Direct and indirect $C P$ violation in the decay $K_{L} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$

P. Heiliger
III. Physikalisches Institut (A), Rheinisch-Westfälische Technische Hochschule Aachen, D-5100 Aachen, Germany*
L. M. Sehgal
Institut für Theoretische Physik (E), Rheinisch-Westfälische Technische Hochschule Aachen, D-5100 Aachen, Germany

(Received 10 May 1993)

Abstract

The decay $K_{L} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$is analyzed in a model containing (i) a $C P$-conserving amplitude associated with the $M 1$ transition in $K_{L} \rightarrow \pi^{+} \pi^{-} \gamma$, (ii) an indirect $C P$-violating amplitude related to the bremsstrahlung part of $K_{L} \rightarrow \pi^{+} \pi^{-} \gamma$, and (iii) a direct $C P$-violating term associated with the short-distance interaction $s \bar{d} \rightarrow e^{+} e^{-}$. Interference of the first two components produces a large $C P$-violating asymmetry ($\sim 14 \%$) in the distribution of the angle Φ between the $e^{+} e^{-}$and $\pi^{+} \pi^{-}$planes. The full angular distribution contains two further $C P$-violating observables. Effects of direct $C P$ violation are found to be numerically small.

PACS number(s): 13.20.Eb, 11.30.Er

I. INTRODUCTION

The decay $K_{L} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$can be envisaged, in the first instance, as a conversion process related to the decay $K_{L} \rightarrow \pi^{+} \pi^{-} \gamma$. The latter is empirically known to contain two components: a bremsstrahlung piece related to the $C P$-violating decay $K_{L} \rightarrow \pi^{+} \pi^{-}$and a $C P$-conserving magnetic dipole component. Interference of these terms produces a $C P$-violating circular polarization of the photon in $K_{L} \rightarrow \pi^{+} \pi^{-} \gamma$. The conversion process $K_{L} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$may be viewed as a means of probing this polarization by studying the correlation of the $e^{+} e^{-}$ plane relative to the $\pi^{+} \pi^{-}$plane.

In a recent paper [1], a calculation of the decay $K_{L} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$was carried out in which the amplitude was determined by the two empirically known components of the radiative decay [2]. In addition, a virtual photon component $K_{L} \rightarrow \pi^{+} \pi^{-} \gamma^{*}$ (absent for a real photon) was introduced, in the form of a K^{0} charge-radius contribution. The branching ratio was determined to be $\sim 3 \times 10^{-7}$. A significant $C P$-violating asymmetry was found in the Φ distribution of the process, Φ being the angle between the $e^{+} e^{-}$and $\pi^{+} \pi^{-}$planes: ${ }^{1}$

$$
\begin{align*}
\mathcal{A} & =\frac{\int_{0}^{\pi / 2} \frac{d \Gamma}{d \Phi} d \Phi-\int_{\pi / 2}^{\pi} \frac{d \Gamma}{d \Phi} d \Phi}{\int_{0}^{\pi / 2} \frac{d \Gamma}{d \Phi} d \Phi+\int_{\pi / 2}^{\pi} \frac{d \Gamma}{d \Phi} d \Phi} \\
& =15 \% \sin \left[\Phi_{+-}+\delta_{0}\left(m_{K}^{2}\right)-\overline{\delta_{1}}\right] \\
& \approx 14 \% . \tag{1}
\end{align*}
$$

[^0]Here Φ_{+-}is the phase of the $C P$-violating parameter $\eta_{+-}, \delta_{0}\left(M_{K}^{2}\right)$ is the $I=0 \pi \pi s$-wave phase shift at $s_{\pi}=\boldsymbol{M}_{K}^{2}$, and $\bar{\delta}_{1}$ is an average $\pi \pi p$-wave phase shift in the domain $0<s_{\pi}<M_{K}^{2}$. The result (1) represents one of the largest calculable $C P$-violating effects in the decays of the $K^{0}-\bar{K}^{0}$ system.

The effect found in Ref. [1] arose entirely from the bremsstrahlung decay of the K_{1} admixture in the K_{L} wave function. In this sense, it is an example of "indirect" $C P$ violation. One of the purposes of the present paper is to examine the consequences of a "direct" $C P$ violating amplitude ${ }^{2}$ in $K_{L} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$associated with the short-distance interaction $s \bar{d} \rightarrow e^{+} e^{-}$. In addition, we extend the analysis of Ref. [1], by looking at the complete angular distribution of the final state. This enables us to identify two further $C P$-violating observables. The method of calculation adopted here is quite different from that followed in Ref. [1], and permits an independent check of the results presented there.

II. MATRIX ELEMENT

The decay amplitude of

$$
K_{L}(\mathcal{P}) \rightarrow \pi^{+}\left(p_{+}\right) \pi^{-}\left(p_{-}\right) e^{+}\left(k_{+}\right) e^{-}\left(k_{-}\right)
$$

in our model has the form

$$
\begin{equation*}
\mathcal{M}\left(K_{L} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}\right)=\mathcal{M}_{\mathrm{br}}+\mathcal{M}_{\mathrm{mag}}+\mathcal{M}_{\mathrm{CR}}+\mathcal{M}_{\mathrm{SD}}^{V, A} \tag{2}
\end{equation*}
$$

where

[^1]\[

$$
\begin{align*}
& M_{\mathrm{br}}=e\left|f_{S}\right| g_{\mathrm{br}}\left[\frac{p_{+\mu}}{p_{+} \cdot k}-\frac{p_{-\mu}}{p_{-} \cdot k}\right] \frac{e}{k^{2}} \bar{u}\left(k_{-}\right) \gamma^{\mu} v\left(k_{+}\right), \\
& M_{\mathrm{mag}}=e\left|f_{S}\right| \frac{g_{M 1}}{M_{K}^{4}} \epsilon_{\mu v \rho \sigma} k^{v} p_{+}^{\rho} p_{-}^{\sigma} \frac{e}{k^{2}} \bar{u}\left(k_{-}\right) \gamma^{\mu} v\left(k_{+}\right), \\
& M_{\mathrm{CR}}=e\left|f_{S}\right| \frac{g_{P}}{M_{K}^{2}}\left[k^{2} \mathscr{P}_{\mu}-(\mathcal{P} \cdot k) k_{\mu}\right] \tag{3}\\
& \quad \times \frac{1}{s_{\pi}-M_{K}^{2}} \frac{e}{k^{2}} \bar{u}\left(k_{-}\right) \gamma^{\mu} v\left(k_{+}\right), \\
& M_{\mathrm{SD}}^{V, A}= \\
& -\frac{G_{F}}{\sqrt{2}} \sin \Theta_{C} \alpha \frac{1}{M_{K}} g_{\mathrm{SD}}\left(p_{+}-p_{-}\right)_{\mu} \\
& \quad \times \bar{u}\left(k_{-}\right) \gamma^{\mu}\left(c_{V}-c_{A} \gamma_{5}\right) v\left(k_{+}\right),
\end{align*}
$$
\]

