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Phase of direct CP violation from threshold pion production

Erik Chell and M. G. Olsson
Department of Physics, University of Wisconsin, Madison, Wisconsin 58706

(Received 23 December 1992)

A recent series of experiments on pion production near threshold provides accurate values of the
s-wave vr-vr isospin scattering lengths. Combined with dispersion relations we find the s-wave phase
shift di6'erence at the K mass is bo —b2 ——42 + 4 and the phase of direct CP violation is argo' =
——(bs —62) = 48 + 4'. We also evaluate the p-wave scattering length to be ai ——0.035 + 0.001 m

PACS number(s): 13.75.Gx, 11.30.Er, 14.40.Aq

I. INTRODUCTION

Knowledge of the phase of the direct kaon CP-
violation parameter e' is of fundamental importance. In
the extraction of the magnitude of e' and for tests of
CPT invariance [1] an accurate knowledge of the phase
of c' plays a key role. Assuming CPT invariance, the
phase of e' is determined by final state vr-7r scattering as

7r
arg s' = ——(bo —b2),

2

where bl is the isospin I s-wave 7r-a scattering phase shift
at the kaon mass c.m. energy.

The phase of e' has been previously determined by ex-
trapolating downward using 7r-7r phase shifts from high
energy pion production [2] or by a theoretically moti-
vated extrapolation upward in energy using a chiral La-
grangian [3].

In this paper we use new results for 8-wave 7r-7r scat-
tering lengths ao and a2 together with forward disper-
sion relations to evaluate bo —b2. The advantage of our
method is that it exploits the self-consistency of the data
by using information over the entire low-energy region.
The addition of the new scattering length data is crucial
to our analysis.

Almost twenty-five years ago it was pointed out [4]
that in some generality the 7rN ~ vr7r N amplitude
at threshold factorizes into m7r ~ 7r7r scattering at
threshold and the known vr KK vertex. Within the
last few years an impressive sequence of precision mea-
surements has been performed exploring pion produc-
tion near threshold. These experiments examine all
five charge states resulting from 7r+ collisions on pro-
tons: 7r p i 7r vr+n [5], vr p i 7r 7r n [6], m p
~-~op [7], ~+p —i ~+~+n [8], ~+p —~ ~+~'p [9]. A
global analysis has been performed on this data [10]
showing that overall consistency is achieved by the five
final charge states and extracting the following 8-wave
7r-~ isospin scattering lengths:

ao —— 0.197 + 0.010m
a2 ———0.032 + 0.004m (2)

Above 7r-vr scattering threshold there is a considerable
body of experimental data. We use the phase shifts and
inelasticity parameters shown [11—14] in Figs. 1—3. Most
of these phase shifts are determined from 7r& ~ 7rm&
scattering at high-energy in a kinematic region favoring
single pion exchange [15]. Close to the vr-7r threshold, K,4
decay (K —i evvra) yields valuable I = 0 vr-a scattering
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FIG. 1. Isospin zero s-wave scattering phase shift and in-
elasticity parameter. For the inelasticity parameter g we have
used the energy-dependent fit of [14] as shown.

FIG. 2. Isospin one p-wave phase shift and inelasticity
parameter. We have used the energy dependent fit of [14] for
the inelasticity parameter g.
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0 II. THE DISPERSIVE SUM RULE

We consider the invariant 7r7r ~ 7r7r forward scattering
amplitude Ar(id), where w is the pion lab energy. The
fixed-t dispersion relation [16] for t-channel isospin I, is
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The isospin definite amplitudes in the 8-channel Al are
related to the t-channel amplitudes at the same kinematic
point by
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FIG. 3. Isospin two s-wave phase shift from [13]. where

information [12].
As we see, there is a large amount of 7r-7r scattering

data available, although not much specifically at the K-
meson mass. This is an ideal situation in which to exploit
the analyticity properties of the scattering amplitude in
the form of dispersion relations. The dispersion relation
can be thought of as a consistency relation involving all
scattering energies. By judicious choice of subtraction
points the dispersion relation can be engineered to em-
phasize the low-energy data. Our dispersive sum rules
relate 7r-7r scattering at the K-meson mass to the 7r-7r

scattering lengths and to 7r-7r scattering between thresh-
old and about 1 GeV.

We have gone to some eKort to realistically evaluate
the error due to the sum rule integral over experimental
data. We have developed a Monte Carlo technique in
which the experimental data are "shaken" within their
assigned errors and then fitted by a spline interpolation
routine. An ensemble distribution of integrals over this
data then yields the error in the integral. An attractive
aspect of this technique is that the error due to func-
tional combinations of sum rules can be easily evaluated
incorporating all data error correlations.

In Sec. II we derive the sum rules used in the analysis.
The numerical evaluations are given in Sec. III and our
conclusions in Sec. IV.

