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Strong resonances efFects and future high precision measurements
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We develop a general formalism where the relevant oblique contributions to a number of observables
in future higher energies e e experiments are expressed in the form of a once-subtracted dispersion in-
tegral. The necessary subtraction constants are always provided by model-independent CERN LEP 1 re-
sults. This procedure is particularly suitable for calculating possible effects from vector particles that are
strongly coupled to the known gauge bosons. As a specific illustration, in the case of technicolorlike res-
onances we derive limits for their masses that are in the TeV range for a 500 GeV linear collider.

PACS number(s): 12.15.Cc, 12.15.Ji, 13.10.+q

I. INTRODUCTION s,s (Mz ) —=s i [1+b,v'(Mz ) (2)

A general conclusion that emerges at the intermediate
stage of the projected high precision measurements at
various accelerators [1] is that no striking evidence exists
for any kind of deviation from the predictions of the
Glashow-Salam-Weinberg minimal standard model
(MSM) at the level of virtual effects at the one loop accu-
racy, and that the still possible residual effects of new
physics would be in any case extremely weak. This state-
ment is valid, for instance, for a class of models of either
extended gauge symmetry [2] or supersymmetric origin
[3], or of technicolor type [4], and for a more detailed dis-
cussion of these topics we refer to the rich existing litera-
ture [5].

A very important point that we want to stress is the
fact that the search for new physics effects can (and
should) always be performed in a way that is unaffected
by the still existing theoretical uncertainties of the MSM,
particularly by the lack of knowledge of the exact value
of the top mass. This idea, which has been qualitatively
stated in previous papers [6—8], has been recently refor-
mulated in a more systematic way by Altarelli and Bar-
bieri [9]. In particular, it has been stressed by these au-
thors that a completely model-independent search for
new physics effects can be performed by using purely lep-
tonic variables, i.e., partial widths and asymmetries, mea-
sured on top of the Z resonance in e+e annihilation,
without introducing any extra relevant unnecessary
theoretical uncertainties (the one coming from the run-
ning of o.'QED from zero to Mz being, at least for the mo-
ment, safely negligible [10]). With this aim one intro-
duces two parameters, called c, and e3 in Ref. [9] and re-
lated to the leptonic Z width and to the efFective angle
s,s(Mz ) (defined by the leptonic asymmetries) through

r, GM'
[I+a,][1+[1—4s,s(Mz)] ], (1)

24&2~

where

b, i~'(Mz ) = C)
2

e, + [e3+c, b,a(Mz )],1 2 2 (3)

2= 2=1 3vra(0)
$& ——1 —c&= 1

2 &2GFMz

1/2

=0.2172 .

b,a(Mz) =0.0602+0.0009 is taken from Ref. [10] and
the efFective angle must reproduce the original Kennedy-
Lynn [11]definition that relates it to the hadronic longi-
tudinal polarization asymmetry on top of the Z reso-
nance:

2[1—4s,s.(Mz ) ]
W (Mz) —= W„,(Mz) =

1+[1 4s s-(Mz~)]

It should be noticed that the quantities e, 3 are not
purely oblique (i.e., due to vacuum polarization effects in
the customary definition [12]) corrections. Their com-
plete expression can be found in Ref. [3]; for our specific
purposes we shall rather concentrate on the (equivalent)
quantities e„bÃ(Mz), and write them in a compact way
as

(0) MzRe [Fzz(Mz ) j +c (6)

617'(Mz ) = [c i ha(Mz ) —c i b p(0) + b, 3(Mz ) ]
Cl $1

+g —I( V, B) (7)

where the vertex and box contributions must be retained
to ensure the gauge invariance of the previous expres-
sions and the oblique correction components of Eqs. (6)
and (7) are
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Wzz(0)
bp(0) =

Mz

~ ww(0)
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ba(Mz)=F (0)—F (Mz2),

(8)
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b,3(Mz ) = c—fFz(Mz )+c,F (Mz )