The terms $\mathcal{M}_{\mathrm{br}}, \mathcal{M}_{\text {mag }}$, and $\mathcal{M}_{\mathrm{CR}}$ denote the bremsstrahlung, magnetic dipole, and K^{0} charge radius contributions discussed in Ref. [1], and the coefficients appearing therein are ${ }^{3}$

$$
\begin{align*}
& g_{\mathrm{br}}=\eta_{+-} e^{i \delta_{0}\left(M_{K}^{2}\right)}, \\
& g_{M 1}=i(0.76) e^{i \delta_{1}}, \tag{4}\\
& g_{P}=-\frac{1}{3}\left\langle R^{2}\right\rangle_{K_{0}} M_{K}^{2} e^{i \delta_{0}\left(s_{\pi}\right)},
\end{align*}
$$

with $\left|f_{S}\right|$ defined by

$$
\begin{equation*}
\Gamma\left(K_{S} \rightarrow \pi^{+} \pi^{-}\right)=\frac{\left|f_{S}\right|^{2}}{16 \pi m_{K}}\left(1-\frac{4 m_{\pi}^{2}}{m_{K}^{2}}\right)^{1 / 2} \tag{5}
\end{equation*}
$$

The new term in the matrix element is the direct $C P$ violating term $\mathcal{M}_{\mathrm{SD}}^{V, A}$, originating in the short-distance Hamiltonian describing the transition $s \bar{d} \rightarrow e^{+} e^{-}$:
$H_{\mathrm{SD}}^{V, A}=\frac{G_{F}}{\sqrt{2}} \sin \Theta_{C} \alpha\left[\bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) d\right]\left[\bar{e} \gamma^{\mu}\left(F_{V}-F_{A} \gamma_{5}\right) e\right]$.

Here F_{V} and F_{A} are complex functions depending on the quark-mixing angles and the mass of the top quark. The
derivation of the amplitude $\mathcal{M}_{\text {SD }}^{V, A}$ from the short-distance Hamiltonian is explained in the Appendix. ${ }^{4}$ The coefficient $g_{\text {SD }}^{V, A}$ is given by

$$
\begin{equation*}
g_{\mathrm{SD}}^{V, A}=i\left(s_{2} s_{3} s_{\delta}\right) \sqrt{2}\left[\frac{M_{K}}{f_{\pi}}\right] e^{i \delta_{1}\left(s_{\pi}\right)} \tag{7}
\end{equation*}
$$

and the couplings c_{V} and c_{A} are approximately $c_{V} \approx c_{A} \approx 0.5$ for $m_{t}=150 \mathrm{GeV}$ [4]. (For numerical purposes, we take $s_{2} s_{3} s_{\delta}=0.5 \times 10^{-3}$.)

The phase factors $e^{i \delta}$ appearing in the coefficients g_{br}, $g_{M 1}, g_{P}$ and $g_{\text {SD }}^{V, A}$ are characteristic of final-state interactions in the $\pi \pi$ system. The phase of $g_{b r}$ is that of $K_{L} \rightarrow \pi^{+} \pi^{-}$, which is an exact result for low-energy photons, and an approximation in general. The phases of $g_{M 1}$ and $g_{\text {SD }}$ are those of p-wave $I=1 \pi \pi$ scattering, which is the leading partial wave in these amplitudes. The charge radius term g_{P} has the phase of $K_{S} \rightarrow \pi^{+} \pi^{-}$ at the relevant $\pi \pi$ invariant mass. The factor of i in the $C P$-conserving magnetic dipole amplitude $g_{M 1}$ is a consequence of $C P T$ invariance [5]. The factor " i " in the short-distance term $g_{\mathrm{SD}}^{V,{ }^{A}}$ is a signal of $C P$ violation. The relative phases of the various terms in the matrix element \mathcal{M} can be checked by confirming that in the absence of final-state interactions the terms $\mathcal{M}_{\mathrm{br}}, \mathcal{M}_{\mathrm{mag}}, \mathcal{M}_{\mathrm{CR}}, \mathcal{M}_{\mathrm{SD}}^{V,{ }^{A}}$ transform homogeneously under the CPT transformation ($\mathbf{p}_{ \pm} \rightarrow \mathbf{p}_{\mp}, \mathbf{k}_{ \pm} \rightarrow \mathbf{k}_{\mp}$ plus complex conjugation).

In the subsequent discussion, we have considered also a modification of the K^{0} charge radius term g_{P} that takes account of the off-shell behavior of the $K_{S} \rightarrow \pi^{+} \pi^{-}$amplitude predicted by chiral symmetry [6]: namely,

$$
\begin{equation*}
\mathcal{A}\left(K_{S}\left(p_{K}\right) \rightarrow \pi^{+}\left(p_{+}\right) \pi^{-}\left(p_{-}\right)\right) \sim 2 p_{K}^{2}-p_{+}^{2}-p_{-}^{2} . \tag{8}
\end{equation*}
$$

For a virtual K_{S} and real pions, this amounts to replacing g_{P} with

$$
\begin{equation*}
g_{P}^{\prime}=g_{P} \frac{s_{\pi}-m_{\pi}^{2}}{M_{K}^{2}-m_{\pi}^{2}} \tag{9}
\end{equation*}
$$

For further analysis, it is expedient to rewrite the matrix element (2) in a form that is reminiscent of the matrix element for K_{14} decay [7]:

$$
\begin{align*}
\mathcal{M}\left(K_{L} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}\right)=-\frac{G_{F}}{\sqrt{2}} \sin \Theta_{C}\{ & {\left.\left[\frac{1}{M_{K}}\left[f\left(p_{+}+p_{-}\right)_{\lambda}+g\left(p_{+}-p_{-}\right)_{\lambda}+i \frac{h}{M_{K}^{2}} \epsilon_{\lambda \mu v \sigma} p_{K \mu}\left(p_{+}+p_{-}\right)_{\nu}\left(p_{+}-p_{-}\right)_{\sigma}\right]\right)\right] } \\
& \times \bar{u} \gamma^{\lambda}\left(1-\gamma_{5}\right) v+\left[\frac { 1 } { M _ { K } } \left[\widetilde{f}\left(p_{+}+p_{-}\right)_{\lambda}+\widetilde{g}\left(p_{+}-p_{-}\right)_{\lambda}\right.\right. \\
& \left.\left.\left.+i \frac{\tilde{h}}{M_{K}^{2}} \epsilon_{\lambda \mu v \sigma} p_{K \mu}\left(p_{+}+p_{-}\right)_{v}\left(p_{+}-p_{-}\right)_{\sigma}\right]\right] \bar{u} \gamma^{\lambda}\left(1+\gamma_{5}\right) v\right\} . \tag{10}
\end{align*}
$$

[^2]in the short-distance Hamiltonian is also possible, in principle, and is discussed in the Appendix.