1 5
2 6

A(|d) = ) (2E+ 1)fr,
2q e=o

fr = —.(use'*" —I) .

The /th partial-wave scattering length is defined by

ae = hm ~r/q"+',
q —+0

and from (5) it follows that the elastic s- and p-wave
scattering lengths can be expressed as

I=0,2
ar o' = Ao 2(cu = 1),

I=i 2 dAi
3 d~

(7)

From the sum rule (3) and the isospin crossing relation
(4) we find

The partial-wave expansion of the invariant amplitude
is [17]

or

1
ReAr (id ) = —) .Cs, r,

7r I,

1= —).Cs, s,
It
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2 2J

I

Defining the real part of A(w) as

o.r (cu)—:ReAs (~),
we subtract the s-wave scattering length nr(1)—:as from
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the sum rule (8) to give where k = u —1. The integral operator in (13) can be
written as

o.z(~) = az + 2k 2 dk' ImAz (cu')

jr k' k'2 —k2
dk ImA(u))
k k2 —kK2

2(~ + 1)+ I,1
d~'ImAz, =i (~')
(~' —1)(~' + ~)

'

oI ——aI + JI (12)

where

Since we wish to compute phase shifts at the K mass we
set k = k~ and drop the primes in (ll) to obtain our
sum rule for nz = nz(co~):

dk ImA(cu) ImA(~~)
k kK

(17)

using (16) to subtract a term which integrates to zero.
As we can see, the integrand now has only a removable

singularity and can be integrated by standard numerical
techniques. At threshold the apparent singularity in the
numerator is more than canceled by the threshold zero
of ImA.

2kKI— dk IinAz (cu)

k k2 —kK2

2(~~ + 1)+ I, l
d~ImAI

(cu —1)(cu + (uK)
(»)

By (4) we see explicitly that

1 1 5
ImAI —1 = —ImAp + —ImA1 ——ImA2

3 2 6
(14)

Although we could put the above sum rule in a seemingly
simpler form by substituting (14) into (13), we retain the
expression (13) since the convergence properties are much
clearer.

With very little additional effort, the p-wave scattering
length a1 can also be computed. The sum rule is the same
as investigated earlier [18]. By difFerentiating the I = 1
sum rule (8) with respect to w and using (7) we obtain

B. Data Input

We have used the tabulated phase shifts of Estabrooks
and Martin [ll], Hoogland et al. [13], and Rosselet et
al. [12] below v s = 0.9GeV and the work of Hyams et
al. [14] between 0.9 GeV and 1.8 GeV. The data are shown
in Figs. 1—3. As will be seen, the data above 1GeV do
not make significant contributions except for the f2(1270)
resonance region. Above the region where phase shifts
are known we evaluate the various known resonance [19]
contributions to the sum rules by the narrow width ap-
proximation [20]. As we shall see, the results are quite
small due to the rapid convergence of the sum rules. The
experimental data entering the integrand of the various
dispersive sum rules are interpolated by a standard cu-
bic spline algorithm [21] and the resulting integrands are
shown in Figs. 4 and 5. We observe the insensitivity to
contributions at high energy. In Table I we show explic-
itly the contributions of resonances not included or above
the point where phase shifts are known.

8
a1

37r

dk 2—ImA1 +-
k3 37t

ImAz, =i . C. Convergence

The integrand is finite at k = 0 since ImA1 ~ k at
threshold and has the same convergence properties as
(»)

III. SUM RULE EVALUATION

In this section we discuss the evaluation of the sum
rules (13) and (15). We consider in turn the principal
value singularity, the data input, the convergence, and
the assigned error of the sum rule results.

A. Frincipal value

Each of the sum rules (13) and (15) are to be integrated
out to infinite energy. The phase shift analyses are known
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The evaluation of the principal value integral (13) can
be eKciently carried out using the identity
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FIG. 4. Integrand for sum rules Jo and J2.
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0.035 and the result with kA ——80m is

0.03

0.025

0.02

J,"y - 0.003.

An analogous calculation for the ai sum rule gives

(22)
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0.005

0

-0.005

Al„((l( vI

ai' ——
q

JI' 0.00015 .
K

The nonleading asymptotic amplitude (18b) is dual to
the 8-channel resonances, and it will thus suKce to esti-
mate this part by the contributions of those resonances
above kA ——80 which have appreciable branching ratios
to the vr-vr channel. These resonance contributions are
listed in Table I.