+—(1—2s', )Fz (Mz ), (10)

having defined the various transverse components of the
vacuum polarizations as

A;, —:2; (0)+q F; (q ) (i j = W, Z, y),
so that

The strategy for the identification of new physics
effects proceeds now as follows. From the experimentally
measured values of I &,s,s (Mz ) a model-independent
determination of e» is provided. These values are then
compared to the predictions of the MSM and in this way
limits on a number of candidate models can be fixed. To
give a particularly relevant example, the parameter e3 is
at the moment experimentally bounded by the pure data
from the CERN e+e collider LEP 1

—0.01 + @3+0.01 (95&o C.L. ), (12)

and the value of the upper bound already sets strong limi-
tations on possible models of technicolor type, as dis-
cussed in Ref. [4].

It is expected that in the next two years the accuracy of
several high precision measurements, in particular the ac-
curacy of LEP 1 and SLAC Linear Collider (SLC) results,
will still sensibly increase. If no evidence of deviations
from the MSM via virtual effects were found, the natural
question would then arise whether such virtual effects
could be present in future intermediate energy precision
experiments, or whether the only possibility would be
that of "brute force" production at (very) high energies.

For the specific case of models of new physics contain-
ing some extra neutral vector resonance weakly coupled
to fermions, to be generically called Z' (whose theoretical
origin can be of diff'erent sources), this problem has al-
ready been considered. In fact it has been shown [13,14]
that the expected accuracy of the future "intermediate"
energies e+e collider experiments a LEP 2 and, possi-
bly, at a 500 GeV linear collider [Next Linear Collider
(NLC)] would be sufficient to detect clean signals for
values of Mz ranging up to about 1 TeV (LEP 2) and a
few TeV (NLC). This happens in spite of the very strong
LEP 1 constraint on Z-Z' mixing, because a different
kind of "direct" effect is relevant at such higher energies
(more precisely, one has now the diagram with Z' ex-
change, that is no longer kinematically suppressed). The
aim of this preliminary paper is that of investigating
whether a similar phenomenon might occur for oblique
corrections coming from the transverse y, Z, 8'propaga-
tors. For this purpose, we shall not concentrate our at-
tention here on the vertices and box content of our ex-

pressions; i.e., we shall only consider the possible effects
of models of new physics on the various propagators,
much like in the spirit of the original approaches to such
problems at lower energies. The discussion of the ver-
tices and also of the (now possibly relevant) box eff'ects
will be given in a longer and more detailed forthcoming
article. The present paper will be organized as follows.
In Sec. II we shall briefly define our preliminary variables
and describe our method in a general kinematical
configuration of the considered process e+e ~l+l
As a first consequence of our approach, we shall show
that for a large class of electroweak models the chances
of producing virtual oblique effects at future higher ener-
gies are rather small once the already existing LEP 1 lim-
its are consistently taken into account. In Sec. III we
shall discuss the corresponding estimates for models
where strong vector and/or axial-vector resonances ap-
pear and show that, even when the LEP 1 constraints are
fully incorporated into the analysis, the chance of pro-
ducing visible signals is remarkable at a 500 GeV NLC,
and also not completely negligible at the next coming
LEP 2 phase.

II. BKSCRIFTIQN OF THE METHOD

To develop our approach, we first define the three in-
dependent observables that can be measured in the pro-
cess e+e ~1+I at a variable total c.m. energy +q,
where l+—is a generic charged lepton. The first two ob-
servables will be conventionally chosen as the cross sec-
tion for muon production o„(q ) and the related
forward-backward asymmetry Azn „(q ). Diff'erent from
the LEP 1 situation one now has a third independent ob-
servable. This can be identified with, e.g. , the conven-
tionally defined final r polarization asymmetry A, (q ) or,
equivalently, with the longitudinal polarization asym-
metry for final lepton production A i R &(q ) whose
theoretical expressions coincide. Note that the tree level
relationship

=3 2
AFB „=—,3, (13)

"=~'GM"
2C2 ~ I

Z
0 0

this observable can be written to lowest order as

is now no longer valid since the photon exchange cannot
be neglected. Note also that, owing to the same reason,
the theoretical expression of the hadronic left-right asym-
metry is different from that of the leptonic one. In this
preliminary paper we shall try to avoid any source of ex-
tra theoretical uncertainty coming from the final state
strong interactions, and therefore the hadronic asym-
metry [as well as the potentially interesting ratio
R =o „(q )/o„(q )] will not be considered for the mo-
ment.

