
PHYSICAL REVIE%' D VOLUME 48, NUMBER 9

Unitarity bounds and elastic hadron-hadron scattering in the energy region
of the Superconducting Super Collider and beyond
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The possibility of saturation of unitarity bounds for elastic hadron-hadron scattering at very high en-
ergies is discussed with respect to two limits: the MacDowell-Martin and the uniform-disk bounds. The
unitarity properties of these two bounds are shown. The analysis by the generalized geometrical scaling
model suggests that pp elastic scattering first tends to the MacDowell-Martin bound and then turns to
the uniform-disk bound as the elasticity becomes larger than -0.4.

PACS number(s): 13.85.Dz, 12.40.Pp

The rising total cross sections of hadron-hadron col-
lisions at high energies [1] showing Froissart-bound-like
behavior —(lns) [2] suggest a unitarity-saturating
feature of the strong interaction. It is, therefore, interest-
ing to study the unitarity-bound structure of the scatter-
ing amplitude in its geometrical aspect. In particular we
ask whether or not elastic hadron-hadron scattering will
asymptotically approach the MacDowell-Martin bound
[3] or the uniform-disk bound [4], which gives the
differential cross section
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where J„ is the Bessel function of the order n, t the
squared momentum transfer, Ro the interaction radius,
o., the total cross section, and p the ratio of the real to
the imaginary part of the forward scattering amplitude.
The MacDowell-Martin case corresponds to n=2 with
R 0

=R MM
——Q( 1+p )o, /3vrx, and the uniform disk

n= 1 with Ro=RUD=+ —'RMM, x being the elasticity.
The forward logarithmic slope b is given by
bMM=—(1+p )o, /18' for the MacDowell-Martin
bound, which is the unitarity lower bound for the slope,
and ( —', )bMM for the uniform disk.

In this work we show the unitarity properties of these
two bounds and give a speculation on whether or not
hadron-hadron scattering approaches either of these two
limits asymptotically.

The unitarity properties of the bounds can be seen by
using the variational solution for the elastic differential
cross section under the fixed o.„x, and b as well as p,
with the assumption that the partial-wave amplitude with
angular momentum I vanishes for I )1. with L being the
cutoff angular momentum [5]. The variation gives the ex-
trema of the differential cross section of which asymptot-
ic forms at small momentum transfers are given by [Eq.
(20) of Ref. [5]]
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Here it is to be noted that B (t) and dB (t)/dt vanish at
t =0 as expected, but d B ( t) /dt does not. At small
momentum transfers d cr '+ '/dt gives the upper bound,
while do' '/dt the lower bound.

Now we examine the properties of the partial-wave
amplitudes giving these cross sections in order to see the
bound structures imposed by unitarity. In the limit of
t —+0 the partial-wave amplitude of the solution is given
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where k is the c.m. system (c.m. s.) momentum and

ao=(L+1), Ro= I. +1
(10)

The unitarity condition imposed in the derivation of Eq.
(8) is the optical theorem, and the consistency of the solu-
tion (8) with the partial-wave unitarity constraint,
0 ~ k (1+p )1m f &

~ 1, has to be checked for a given set of
o„x,b, p, and Rp.

Here we ask a question: What restriction is imposed
on the interaction radius Ro from the solution (8)? In the
present analysis the only rigorous restriction is obtained
from the reality of a. The lowest allowed value of o. is
zero and in this case the upper and lower bounds coincide
and the variation leads to a unique solution, which is
quadratic in l and gives the MacDowe11-Martin bound
solution for Rp=RMM. The condition o.=0 sets the
lower limit for the interaction radius Rp for given a.„o.„,
b, and p. This is shown in Fig. 1 by a solid curve. As for
the upper limit we get no restriction from (8). Some ap-
proximate limits may be introduced only with additional
assumptions [5]. In Fig. 1 the hatched area is forbidden
either by the reality of a or by the well-known
MacDowell-Martin bound b /bMM ~ 1.

MacDouell-Martin case. In the limit b ~b MM the
MacDowell-Martin amplitude is the unique solution
satisfying the partial-wave unitarity requirement
Imf'& ~0. This can be shown for the general restriction
x

3
which is imposed by the unitarity condition for

l=0. The MacDowell-Martin solution appears at the
point (b/bMM, Ro/+bMM)=(l, i/6) and is denoted by
MM in Fig. 1. Its partial-wave amplitudes are given by

which provide the differential cross section (1) with n =2.
This is easily seen, if we take Rp =R MM and 6 =bMM in
(2). The solution is characterized by the minimum slope
b =bMM as is seen in Fig. 1.