The coefficients $f, \widetilde{f}, g, \widetilde{g}, h, \widetilde{h}$ are given by

$$
\begin{align*}
& f=\widetilde{f}=\left\{-\frac{G_{F}}{\sqrt{2}} \sin \Theta_{C} \frac{1}{M_{K}}\right)^{-1} \pi \alpha\left|f_{S}\right|\left\{g_{\mathrm{Br}}\left[\frac{1}{p_{+} \cdot k}-\frac{1}{p_{-} \cdot k}\right] \frac{1}{s_{l}}+2 \frac{g_{P}}{M_{K}^{2}} \frac{1}{s_{\pi}-M_{K}^{2}}\right\}, \\
& g=\left(-\frac{G_{F}}{\sqrt{2}} \sin \Theta_{C} \frac{1}{M_{K}}\right)^{-1} \pi \alpha\left|f_{S}\right| g_{\mathrm{br}}\left(\frac{1}{p_{+} \cdot k}+\frac{1}{p_{-} \cdot k}\right] \frac{1}{s_{l}}+M_{K} \alpha\left(s_{2} s_{3} s_{\delta}\right) \frac{i}{\sqrt{2}} e^{i \delta_{1}} \frac{1}{f_{\pi}}\left(c_{V}+c_{A}\right), \tag{11}\\
& \widetilde{g}=\left(-\frac{G_{F}}{\sqrt{2}} \sin \Theta_{C} \frac{1}{M_{K}}\right)^{-1} \pi \alpha\left|f_{S}\right| g_{\mathrm{br}}\left(\frac{1}{p_{+} \cdot k}+\frac{1}{p_{-} \cdot k}\right] \frac{1}{s_{l}}+M_{K} \alpha\left(s_{2} s_{3} s_{\delta}\right) \frac{i}{\sqrt{2}} e^{i \delta_{1}} \frac{1}{f_{\pi}}\left(c_{V}-c_{A}\right), \\
& \left.h=\widetilde{h}=\left(+\frac{G_{F}}{\sqrt{2}} \sin \Theta_{C} \frac{1}{M_{K}}\right)^{-1} \pi \alpha \right\rvert\, f_{S}\left(\frac{(-i) g_{M 1}}{M_{K}^{2}} \frac{1}{s_{l}} .\right.
\end{align*}
$$

Since $c_{V} \approx c_{A} \approx \frac{1}{2}$, we will replace $c_{V}+c_{A}$ by unity in g, and omit the term proportional to $c_{V}-c_{A}$ in \widetilde{g}. We proceed to discuss the differential decay rate in terms of the form factors $f, \widetilde{f}, g, \widetilde{g}, h$, and \widetilde{h}.

III. DIFFERENTIAL DECAY RATE

Using the formalism developed for $K_{l 4}$ decay [7], one can obtain from the matrix element (10) the decay rate of $K_{L} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$as a function of the following five variables: $s_{\pi}=\left(p_{+}+p_{-}\right)^{2}=$ invariant mass of $\pi^{+} \pi^{-}$pair; $s_{l}=\left(k_{+}+k_{-}\right)^{2}=$ invariant mass of $l^{+} l^{-}$pair; $\Theta_{\pi}=$ angle between \mathbf{p}_{+}and ($\mathbf{k}_{+}+\mathbf{k}_{-}$) as measured in the $\pi^{+} \pi^{-}$ c.m. frame; $\Theta_{l}=$ angle between \mathbf{k}_{+}and ($\mathbf{p}_{+}+\mathbf{p}_{-}$) as measured in the $e^{+} e^{-}$c.m. frame; Φ is the angle between the normals to the $\pi^{+} \pi^{-}$and $e^{+} e^{-}$planes. The precise
definition of the angles Θ_{π}, Θ_{l}, and Φ is the following [8]: Let \mathbf{p}_{1} be the three-momentum of the π^{+}in the $\pi^{+} \pi^{-}$ center-of-mass system and \mathbf{p}_{l} the three-momentum of the e^{+}in the $e^{+} e^{-}$center-of-mass system. Furthermore, let \mathbf{v} be a unit vector along the direction of flight of the dipion in the K_{L} rest system, and $\mathbf{c}(\mathbf{d})$ a unit vector along the projection of $\mathbf{p}_{1}\left(\mathbf{p}_{l}\right)$ perpendicular to $\mathbf{v}(-\mathbf{v})$:

$$
\begin{aligned}
& \mathbf{c}=\left(\mathbf{p}_{1}-\mathbf{v} \cdot \mathbf{p}_{1}\right) /\left[\mathbf{p}_{1}^{2}-\left(\mathbf{p}_{1} \cdot \mathbf{v}\right)^{2}\right]^{1 / 2}, \\
& \mathbf{d}=\left(\mathbf{p}_{l}-\mathbf{v} \cdot \mathbf{v} \cdot \mathbf{p}_{l}\right) /\left[\mathbf{p}_{l}^{2}-\left(\mathbf{p}_{l} \cdot \mathbf{v}\right)^{2}\right]^{1 / 2}
\end{aligned}
$$

The angles are now given by

$$
\begin{align*}
& \cos \Theta_{\pi}=\mathbf{v} \cdot \mathbf{p}_{1} /\left|\mathbf{p}_{1}\right|, \quad \cos \Theta_{l}=-\mathbf{v} \cdot \mathbf{p}_{l} /\left|\mathbf{p}_{l}\right|, \tag{12}\\
& \cos \Phi=\mathbf{c} \cdot \mathbf{d}, \quad \sin \Phi=(\mathbf{c} \times \mathbf{v}) \cdot \mathbf{d}
\end{align*}
$$

The differential decay rate is

$$
d \Gamma=\frac{G_{F}^{2}}{2^{12} \pi^{6} M_{K}^{5}} \sin ^{2} \Theta_{C} X \sigma_{\pi}\left[1-\frac{4 m_{l}^{2}}{s_{l}}\right]^{2} I\left(s_{\pi}, s_{l}, \Theta_{\pi}, \Theta_{l}, \Phi\right) d s_{\pi} d s_{l} d \cos \Theta_{\pi} d \cos \Theta_{l} d \Phi
$$

where

$$
\begin{equation*}
\sigma_{\pi}=\left(1-\frac{4 m_{\pi}^{2}}{s_{\pi}}\right]^{1 / 2}, \quad X=\left(s^{2}-s_{\pi} s_{l}\right)^{1 / 2}, \quad s=\frac{1}{2}\left(M_{K}^{2}-s_{\pi}-s_{l}\right) \tag{13}
\end{equation*}
$$

In Eq. (13) I is a quadratic function of the form factors f, g, \widetilde{g}, and h which are functions of s_{π}, s_{l}, and $\cos \Theta_{\pi}$ only, and may be rewritten as

$$
\begin{aligned}
& f=\widetilde{f}=C M_{K}^{4}\left\{\left|\eta_{+-}\right| e^{i\left(\delta_{0}+\Phi_{+-}\right)} \frac{1}{s_{l}} \frac{-4 \beta \cos \Theta_{\pi}}{s\left(1-\beta^{2} \cos ^{2} \Theta_{\pi}\right)}+2 \frac{g_{P}}{M_{K}^{2}} e^{i \delta_{0}\left(s_{\pi}\right)} \frac{1}{s_{\pi}-M_{K}^{2}}\right\}, \\
& g=C M_{K}^{4}\left|\eta_{+-}\right| e^{i\left(\delta_{0}+\Phi_{+-}\right)} \frac{1}{s_{l}} \frac{4}{s\left(1-\beta^{2} \cos ^{2} \Theta_{\pi}\right)}+i \eta_{d} e^{i \delta_{1}}, \\
& \widetilde{g}=C M_{K}^{4}\left|\eta_{+-}\right| e^{i\left(\delta_{0}+\Phi_{+-}\right)} \frac{1}{s_{l}} \frac{4}{s\left(1-\beta^{2} \cos ^{2} \Theta_{\pi}\right)}, \\
& h=\widetilde{h}=-C M_{K}^{2} \frac{1}{s_{l}}(0.76) e^{i \delta_{1}},
\end{aligned}
$$

where

$$
\begin{align*}
& C M_{K}^{4}=\left(-\frac{G_{F}}{\sqrt{2}} \sin \Theta_{C} \frac{1}{M_{K}}\right)^{-1} \pi \alpha\left|f_{S}\right| \approx-0.04 M_{K}^{4}, \quad \beta=X \sigma_{\pi} / s \tag{14}\\
& \eta_{d}=\frac{M_{K}}{f_{\pi}} \frac{\alpha}{\sqrt{2}} s_{2} s_{3} s_{\delta} \approx 0.02 s_{2} s_{3} s_{\delta}, \quad \delta_{0}=\delta_{0}\left(s_{\pi}=M_{K}^{2}\right)
\end{align*}
$$