In order to brieAy illustrate our procedure, we consider
the simplest example of the muon cross section. Using
the tree level identity involving bare quantities,
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(O) 2 4
c „'"(q')= —~q'.

q

GPOV'2Mzo (gvo, l)2+(ggo, l)2 aoGpo 2MZ~
0 1p + " , g~o, Re

4m.
q

—M 2~q q —M
(14)

where

gy I +2~0 gA I7

(15)

When one moves to one loop, a certain number of formal replacements must be performed, some of which involve a
redefinition of the Fermi coupling, of +&ED, of Mz, of the photon and Z propagators, and of the electron couplings

gz ~. To extract the oblique component of these corrections one isolates the corresponding terms in the redefinitio of
i

the Fermi coupling = 2 ii ii (0)/M~ and in the redefinition of the vector coupling gi. ,

gi +bgv(q )= —
—,'+2s, s(q )= —

—,'+2s, [1+617'(q )], (16)

and the oblique component of 617'(q ) is the analogue of that in Eqs. (7) and (10) with the replacement
Fz (Mz)~Fzy(q

By conventional definition of the physical couplings and masses and by a general treatment of the relevant Z propa-
gator in the configuration q WMz one is then easily led to the modification of Eq. (14) at one loop that takes into ac-
count the overall oblique corrections and some of the vertex (and box) corrections (in particular those that would appear
at q =Mz in the definition of e, ) and reads

'2
o.„—=—m.q ~ [I+ha(q )] +

3 (q' —M,')'+Mzr'z

4 zg~, t i z q z z

X(1+I[1—4s,s(Mz)]+4[s,fr(Mz) —s,s(q )]I ) +[O(U& )] ', (17)

where we have neglected to write the complete expression of the third contribution coming from Z-y interference since
it turns out to be completely negligible from a numerical point of view, and we have used the definition

Fz(q ) Fz(Mz)I ( ')=z q
q

—Mz

From the definitions Eqs. (16) and (1) we see therefore that, at the one loop level, the effect of the oblique (SE=self-
energy) corrections on o„can be fully incorporated in the compact notation (we still neglect the irrelevant Z —y in-
terference)

a(M,')os (q2)= I I+2[ha(q ) —ha(Mz)]I
q

31 I1

(q —Mz) +MzI Mz

16 v
1 —2Re[I, (q ) —I,(Mz)] — Re[6~'(q )

—ba'(Mz)]
1 vi

(19)

where the quantity I
&

in the square brackets is the leptonic Z width rigorously defined by Eq. (1) and we have chosen
for purely conventional reasons to use rather than a(0), a(Mz ), numerically equal to [10]

a(Mz) = [1+0.001]1

128.87
(20)

[the error in Eq. (20) being completely negligible for the practical purposes of this paper].
Before moving to the remaining observables we feel that a short comment is now in order on the gauge invariance of

the relevant expressions. In Eq. (19) we have retained three differences of transverse self-energies. In fact, it is well
known [15] that to obtain gauge-invariant expressions one must add to transverse self-energies a precisely defined
amount of boxes and vertices (we assume that tadpoles have already been incorporated). These quantities could be
correctly taken into account by systematically retaining them from the beginning in the definitions of Iz(q ), Aa. (q ),
and b,a(q ) that generalize Eqs. (6), (7), and (9) and appear in the Z propagator, respectively. Once they are properly
inserted in the various observables, one can work, e.g. , in the 't Hooft gauge g= 1 and perform the various calculations.
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With this caveat, our Eq. {19)becomes meaningful and understandable.
Bearing in mind the previous remark, it is now straightforward to perform the analogous calculation for the two

remaining observables. Here we shall present the final meaningful results, only retaining those terms that are numeri-
cally significant. We find in this realistic situation the simplified expressions