FIG. 5. Integrand for sum rules Ji and az. D. Error assignment

AI (~) - Ak,

Al, =i(cu) - Pv k .
k —+oo

(18b)

The first (18a) is a diffractive contribution equivalent to a
constant asymptotic cross section by the optical theorem.
The integrals in which AI = Ak enter converge as 1/k
and the asymptotic contributions for kA » k are

to roughly v s = 1.8 GeU (or k = 80m ), so we must at
least estimate the contributions above this region. The
leading asymptotic amplitudes are

A critical step in the evaluation of any integral over
experimental data is the estimation of the error in the
integral. The procedure we have adopted is the following.

(1) An interpolation scheme such as the cubic
spline [21] is fit to the data and the sum rule is eval-
uated.

(2) Each data point is "shaken" to randomly produce
a new point with a Gaussian distribution consistent with
the quoted error. A new 6t is done and a new sum rule
evaluation made.

(3) The procedure is repeated a large number of times
and a distribution of sum rule results is made. As an
example we show 10 evaluations of the Jo sum rule in
Fig. 6.

(4) A standard deviation error is assigned using the
conventional definition

asy 2k
I

Adk 2k2 A

k2 srkA 1o. = ) (x, —x)2.
N —1.

By the optical theorem [16]

A = 10 o~(vrvr),
8000

where o~(vrvr) is the asymptotic vr-vr cross section in mil-
libarns. To estimate o~ we may use factorization [22, 23]
with asymptotic sr% and NN cross sections which yields
rrA (7rm) = rr&(aN)/rr~(NN), or the independent quark
scattering model [24, 23] which gives oA = so'~(a%).
The values for o~(vrvr) are nearly the same with an aver-
age of
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TABLE I. Contributions to the four sum rules from reso-
nances not included in the phase shift data.
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FIG. 6. Histogram resulting from 10 calculations of Jo
in which the individual data points have been stochastically
generated, weighted by their experimental errors. The mean
is Jo ——0.397 and the standard deviation is o = 0.019.
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IV. CONCLUSIONS

By carrying out the procedure outlined in the last sec-
tion the results for JI [defined in (13)] and az [given. in

(15)] are
h, —8, =42+4 .

Assuming CPT invariance (1) then gives

(29)

To take into account possible systematic errors we nearly
double the statistical error in bp-b2 giving

Jp = 0 397 + 0.019m

J, = 0.370 + 0.006m.-',
J2 ———0.114 + 0.003m

ai ——0.035 + 0.001m

(25a)

(25b)

(25c)

(26)

arg~'=48+4 . (30)

It appears that arg c' is still consistent with arg c = 45.6+
0.4' as determined [1] by CP violation due to Ki, K2
admixture. This remains a curious coincidence.

The sum rule result (29) should be compared with di-
rect (local) phase shifts in the K region of [2]

Using the s-wave scattering lengths (2) in the sum rules
(13) we Rnd, for the real parts of the isospin amplitudes
at the K mass,

o.p ——0.594 + 0.029m

o, g ——0.370 + 0.006m

0.2 ———0.146 + 0.007m

which imply the phase shifts

8. —b, =45+6 . (32)

A recent analysis by Ochs [27] has compared phase shifts
in the K region with the Roy equation analysis of Bas-
devant et al. [28] to obtain

bp —b2 ——41.4+ 8.1' .

Alternatively, the expectation from the chiral Lagrangian
approach of Gasser and Meissner [3] is

hp(M~) = 35.3 + 2.7

hi(M~) = 3.5 + 0.2',
h2(M~) = —7.0 + 0.2' .

(28)
bp —8, = 44+5 . (33)

And finally our own local fit to the bp-b2 difFerence using
our Monte Carlo varied fits is

Comparing the results (28) with the direct local mea-
surements from Figs. 1—3 we observe the general con-
sistency of the data. For example, if the experimen-
tal result for the isospin zero scattering length ap were

ap ——0.10m instead of 0.20m the sum rule would
have given hp(MIi. ) = 26, clearly inconsistent with the
measured phase shift. On the other hand if ap were
greater than ap ——0.25 unitarity would be violated since
o.p would be so large that no bp could account for its
value [25]. Knowledge of low-energy 7r-7r scattering to-
gether with dispersion relations can also form the basis
of sensitive tests of chiral perturbation theory and the
investigation of the pattern of chiral symmetry break-
ing [26].

The main result of our analysis concerns bp-b2 at the K
mass. Since the error in bq is much smaller than the error
in bp, a direct subtraction of hp and h2 from (28) does not
sufFer seriously from error correlation between Jp and. J2.

8, —8, =42+6 . (34)
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The sum rule result (29) is completely consistent with
other methods of computing bp-b2 but with a signifi-
cantly reduced. error. This improvement is directly re-
lated to the recent determination of the vr-vr scattering
lengths (2). We see this from (8) since the unsubtracted
dispersion relation does not converge. A subtraction at
threshold yields a convergent sum rule (13) but now re-
quires knowledge of the scattering lengths.
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