Following Ref. [7] we define the following linear combinations of these form factors:

$$
\begin{align*}
& F_{1}=X f+\sigma_{\pi} s \cos \Theta_{\pi} g \\
& F_{2}=\sigma_{\pi}\left(s_{\pi} s_{l}\right)^{1 / 2} g \tag{15}\\
& F_{3}=\sigma_{\pi} X\left(s_{\pi} s_{l}\right)^{1 / 2} \frac{h}{M_{K}^{2}},
\end{align*}
$$

and an analogous set $\widetilde{F}_{1}, \widetilde{F}_{2}, \widetilde{F}_{3}$ obtained by replacing f, g, h by $\widetilde{f}, \widetilde{g}, \widetilde{h}$. The distribution I then takes the form [7]

$$
\begin{align*}
I= & I_{1}+I_{2} \cos 2 \Theta_{l}+I_{3} \sin ^{2} \Theta_{l} \cos 2 \Phi \\
& +I_{4} \sin 2 \Theta_{l} \cos \Phi+I_{5} \sin \Theta_{l} \cos \Phi \\
& +I_{6} \cos \Theta_{l}+I_{7} \sin \Theta_{l} \sin \Phi \\
& +I_{8} \sin 2 \Theta_{l} \sin \Phi+I_{9} \sin ^{2} \Theta_{l} \sin 2 \Phi \tag{16}
\end{align*}
$$

where the functions $I_{1} \cdots I_{9}$ are given by (dropping terms proportional to m_{l}^{2})

$$
\begin{align*}
& I_{1}=\frac{1}{4}[\left\{\left|F_{1}\right|^{2}+\frac{3}{2}\left(\left|F_{2}\right|^{2}+\left|F_{3}\right|^{2}\right) \sin ^{2} \Theta_{\pi}\right\} \\
&\left.+\left(F_{1,2,3} \rightarrow \widetilde{F}_{1,2,3}\right)\right] \\
& I_{2}=-\frac{1}{4}\left[\left\{\left|F_{1}\right|^{2}-\frac{1}{2}\left(\left|F_{2}\right|^{2}+\left|F_{3}\right|^{2}\right) \sin ^{2} \Theta_{\pi}\right\}\right. \\
&\left.+\left(F_{1,2,3} \rightarrow \widetilde{F}_{1,2,3}\right)\right] \\
& I_{3}=-\frac{1}{4}\left[\left\{\left|F_{2}\right|^{2}-\left|F_{3}\right|^{2}\right\}+\left(F_{1,2,3} \rightarrow \widetilde{F}_{1,2,3}\right)\right] \\
& I_{4}=\frac{1}{2} \operatorname{Re}\left(F_{1}^{*} F_{2}\right) \sin \Theta_{\pi}+\left(F_{1,2,3} \rightarrow \widetilde{F}_{1,2,3}\right) \\
& I_{5}=-\left\{\operatorname{Re}\left(F_{1}^{*} F_{3}\right) \sin \Theta_{\pi}-\left(F_{1,2,3} \rightarrow \widetilde{F}_{1,2,3}\right)\right\} \tag{17}\\
& I_{6}=-\left\{\operatorname{Re}\left(F_{2}^{*} F_{3}\right) \sin ^{2} \Theta_{\pi}-\left(F_{1,2,3} \rightarrow \widetilde{F}_{1,2,3}\right)\right\} \\
& I_{7}=-\left\{\operatorname{Im}\left(F_{1}^{*} F_{2}\right) \sin _{\pi}-\left(F_{1,2,3} \rightarrow \widetilde{F}_{1,2,3}\right)\right\} \\
& I_{8}=\frac{1}{2} \operatorname{Im}\left(F_{1}^{*} F_{3}\right) \sin \Theta_{\pi}+\left(F_{1,2,3} \rightarrow \widetilde{F}_{1,2,3}\right) \\
& I_{9}=-\frac{1}{2}[\left.I m\left(F_{2}^{*} F_{3}\right) \sin ^{2} \Theta_{\pi}+\left(F_{1,2,3} \rightarrow \widetilde{F}_{1,2,3}\right)\right] .
\end{align*}
$$

The coefficients $I_{5,6,7}$ vanish if the lepton current is pure V : this is the reason for the minus sign between the $V-A$ contributions (involving $F_{1,2,3}$) and the $V+A$ contributions (involving $\widetilde{F}_{1,2,3}$). Integrating over the angular variables $\cos \Theta_{l}, \cos \Theta_{\pi}$, and Φ gives the distribution in the invariant mass variables s_{π} and s_{l} :

$$
\begin{align*}
\frac{d \Gamma}{d s_{\pi} d s_{l}}= & \frac{G_{F}^{2}}{2^{9} \pi^{5} \boldsymbol{M}_{K}^{5}} \sin ^{2} \Theta_{C} X \sigma_{\pi}\left(1-\frac{4 m_{l}^{2}}{s_{l}}\right)^{2} \\
& \times \frac{1}{3}\left(H_{1}+H_{2}+H_{3}\right)+\left(H_{1,2,3} \rightarrow \widetilde{H}_{1,2,3}\right), \tag{18}
\end{align*}
$$