3q o„(q )

Alii�„(q

)=—
4~

r, q (q —Mz)
6a(Mz2) [1+[6+(q )

—ba(Mz)] Re—[Iz(q ) I, (M—z)][' M, (q' Mz'—)'+Mzrz

(21)

g (SE)( 2) —g (SE)—
LR, 1

ri q'(q' —M,') I(3 (Mz) ~ 6a(Mz) z 2 2
+ lg

Mz (q Mz) +Mz? z Mz

'2

(q' —Mz)'+Mzr'z

8S1
X 1 — Re[AÃ(q ) bÃ(Mz) ]

A (Mz)

Here we have defined 3 (Mz ) as

ds ImF&(s)
(24)

s —
q s —Mz

2[1—4s,s(Mz ) ]
A (Mz) =— (23)

1+[1—4s,s.(Mz )]
Note that Eq. (23) represents theoretically both the

final r polarization asymmetry and the longitudinal (lep-
tonic or hadronic) polarization on top of the Z resonance,
where they all coincide. Its numerical value, though, can
be entirely derived form that of s fr(Mz ), measured by all
LEP 1 leptonic asymmetries, including, e.g., the
forward-backward muon asymmetry.

Equations (19), (21), and (22) show some properties
that, we feel, deserve a short comment. They express the
three independent observables of the process e+e
leptons at any q in terms of three perfectly defined and
measurable quantities, i.e., I i, s,fr(Mz ), and a&ED and of
three differences of transverse self-energies expressed au-
tomatically in a form that, from a mathematical point of
view, corresponds to a once-subtracted dispersion rela-
tion. As a consequence of this, these differences can be
estimated also for models where a perturbative approach
would not be allowed, such as the case of technicolorlike
schemes. This statement is relatively trivial for the case
of the pure photon exchange contribution proportional to
Fr(q ) where the subtraction constant is provided in the
dispersive approach by the vanishing of F~(0). But for
the other two ZZ and Zy contributions this would not be
the case and one subtraction constant for each quantity
would be necessary. In Eq. (22) the introduction of the
two LEP 1 observables removes the problem and pro-
vides, so to say, the subtraction constants required in the
dispersive approach.

From the explicit expression of the various transverse
self-energies Eqs. (7)—(9), (11),and (18), it is then straight-
forward to derive the following formal expressions for the
three relevant differences that we shall call from now on
D, (i =y, Z, yZ):

D~(q )= Aa(q ) ba(Mz—)—
q

—Mz

Dz (q ):Re[Iz(q ) Iz(Mz )]

q
—Mz I ds s ImFzz(s)

(s —
q )(s —Mz)

Dzz{q )=Re[5'~ (q ) b~ (Mz)]

q
—Mz I ~ ds ImF (s)

(s —
q )(s —Mz)

where

(25)

The same remark applies to the virtual e6'ect of a convention-
al Higgs boson produced by the Bjorken mechanism, that is
practically canceled in the various di6'erences.

F ~
=c1/s1F2

Having at our disposal these- compact and simplified
expressions for the overall oblique corrections, we have
began to investigate in a systematic way the possible
effect on the three observables Eqs. (19), (21), and (22) of
a number of models, including cases that can be treated
perturbatively and cases that cannot. . Specifically, we
have considered in the perturbative sector the possible
contributions coming from extra heavy fermions or sfer-
mions, or from extra heavy (charged or neutral) Higgs
bosons and from their supersymmetric partners, using
some very general parametrization that includes possible
(and reasonable) widths, for several reasonable values of
the involved masses always assuming no direct produc-
tion but only virtua1 effects. The results of this analysis
are rather disappointing, although in a sense predictable,
since no realistic enhancement was found coming from
Dz z zz for any value of the masses that was not ex-
tremel~close to the chosen value of +q (for example,
for +q =500 GeV, only masses that were a few tens of
CxeV higher were possibly affecting the observables at the
predicted [14] accuracy at that energy').
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Rather than showing the details of these negative re-
sults, we shall summarize them by saying that, for heavy
particles that are weakly coupled to the photon and to
the Z, there is not much difference between their oblique
effects on the considered neutral current processes at
q =Mz and at q =(a few Mz), once the "hard" com-
ponent of a possible effect has been globally incorporated
into e, (i.e., into the measured Z leptonic width I &) and
into A (Mz). The fact of carrying a coupling of typical
electroweak size =e seems therefore to prevent realistic
perturbative models from contributing appreciably to the
considered class of future high precision measurements
via this type of virtual effects, once the existing con-
straints from I.EP 1 physics are systematically taken into
account.