Uniform disk-case. The uniform-disk solution appears
at the point ( —9,Q —,'). We have

ko. ,ImfI= (O~l ~L) .
4map

(12)

As is clearly seen in Fig. 1, this solution denoted by UD
is the minimum-radius bound allowed by the unitarity,
and in this sense the uniform disk is the most densely
packed solution. The uniform disk is of special interest
as a possible asymptotic limit of some high-energy mod-
els [4] including the Chou-Yang model [7].

Now we discuss where hadron-hadron scattering is ap-
proaching, to either the MacDowell-Martin bound or the
uniform-disk bound or elsewhere, as the energy increases
over the range reached at the Fermilab Tevatron Collider
(&s =1.8 TeV) to the CERN Large Hadron Collider
(LHC) (15.4 TeV) and the Superconducting Super Collid-
er (SSC) (40 TeV), and further beyond.

As the representative of hadron-hadron scattering, we
take pp scattering for which the experiments have been
performed at the highest energy by the accelerators avail-
able so far. In the absence of the experimental data at
very high energies, we use the predictions of the general-
ized geometrical scaling (GGS) model I8,9], which gives a
reasonable explanation of the features of the existing ex-
perimental data of hadron-hadron scattering in the ener-

gy range v s = 10—1800 GeV I10].
We use the values of the total and elastic cross sections

given by the empirical-fit formula
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FIG. 1. The hatched area is the forbidden region for b and

Ro, of which boundary is given by the conditions a=0 and

b/bMM = 1. The points denoted by MM and UD are the
MacDowell-Martin bound and the uniform-disk bound, respec-
tively. The trajectory of GGS is given with the interaction ra-
dius defined by the condition Ab/b =6=0.01. Here we have
taken the "dipole" eikonal [8] with p= 0.

o(p) = 2 +Bp "+C ln (p)+D ln(p)

(p is the incident laboratory momentum), whose parame-
ters were determined by the data up to 1.8 TeV [11],even
above the Tevatron collider energy region. This extrapo-
lation is only to get some idea about the correspondence
between the energy &s and the elasticity x and not essen-
tial in the following analysis. The essential parameter in
the following analysis is the elasticity and we have
x=0.30 at 40 TeV and 0.34 at 1000 TeV by the extrapo-
lation. Once the elasticity becomes stationary, the only
change is geometrical scaling [12,13] under the GGS hy-
pothesis. Further the results obtained for pp scattering
hold qualitatively for all elastic hadron-hadron processes,
if the results are interpreted in terms of the elasticity [14].

First we want to draw the trajectory of the GCzS pre-
diction on (b/bMM, Ro/QbMM ) plane. Realistic models
of high-energy hadron-hadron scattering have, however,
generally no clear cutoff interaction radii. Here we define
an effective radius by requiring that EQ/Q takes some
fixed value, where Q is the physical quantity most
affected by the cutoff of the interaction at this radius
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FIG. 2. The dip position Itd; I
of the GGS prediction for the

"dipole" eikonal [8]. The quantity o, Itd;~ I
is plotted vs the elas-

ticity x. Here p is taken to be zero. The MM and UD lines cor-
respond to the MacDowell-Martin and the uniform disk bound,
respectively.

among those concerned with the present analysis and EQ
is the change induced by the cutoff. Let td;p be the
squared momentum transfers at the first dip of the
differential cross section. Of O.„o.,&, b, and td;~, the for-
ward slope b is most affected by the cutoff and we deter-
mine the interaction radius by the condition

I
b.b /b

I

=5
for a given value of 6. Naturally this radius increases as
5 decreases. We discuss the energy and elasticity varia-
tion of this radius.

In Fig. 1 we show the trajectory for 5=0.01. It is to be
noted that, if we change the value of 5, any point on the
trajectory moves only horizontally; the corresponding
value of Ro changes, while the value of b/bMM remains
the same. Here and in the following calculation we
neglect the contribution from the real part of the scatter-
ing amplitude. The numerical figures attached to the tra-
jectory curve in Fig. 1 are the values of the energy &s
and the elasticity x. The obtained curve shows that pp
scattering is approaching first the Mac Dowell-Martin
bound, then turning to the uniform-disk bound, rather
than pointing directly to the uniform-disk point. If the
experiments were performed only up to 1000 TeV region,
one might conclude that the MM bound would be the
asymptotic limit. The radius measured in units of
QbMM [15] is rapidly decreasing as x increases. In this
sense the interaction is being condensed as the energy in-
creases. Such cornpactification of the interaction contin-
ues as far as x increases to the unitarity limit of the black
uniform disk, 0.5.