with

$$
\begin{aligned}
H_{1}= & X^{2} C^{2} M_{K}^{8}\left\{8\left|\eta_{+-}\right|^{2} \frac{1}{s_{l}^{2}} \frac{\beta^{2}}{s^{2}} A_{3}+4 \frac{\left|g_{P}\right|^{2}}{M_{K}^{4}} \frac{1}{\left(s_{\pi}-M_{K}^{2}\right)^{2}}\right\} \\
& +s^{2} \sigma_{\pi}^{2}\left\{8 C^{2} M_{K}^{8}\left|\eta_{+-}\right|^{2} \frac{1}{s_{l}^{2} s^{2}} A_{3}+\frac{1}{3} \eta_{d}^{2}+4 C M_{K}^{4}\left|\eta_{+-}\right| \eta_{d} \frac{1}{s_{l} s} A_{2} \sin \alpha\right\} \\
& -X s \sigma_{\pi}\left\{16 C^{2} M_{K}^{8}\left|\eta_{+-}\right|^{2} \frac{\beta}{s_{l}^{2} s^{2}} A_{3}+4 C M_{K}^{4}\left|\eta_{+-}\right| \eta_{d} \frac{\beta}{s_{l} s} A_{2} \sin \alpha\right\}, \\
H_{2}= & s_{\pi} s_{l} \sigma_{\pi}^{2}\left\{8 C^{2} M_{K}^{8}\left|\eta_{+-}\right|^{2} \frac{1}{s_{l}^{2} s^{2}}\left(A_{4}-A_{3}\right)+\frac{2}{3} \eta_{d}^{2}+4 C M_{K}^{4}\left|\eta_{+-}\right| \eta_{d} \frac{1}{s_{l} s}\left(A_{1}-A_{2}\right) \sin \alpha\right\}, \\
H_{3}= & \frac{2}{3} s_{\pi} \sigma_{\pi}^{2} X^{2} C^{2} \frac{1}{s_{l}}(0.76)^{2}, \\
A_{1}= & \frac{1}{\beta} \ln \frac{1+\beta}{1-\beta}, A_{2}=\frac{1}{\beta^{2}}\left[-2+\frac{1}{\beta} \ln \frac{1+\beta}{1-\beta}\right], \\
A_{3}= & \frac{1}{\beta^{3}}\left[\frac{\beta}{1-\beta^{2}}-\frac{1}{2} \ln \frac{1+\beta}{1-\beta}\right], \quad A_{4}=\frac{1}{\beta}\left[\frac{\beta}{1-\beta^{2}}+\frac{1}{2} \ln \frac{1+\beta}{1-\beta}\right],
\end{aligned}
$$

where $\alpha=\delta_{0}+\Phi_{+-}-\delta_{1}$ and $\widetilde{H}_{1,2,3}$ are obtained from $H_{1,2,3}$ by setting $\eta_{d}=0$. The resulting spectra in s_{π} and s_{l} are shown in Figs. 1(a) and 1(b). These are in good agreement with those in Ref. [1]. ${ }^{5}$ Note that $d \Gamma / d s_{l}$ is dominated by small values of s_{l}, while $d \Gamma / d s_{\pi}$ has a broad distribution. These spectra are essentially insensitive to the charge radius and direct $C P$-violating contributions being dominated by the bremsstrahlung and M1 terms in the amplitude. The integrated decay rate is

$$
\begin{align*}
B\left(K_{L} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}\right)= & \left(1.1 \times 10^{-7}\right)_{\mathrm{br}}+\left(1.7 \times 10^{-7}\right)_{\mathrm{mag}} \\
& +\left(4.6 \times 10^{-9}\right)_{\mathrm{CR}} \\
\approx & 2.8 \times 10^{-7} . \tag{19}
\end{align*}
$$

FIG. 1. Differential spectrum (a) $d \Gamma / d \sqrt{x}$ and (b) $d \Gamma / d \sqrt{y}$ for $K_{L} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$, where \sqrt{x} and \sqrt{y} are the invariant masses of $\pi^{+} \pi^{-}$and $e^{+} e^{-}$, normalized to M_{K}.

[^3]Replacing g_{P} by g_{P}^{\prime}, as indicated in Eq. (9), changes the third term to 9.2×10^{-10}. The contribution of direct $C P$ violation to the branching ratio is 1.8×10^{-16} (case V, A) and 6.4×10^{-13} (case M).

IV. $C P$-VIOLATING OBSERVABLES

As shown in the previous section [Eq. (12)], the differential decay spectrum of $K_{L} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$has the form
$d \Gamma \sim I\left(s_{\pi}, s_{l}, \cos \Theta_{\pi}, \cos \Theta_{l}, \Phi\right) d s_{\pi} d s_{l} d \cos \Theta_{\pi} d \cos \Theta_{l} d \Phi$,
where I has the expansion given in Eq. (16). To identify the $C P$-violating terms in this expansion, we note that under the $C P$ transformation $\mathbf{p}_{ \pm} \rightarrow-\mathbf{p}_{\mp}, \mathbf{k}_{ \pm} \rightarrow-\mathbf{k}_{\mp}$ so that

$$
\begin{align*}
& \cos \Theta_{\pi} \rightarrow-\cos \Theta_{\pi} \\
& \sin \Theta_{\pi} \rightarrow+\sin \Theta_{\pi} \\
& \cos \Theta_{l} \rightarrow-\cos \Theta_{l} \tag{20}\\
& \sin \Theta_{l} \rightarrow+\sin \Theta_{l} \\
& \cos \Phi \rightarrow+\cos \Phi \\
& \sin \Phi \rightarrow-\sin \Phi
\end{align*}
$$

It follows that the terms $I_{4}, I_{6} I_{7}$, and I_{9} are $C P$ violating. Referring to the expression for I_{6} in terms of the form factors $f, \widetilde{f}, g, \widetilde{g}, h, \quad$ and \widetilde{h} we find that $I_{6} \sim\left[\operatorname{Re}\left(F_{2}^{*} F_{3}\right)-\operatorname{Re}\left(\widetilde{F}_{2}^{*} \widetilde{F}_{3}\right)\right]$ is zero. We are thus left with three observable $C P$-violating coefficients: I_{4}, I_{7}, and $\quad I_{9}$. Similarly, the $\quad C P$-conserving term $I_{5} \sim\left[\operatorname{Re}\left(F_{1}^{*} F_{3}\right)-\operatorname{Re}\left(\widetilde{F}_{1}^{*} \widetilde{F}_{3}\right)\right]$ vanishes, so that there are only four $C P$-conserving coefficients: $I_{1,2,3,8}$.

Integrating over s_{π}, s_{l}, and $\cos \Theta_{\pi}$, we have

$$
\begin{align*}
\frac{d \Gamma}{d \cos \Theta_{l} d \Phi}= & K_{1}+K_{2} \cos 2 \Theta_{l}+K_{3} \sin ^{2} \Theta_{l} \cos 2 \Phi \\
& +K_{4} \sin 2 \Theta_{l} \cos 2 \Phi+K_{5} \sin \Theta_{l} \cos \Phi \\
& +K_{6} \cos \Theta_{l}+K_{7} \sin \Theta_{l} \cos \Phi+K_{8} \sin 2 \Theta_{l} \\
& \times \sin \Phi+K_{9} \sin ^{2} \Theta_{l} \sin 2 \Phi \tag{21}
\end{align*}
$$

$C P$ violation manifests itself in the constants K_{4}, K_{7}, and K_{9}. These constants have been evaluated numerically and are listed in Table I). ${ }^{6}$ The only significant $C P$ violating coefficient is K_{9}. This is the term that is responsible for the $C P$-violating asymmetry in the Φ distribution which was calculated in Ref. [1]. The value of K_{9} / K_{1} corresponds to an asymmetry \mathcal{A} [defined in Eq. (1)] equal to