III. VIRTUAL EFFECTS OF STRONG RESONANCES

Dr(q') =—a(q —Mz) f „dsRvv(s)
377

p
(s —

q )(s —Mz)2 7 (27)

~(q' —Mz) - sds

(s —
q )(s —Mz)

(1 —2s I ) R~~(s)
X R vv(s)+

4sic) (1—2si )

a(q —Mz ) 1 —2s, f„dsR vv(s)

2s, o (s —
q )(s —Mz)

Dz(q )=

(28)

D„(q')=

There could be one possible exception to the previous
negative statement. If some resonances existed that were
strongly coupled to the photon and/or to the Z, the
smoothness of the effect could be partially compensated
by the strength of the coupling for values of their masses
not too far from V q . This is the subject to which we
shall devote the final part of this paper.

To make our investigation more definite, we shall as-
sume that a couple of vector and axial-vector resonances,
to be generically called V and 3, with unknown (but
larger than )/q ) masses and unknown but "reasonable"
widths, exist and that these particles are strongly coupled
to the conventionally defined vector and axial-vector
components of the transverse self-energies, exactly like a
p and a A, in the corresponding QCD case, with
strengths Ev and F~ of typical strong interaction size.
We shall assume in this preliminary stage, although this
is by no means necessary, that there are no appreciable
effects from co-like resonance coupled to the "hyper-
charge" component. With standard decomposition of the
various F, appearing in "Eqs. (24) —(26) one is then led to
the "effective" representations

given by the expression

1 dsS= Rzz s —Rzz s
3& S

(31)

In our analysis of strong resonance effects, we shall ex-
ploit the fact that, for the quantity S in Eq. (31), rigorous
experimental bounds are provided by the exiting data.
These bounds will be then used to determine observability
limits for the resonance masses in a way that will be, to a
certain extent, independent of several extra details of the
model.

In order to show the main features of our approach, we
shall proceed to an illustration using the following
oversimplified representation of the two resonances:

R; = 12~~F~5(s —I; ) . (32)

F~ M~

F~ M~
(35)

The next (and fundamental) step of our program is to
use the available experimental bounds on S, Eq. (31).
This has to be done with some care since, as a matter of
fact, the available model-independent information can be
given in terms of the parameter e3, such as shown in Eq.
(12). The rigorous expression of e3 in terms of the in-
volved quantities reads

2

, [F33(Mz)—R3g(Mz)]
S)

With this "zero-width" choice, we would have to play
with four free parameters, i.e., F;,M~ (i = VV, AA). To
reduce the number of arbitrary quantities, we decided to
impose the validity of the second Weinberg sum rule [16]:

f ds s[Rvv(s) —R„„(s)]=0. (33)

Our choice was motivated by the fact that Eq. (33) im-
plies a constraint on the asymptotic behavior of the imag-
inary parts of the vacuum polarizations (generally true in
asymptotic free gauge theories [17]) that is, though, in-
dependence of extra details of the model. For this reason
we decided not to implement from the beginning the va-
lidity of the first Weinberg sum rule

f ds [R vv(s) —R ~ ~ (s) ]= 12' F (34)

which can be usefully exploited once F is determined by
more specific features of the model (e.g., in the tech-
nicolor case the number of technicolors and
techniflavors ).