The preceding arguments rely on a somewhat ambigu-
ous cutoff radius introduced for the GGS amplitude. In
the following we make a more direct comparison of the
GGS predictions with the MM and UD bounds. In addi-
tion to the forward slope, we examine the position of the
first dip td;, which also characterizes the cross sections
at small momentum transfers. The dip position of the
G-GS prediction as well as those of MM and UD bounds
are shown in Fig. 2.

The ratio b/bMM is steadily decreasing as the energy
goes higher from the energy range of the CERN Inter-
secting Storage Rings (ISR) (-0.05 TeV). At 1.8 TeV,

we have b/bMM =1.160 by the GGS calculation, which is
consistent with the measurements of the slope [16]. This
comes near the value of the uniform disk, 9/8=1. 125.
The experimental differential cross sections at this energy
[17], however, do not show apparent change of the slope
in the region ItI =0—0.5 (GeV/c), where we expect for
the uniform disk the downward curvature of the forward
peak and a dip structure. The location of the first dip of
the uniform disk is determined by the first zero of I, (z),
j» =3.83. This gives the position of the dip td'p as

4rrx (. 2
d]pl 2 Ji, i1+p

(13)

which would imply Itd; I

=0.23 (GeV/c) for cr, =74.8
mb and o,&=17.6 mb of the empirical fit at 1.8 TeV,
while the GGS prediction is 0.62 (GeV/c) and is con-
sistent with the experimental data if the contribution
from the real part is taken into account [8,9]. This indi-
cates that the situation is far from the uniform disk as
seen in Fig. 1.

As the energy goes higher we pass the point
b/bMM =1.125 of the uniform-disk value around 14 TeV
in the LHC energy range, but the position of the dip of
the G-GS calculation is far from that of the uniform disk.
At 40 TeV of the SSC energy, b/bMM is 1.108, and at
1000 TeV 1.069; therefore, this ratio seems to be ap-
proaching the MacDowell-Martin unitarity lower bound
monotonically. The first dip of the MacDowell-Martin
solution is specified by the first zero of J2(z), j, ~ =5.14 as

3 trx
(

.
)p, I d,p I
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(14)

The GGS prediction at 1000 TeV is
I td;p I

=0 20 (GeV/&)
which is compared with 0.17 (GeV/c) of Eq. (14) and
().13 (GeV/c)2 of Eq. (13) for the uniform disk. Here we
have assumed o., =196 mb and o.,&=67 mb of the empiri-
cal formula. The prediction by GGS at this energy is
near that of the MacDowell-Martin, but there is some
distance to it.

What will happen if the elasticity continues to in-
crease? The ratio b/bMM first decreases to the minimum
value —1.03 at around x=0.4 and then turns to increase,
towards the uniform disk limit. The dip crosses over the
MacDowell-Martin value of Eq. (14) near the minimum
of 6/bMM and approaches the uniform-disk point, as seen
in Fig. 2. This movement of the dip position is consistent
with the trajectory shown in Fig. 1.

We have shown how elastic hadron-hadron scattering
approaches the black uniform disk, if it ever reaches this
bound asymptotically. At 40 TeV of the SSC energy re-
gion, pp scattering (x=0.3) will be still far from the
asymptotic limit and rather look like pointing to the
MacDowell-Martin bound. This is different from the
view that the pp experimental data at 1.8 TeV indicate
the onset of asymptopia [18]. In the sense that each of
hadron-hadron scattering processes loses its own identity,
the energy where the elasticity reaches -0.35 will be a
gate to asymptopia, though the sharp-edge structure of
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hadron interaction as in the UD and MM solutions may
be discernible at lower elasticity. The interaction radius
in units of QbMM behaves as if becoming minimally
compacted to the uniform disk at high-energy limit from
very expanded states at low energies, though it is ever in-

creasing with the total cross section in the absolute scale.
Such a feature is the result of the GGS hypothesis, but
qualitatively this feature will be realized more broadly as
far as the elasticity increases with the energy [19] and
also for all hadron-hadron scattering.
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