[^4]TABLE I. (a) CP-conserving coefficients in the differential decay spectrum of Eq. (21), normalized to K_{1}, for different values of the K^{0} charge radius coefficient. (b) $C P$-violating coefficients, normalized to K_{1}. (c) Ratio of direct to indirect $C P$ violation in the coefficients K_{4} and K_{9} for the cases $H_{\mathrm{SD}}^{V^{A}}$ and H_{SD}^{M} for $\sqrt{s_{l}}>2 m_{e}, \sqrt{s_{l}}>100 \mathrm{MeV}$, and $\sqrt{s_{l}}>180 \mathrm{MeV}$, respectively. The total branching ratio for the three different cuts in the invariant $e^{+} e^{-}$mass is also indicated.
(a) $C P$-conserving coefficients

	$g_{P}=0$	g_{P}	g_{P}^{\prime}
K_{2} / K_{1}	0.297	0.282	0.294
K_{3} / K_{1}	0.180	0.178	0.180
K_{8} / K_{1}	0	-3.1×10^{-3}	-2.8×10^{-3}

(b) $C P$-violating coefficients

	$g_{P}=0$	g_{P}	g_{P}^{\prime}	Comment
K_{4} / K_{1}	0	-1.33×10^{-2}	-8.68×10^{-3}	Dominant indirect $\mathscr{C} P$
$\left\|K_{7} / K_{1}\right\|_{V, A}$	0	2.1×10^{-6}	0.9×10^{-6}	Direct $\overparen{C} P$ only
$\left\|K_{7} / K_{1}\right\|_{M}$	0	0	0	
K_{9} / K_{1}	-0.309	-0.305	-0.308	Dominant indirect $\mathscr{C} P$

(c) Direct versus indirect $C P$ violation

$$
\begin{align*}
\mathcal{A} & =-\frac{2}{\pi}\left\{\frac{\frac{2}{3}\left(K_{9} / K_{1}\right)}{1-\frac{1}{3}\left(K_{2} / K_{1}\right)}\right\} \\
& \approx 14 \% \tag{22}
\end{align*}
$$

in complete agreement with the result in [1]. The dependence of this asymmetry on $\sqrt{s_{\pi}}$ and $\sqrt{s_{l}}$ is shown in Figs. 2(a) and 2(b), where we have differentiated between the cases g_{P} and g_{P}^{\prime}. Note that the asymmetry for large $e^{+} e^{-}$masses is particularly sensitive to the magnitude of the charge radius term. Since the rate is dominated by small values of $\sqrt{s_{l}}$, however, the integrated asymmetry is almost insensitive to the choice g_{P} or g_{P}^{\prime}.

It may be noted that the coefficient K_{7} depends on the existence of an axial-vector electron current $\bar{e} \gamma_{\mu} \gamma_{5} e$ in the matrix element of $K_{L} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$, which is induced by the short-distance Hamiltonian. In this sense, K_{7} is a measure of direct $C P$ violation. As seen from Table I, $\left(K_{7} / K_{1}\right)_{V, A} \approx 10^{-6}$, which is negligibly small. The $C P$-violating ratios $K_{4} / K_{1}, K_{7} / K_{1}$, and K_{9} / K_{1} are also plotted as functions of $\sqrt{ } s_{\pi}$ and $\sqrt{s_{l}}$ in Figs. 3(a) and $3(b){ }^{7}$

[^5]A perusal of Table I shows that the ratio of direct to indirect $C P$ violation in the coefficients K_{4} and K_{9} is at most of order $10^{-4}-10^{-3}$. This is the case for the V, A type short-distance interaction given in Eq. (6), as well as the "magnetic"-type interaction discussed in the Appendix.

It is encouraging to note that 20 events of the decay $K_{L} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$have recently been recorded [10], and that considerable increase of statistics is expected. It is likely that some of the characteristics of this decay calculated in this paper (and in Ref. [1]) can soon be compared with data. It would be gratifying if the large asymmetry in the Φ distribution, given in Eq. (22), could be verified, since it is one of the few cases of a $C P$-violating observable where a quantitative prediction is possible.

ACKNOWLEDGMENTS

We acknowledge the continuing support of the Bundesministerium für Forschung und Technologie. Parts of the work described here and in Ref. [1] were done under the auspices of a grant received from the Deutsche Forschungsgemeinschaft. One of us (P.H.) acknowledges the financial support of the Graduiertenförderungsgesetz Nordrhein-Westfalen.

APPENDIX

1. Short-distance matrix element: Case $\boldsymbol{V}, \boldsymbol{A}$

The short-distance Hamiltonian given in Eq. (6),
$H_{\mathrm{SD}}^{V, A}=\frac{G_{F}}{\sqrt{2}} \sin \Theta_{C} \alpha\left[\bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) d\right]\left[\bar{e} \gamma^{\mu}\left(F_{V}-F_{A} \gamma_{5}\right) e\right]$,
is a local interaction of the current $\bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) d$ with a linear combination of the V and A currents $\bar{e} \gamma_{\mu} e$ and $\bar{e} \gamma_{\mu} \gamma_{5} e$. The coefficients F_{V} and F_{A} are complex functions depending on the quark mixing parameters and the mass of the top quark. The amplitude of the decay $K^{0} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$is
(A1)

$$
\begin{equation*}
A\left(K^{0} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}\right)=-\frac{G_{F}}{\sqrt{2}} \sin \Theta_{C} \alpha\left\langle\pi^{+} \pi^{-}\right| \bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) d\left|K^{0}\right\rangle \bar{u} \gamma^{\mu}\left(F_{V}-F_{A} \gamma_{5}\right) v \tag{A2}
\end{equation*}
$$

We parametrize the matrix element $\left\langle\pi^{+} \pi^{-}\right| \bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) d\left|K^{0}\right\rangle$ in the standard way:

$$
\begin{equation*}
\left\langle\pi^{+} \pi^{-}\right| \bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) d\left|K^{0}\right\rangle=\frac{i}{M_{K}}\left[F\left(p_{+}+p_{-}\right)_{\mu}+G\left(p_{+}-p_{-}\right)_{\mu}+i \frac{H}{M_{K}^{2}} \epsilon_{\mu v \rho \sigma} p_{K}^{v}\left(p_{+}+p_{-}\right)^{\rho}\left(p_{+}-p_{-}\right)^{\sigma}\right] \tag{A3}
\end{equation*}
$$

where F, G, H are real, in the absence of final state phases. The amplitude (A2) then becomes

invariant mass of pions $/ M_{k}$

invariant mass of leptons $/ M_{k}$
FIG. 2. $C P$-violating asymmetry in the Φ distribution as function of (a) \sqrt{x} and (b) \sqrt{y} for g_{P} (solid line) and g_{P}^{\prime} (dotted line).

invariant mass of pions/ M_{k}

invariant mass of leptons/ M_{k}
FIG. 3. $\quad C P$-violating ratios $K_{4} / K_{1}, K_{7} / K_{1}$, and K_{9} / K_{1} as functions of (a) \sqrt{x} and (b) \sqrt{y}.

$$
\begin{align*}
A\left(K^{0} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}\right)=-\frac{G_{F}}{\sqrt{2}} \sin \Theta_{C} \alpha \frac{i}{M_{K}}[& F\left(p_{+}+p_{-}\right)_{\mu}+G\left(p_{+}-p_{-}\right)_{\mu} \\
& \left.+i \frac{H}{M_{K}^{2}} \epsilon_{\mu \nu \rho \sigma} p_{K}^{v}\left(p_{+}+p_{-}\right)^{\rho}\left(p_{+}-p_{-}\right)^{\sigma}\right] \cdot \bar{u} \gamma^{\mu}\left(F_{V}-F_{A} \gamma_{5}\right) v . \tag{A4}
\end{align*}
$$

