u(k )(cv c„ys)v(k+ )— (A8) 2(m, —md )
(sr+sr Q„~K ) = [p kp+„—p+ kp „],

(A13)
151(S )

g vDA =i(s,s,s, )V2 e

which is the result given in Eq. (3) and (7).

(A9) which is suggested by the work of Dib and Peccei [11].
This leads to the following short-distance matrix element
for KL —+m. +~ e e
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Gp — 2(mx md ) ts (x )—sin8ctz(0. 051)(s~s3ss)&2i e
2

1X
2 [ (p—+ —p —) k(p++I )„—+(p++S'- ) k(p+ —p —),I ur„n,

SI
(A14)

—4P cos8 gp i6o(s }+2, e
st s(1—P cos28 ) Mx-

1 . 1 i61
ill—M sP cosO e

s —M@ Sl

where f =93 MeV.
Essentially, the operator (Al 1) induces a CP-violating E 1 amplitude in Kt +sr —xr y, which in turn gives the Dalitz

pair amplitude in Eq. (A14). As compared to the V, A matrix element (AS), the case M has a factor I /st, which tends to
enhance its effects at small e+e masses. In the notation of Eq. (14), the form factors f, f, g, g in the present model are

i (ho+&+ }f=f=CD ~xi+ ~e

i(6O+N+ } 4
g =g =CD Ix)+ le

' ', , +txi~
st s(1 —P cos 8 )

2M~ —s
e

S(
(A15)

2(m, —md)
riM =M& s&s3s&(0.051)=2.27 X 10s (A16)

(taking m, —md = 150 MeV, szs3ss =0.5 X 10 ).
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