We now use CPT invariance to obtain the amplitude for $\bar{K}^{0} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$:

$$
\begin{align*}
A\left(\bar{K}^{0} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}\right)=+\frac{G_{F}}{\sqrt{2}} \sin \Theta_{C} \alpha \frac{i}{M_{K}} & \\
& F\left(p_{+}+p_{-}\right)_{\mu}-G\left(p_{+}-p_{-}\right)_{\mu} \tag{A5}\\
& \left.+i \frac{H}{M_{K}^{2}} \epsilon_{\mu \nu \rho \sigma} p_{K}^{v}\left(p_{+}+p_{-}\right)^{\rho}\left(p_{+}-p_{-}\right)^{\sigma}\right] \bar{u} \gamma^{\mu}\left(F_{V}^{*}-F_{A}^{*} \gamma_{5}\right) v .
\end{align*}
$$

Taking the difference of (A4) and (A5), we obtain the decay amplitude of $K_{2}=\left(K^{0}-\bar{K}^{0}\right) / \sqrt{2} i$ as

$$
\begin{align*}
A\left(K_{2} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}\right)=-\frac{G_{F}}{\sqrt{2}} \sin \Theta_{C} \alpha \frac{1}{M_{K}} \frac{1}{\sqrt{2}}[& F\left(p_{+}+p_{-}\right)_{\mu} 2 \operatorname{Re} \bar{u} \gamma^{\mu}\left(F_{V}-F_{A} \gamma_{5}\right) v \\
& +i G\left(p_{+}-p_{-}\right)_{\mu} 2 \operatorname{Im} \bar{u} \gamma^{\mu}\left(F_{V}-F_{A} \gamma_{5}\right) v \\
& \left.+\frac{i}{M_{K}^{2}} H \epsilon_{\mu v \rho \sigma} p_{K}^{v}\left(p_{+}+p_{-}\right)^{\rho}\left(p_{+}-p_{-}\right)^{\sigma} 2 \operatorname{Re} \bar{u} \gamma^{\mu}\left(F_{V}-F_{A} \gamma_{5}\right) v\right] . \tag{A6}
\end{align*}
$$

The terms proportional to F and H in Eq. (A6) are $C P$ conserving, representing $I=0 s$-wave and $I=1 p$-wave configurations of the $\pi^{+} \pi^{-}$pair (analogous to the charge-radius and magnetic dipole contributions). Our interest resides in the third term proportional to G, which involves the imaginary parts of the functions F_{V} and F_{A}, and accordingly represents a direct $C P$-violating effect. In the notation of Dib, Dunietz, and Gilman [4], the imaginary parts of F_{V} and F_{A} are

$$
\begin{align*}
\operatorname{Im} F^{V, A} & =\operatorname{Im}\left\{\frac{V_{t s}^{*} V_{t d} V_{u s} V_{u d}^{*}}{\left|V_{u s}^{*} V_{u d}\right|^{2}}\right\}\left(c_{7, t}^{V, A}-c_{7, c}^{V, A}\right) \\
& =s_{2} s_{3} s_{\delta} c_{V, A} . \tag{A7}
\end{align*}
$$

For a top quark of mass 150 GeV , the parameters $c_{V, A}$ are approximately $c_{V} \approx c_{A} \approx \frac{1}{2}$ [4]. The form factor G which appears in the matrix element $\left\langle\pi^{+} \pi^{-}\right| \bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) d\left|K^{0}\right\rangle$ can be related by isospin to the corresponding form factor in the matrix element $\left\langle\pi^{+} \pi^{-}\right| \bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) u\left|K^{+}\right\rangle$which describes $K_{l 4}$ decay. This yields $G=M_{K} / f_{\pi}$ (with $f_{\pi}=130 \mathrm{MeV}$). Altogether, therefore, the direct $C P$-violating contribution to the decay $K_{2} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$is

$$
\begin{align*}
\mathcal{M}_{\mathrm{SD}}^{V, A}=- & \frac{G_{F}}{\sqrt{2}} \sin \Theta_{C} \alpha \frac{1}{M_{K}} g_{\mathrm{SD}}^{V, A}\left(p_{+}-p_{-}\right)_{\mu} \\
& \times \bar{u}\left(k_{-}\right)\left(c_{V}-c_{A} \gamma_{5}\right) v\left(k_{+}\right) \tag{A8}
\end{align*}
$$

with

$$
\begin{equation*}
g_{\mathrm{SD}}^{V, A}=i\left(s_{2} s_{3} s_{\delta}\right) \sqrt{2}\left(\frac{M_{K}}{f_{\pi}}\right) e^{i \delta_{1}\left(s_{\pi}\right)} \tag{A9}
\end{equation*}
$$

which is the result given in Eq. (3) and (7).

2. Short-distance matrix element: Case \boldsymbol{M}

In addition to the local V, A coupling given by Eq. (A1), the short-distance interaction gives rise to a magnetic coupling of the form $s \rightarrow d+\gamma$, which produces an effective Hamiltonian for $s \rightarrow d e^{+} e^{-}$:
$H_{\mathrm{SD}}^{M}=\frac{G_{F}}{\sqrt{2}} \alpha \sum_{q=u, c, t} V_{q s}^{*} V_{q d} F_{M}\left(x_{q}\right) Q_{\mu}^{M} \frac{1}{k^{2}} \bar{e} \gamma^{\mu} e$,
where

$$
\begin{equation*}
Q_{\mu}^{M}=\bar{s}\left[i m_{s} \sigma_{\mu \nu} q^{v}\left(1-\gamma_{5}\right)+i m_{d} \sigma_{\mu \nu} q^{v}\left(1+\gamma_{5}\right)\right] d, \tag{A11}
\end{equation*}
$$

and the function F_{M} is given by [4]
$F_{M}\left(x_{q}\right)=\frac{\left(8 x_{q}^{2}+5 x_{q}-7\right) x_{q}}{24 \pi\left(x_{q}-1\right)^{3}}-\frac{\left(3 x_{q}-2\right) x_{q}^{2}}{4 \pi\left(x_{q}-1\right)^{4}} \ln x_{q}$,
with $x_{q}=m_{q}^{2} / m_{W}^{2}$. For a top-quark mass of 130 GeV , we have $F_{M}\left(x_{t}\right) \approx 0.051$, which is the dominant contribution to Eq. (A10).

To evaluate the contribution of H_{SD}^{M} of the decay $K_{L} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$, we require the matrix element $\left\langle\pi^{+} \pi^{-}\right| Q_{\mu}^{M}\left|K^{0}\right\rangle$. For a rough estimate we use

$$
\begin{equation*}
\left\langle\pi^{+} \pi^{-}\right| Q_{\mu}^{M}\left|K^{0}\right\rangle \approx \frac{2\left(m_{s}-m_{d}\right)}{f_{\pi}^{2}}\left[p_{-} \cdot k p_{+\mu}-p_{+} \cdot k p_{-\mu}\right] \tag{A13}
\end{equation*}
$$

which is suggested by the work of Dib and Peccei [11]. This leads to the following short-distance matrix element for $K_{L} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$:

$$
\begin{align*}
\mathcal{M}_{\mathrm{SD}}^{M}=- & \frac{G_{F}}{\sqrt{2}} \sin \Theta_{C} \alpha(0.051)\left(s_{2} s_{3} s_{\delta}\right) \sqrt{2} i \frac{2\left(m_{s}-m_{d}\right)}{f_{\pi}^{2}} e^{i \delta_{1}\left(s_{\pi}\right)} \\
& \times \frac{1}{2}\left\{-\left(p_{+}-p_{-}\right) \cdot k\left(p_{+}+p_{-}\right)_{\mu}+\left(p_{+}+p_{-}\right) \cdot k\left(p_{+}-p_{-}\right)_{\mu}\right\} \frac{1}{s_{l}} \bar{u} \gamma_{\mu} v, \tag{A14}
\end{align*}
$$

where $f_{\pi}=93 \mathrm{MeV}$.
Essentially, the operator (A11) induces a $C P$-violating $E 1$ amplitude in $K_{L} \rightarrow \pi^{+} \pi^{-} \gamma$, which in turn gives the Dalitz pair amplitude in Eq. (A14). As compared to the V, A matrix element (A8), the case M has a factor $1 / s_{l}$, which tends to enhance its effects at small $e^{+} e^{-}$masses. In the notation of Eq. (14), the form factors $f, \widetilde{f}, g, \widetilde{g}$ in the present model are

$$
\begin{align*}
& f=\widetilde{f}=C M_{K}^{4}\left\{\left|\eta_{+-}\right| e^{i\left(\delta_{0}+\Phi_{+-}\right)} \frac{1}{s_{l}} \frac{-4 \beta \cos \Theta_{\pi}}{s\left(1-\beta^{2} \cos ^{2} \Theta_{\pi}\right)}+2 \frac{g_{P}}{M_{K}^{2}} e^{i \delta_{0}\left(s_{\pi}\right)} \frac{1}{s_{\pi}-M_{K}^{2}}\right\}-i \eta_{M} \frac{1}{s_{l}} s \beta \cos \Theta_{\pi} e^{i \delta_{1}}, \\
& g=\widetilde{g}=C M_{K}^{4}\left|\eta_{+-}\right| e^{i\left(\delta_{0}+\Phi_{+-}\right)} \frac{1}{s_{l}} \frac{4}{s\left(1-\beta^{2} \cos ^{2} \Theta_{\pi}\right)}+i \eta_{M} \frac{M_{K}^{2}-s_{\pi}}{s_{l}} e^{i \delta_{1}} \tag{A15}
\end{align*}
$$

where

$$
\begin{equation*}
\eta_{M}=M_{K} \frac{2\left(m_{s}-m_{d}\right)}{f_{\pi}^{2}} \frac{\alpha}{\sqrt{2}} s_{2} s_{3} s_{\delta}(0.051) \approx 2.27 \times 10^{-6} \tag{A16}
\end{equation*}
$$

(taking $m_{s}-m_{d}=150 \mathrm{MeV}, s_{2} s_{3} s_{\delta}=0.5 \times 10^{-3}$).
[1] L. M. Sehgal and M. Wanninger, Phys. Rev. D 46, 1035 (1992); 46, 5209(E) (1992).
[2] E731 Collaboration, E. J. Ramberg et al., Phys. Rev. Lett. 70, 2525 (1993).
[3] B. Winstein and L. Wolfenstein, Rev. Mod. Phys. 65 (1993).
[4] C. O. Dib, I. Dunietz, and F. J. Gilman, Phys. Rev. D 39, 2639 (1989); T. Inami and C. S. Lim, Prog. Theor. Phys. 65, 1297 (1981); 65, 1772(E) (1981).
[5] G. Costa and P. K. Kabir, Nuovo Cimento A 61, 564 (1967); K. Hiida and Y.-Y. Lee, Phys. Rev. 167, 1403 (1968); L. M. Sehgal and L. Wolfenstein, ibid. 162, 1362 (1967).
[6] J. A. Cronin, Phys. Rev. 161, 1483 (1967). The result in Eq. (8) follows from the lowest-order chiral Lagrangian for $\Delta S=1$ nonleptonic decays. For higher-order correc-
tions, see J. Kambor, J. Missimer, and D. Wyler, Phys. Lett. B 261, 496 (1991); J. F. Donoghue, E. Golowich, and B. R. Holstein, Phys. Rev. D 30, 587 (1984).
[7] A. Pais and S. B. Treiman, Phys. Rev. 168, 1858 (1968).
[8] J. Bijnens, G. Ecker, and J. Gasser, in The DAФNE Physics Handbook, edited by L. Maiani, G. Pancheri, and N. Paver (Servizio Documentizione dei Laboratori Nationali di Frascati, Frascati, Italy, 1992), Vol. I, p. 115.
[9] L. M. Sehgal, in Proceedings of the XXVIth International Conference on High Energy Physics, Dallas, Texas, 1992, edited by J. Sanford, AIP Conf. Proc. No. 272 (AIP, New York, 1993), Vol. 1, p. 526.
[10] FNAL-731 Collaboration, Y. Wah et al., in Proceedings of the XXVIth International Conference on High Energy Physics [9], p. 520.
[11] C. O. Dib and R. D. Peccei, Phys. Lett. B 249, 325 (1990).

[^0]: *Present address: Institut für Theoretische Tielchenphysik, Univ. Karlsruhe, D-W 7500 Karlsruhe, Germany.
 ${ }^{1}$ An error in Ref. [1], which led to a cosine instead of a sine factor in Eq. (1), and a correspondingly lower asymmetry ($\sim 4 \%$), was corrected in the Erratum [1].

[^1]: ${ }^{2}$ For a recent review of direct $C P$ violation, see [3].

[^2]: ${ }^{3}$ The factor i in $g_{M 1}$ was initially missed in Ref. [1], and inserted in the Erratum.
 ${ }^{4} \mathrm{~A}$ further term of the form

 $$
 H_{\mathrm{SD}}^{M}=\frac{G_{F}}{\sqrt{2}} \sin \Theta_{C} \alpha\left[\bar{s}\left(i m_{s} \sigma_{\mu \nu} q^{v}\left(1-\gamma_{5}\right)+i m_{d} \sigma_{\mu \nu} q^{v}\left(1+\gamma_{5}\right)\right) d\right] \frac{1}{k^{2}}\left[\bar{e} \gamma^{\mu} F_{M} e\right]
 $$

[^3]: ${ }^{5}$ In Fig. 2(b) of Ref. [1], the threshold should be at $\sqrt{s_{l}}=0.002 M_{K}$.

[^4]: ${ }^{6}$ The results given in Table I are compatible with the preliminary results for K_{i} / K_{1} reported in [9], except that K_{5} / K_{1} should be zero.

[^5]: ${ }^{7}$ The ratios refer to the coefficients which appear in an expansion of $d \Gamma / d \cos \Theta_{l} d \Phi d s_{\pi}$ or $d \Gamma / d \cos \Theta_{l} d \Phi d s_{l}$ analogous to Eq. (21).