As a consequence of our choice, we obtain the relation-
ship between the parameters:

where, following our conventions, we have defined

(29) +c iMzFzz (Mz ) +vertices (36)

1
lmFvv, wc (s) =

12
R vv, wc (s) (30)

with R vv „~(s) & 0.
To fix the normalization of our search, we remind the

reader that the quantity originally called S in Ref. [4] was

Note that, strictly speaking, if the considered model does not
foresee the Higgs particle of the MSM, this contribution should
be subtracted out from the theoretical expressions. But this is
already automatically guaranteed by our approach that only
uses LEP 1 data and subtracted quantities (see the previous
footnote).
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But for the type of heavy strong resonance (HSR) mod-
els that we are considering here one can safely neglect the
shift in the various self-energies when one moves from
q =0 to q =Mz (and possible vertex eff'ects on the
electron-Z couplings) and write the approximate equality

more general description might be requested. We did this
by modifying Eq. (32) as

P(s)g, M~
R, (s)= » 2 &

(E ='VV AA)
(s M—

,')'+M, 'r', .

gHSR 4s)
3 ~

0,'
(37)

where /3(s) =V 1 —s,&/s and the various parameters are
related to the zero-width approximation as follows:

From the experimental bound on e3, Eq. (12), and from
the value of e3in the MSM (e~ &SX10 ) we can then
derive a bound on S in our considered models that we
write as

Is"' I&1 (38)

and for the next discussion we shall assume the represen-
tative value

Is"'RI =4~
I'v M~

M~ M~
(39)

(possible smaller values of the bound will be considered
later) that we interpret as the constraint imposed by the
available experimental data upon the parameters of the
model that we are considering. At this point we are left
with two independent parameters that we shall identify
with the vector mass Mz and the ratio M~/M~. For
each couple of values of these parameters we shall allow
the coupling I'z to saturate the bound Eq. (39), and cal-
culate the corresponding effect on the three observables
Eqs. (19), (21), and (22). From the request that the effect
is not larger than the corresponding expected experimen-
tal errors, we shall derive limits for M& at variable
M~ /Mz. This illustrates the gross features of our
analysis.

A few points should now be discussed. First of all, al-
though we decided to consider M& /Mz as a free parame-
ter, we retained the theoretical "prejudice" that it should
not differ too much from the approximate value

(40)

given by the large-X rescaling relation between tech-
nicolor and QCD [18]. In our analysis, we actually im-
posed this ratio to remain larger than one (to avoid catas-
trophically large values of the coupling F~/M~) by a
"reasonable" amount, quantitative1y stated by the request

M~ ~1.1 .
M~

(41)

+v 1 fp(M„~~)& =2
M~ 4~ m

P

(42)

by no more than about a factor 2, which we consider a
tolerable situation. Second, although to illustrate the
main points of our approach the oversimplified parame-
trization Eq. (32) was particularly useful, we feel that a

With this choice, the maximum value of the squared
efI'ective coupling I ~/M~ varies from that of the extreme
configuration,

vrP(M, )y,
I

-'12m I',

(45)

For the quantity s,h, that should be interpreted as the
threshold for production of possible decay products of V
and A, we only assumed that it is larger than +q (no
direct production). In this way, the number of free pa-
rameters becomes apparently equal to seven. But it can
be easily realized that the outcome of the analysis de-
pends extremely weakly on the choice of s,h in the range
q &s,h &M, and on any "reasonable" choice (i.e., of or-
der 1/6M~ ~ ) of I ~, I ~. Thus, the number of effective
parameters remains actually still equal to four, and our
previous approach can be repeated, although now the
constraints between the parameters are less simple to be
expressed analytically. In fact, for the region of parame-
ter space that corresponds to values of M~ not too close
to +q the two methods that use Eqs. (32) and (43) are
practically coincident. For Mv close to +q, though, the
results are not identical; here we shall always quote those
obtained with the more realistic parametrizations of Eq.
(43).

As a first configuration where to apply our method, we
have chosen the value +q =500 GeV that has been rath-
er intensively investigated in recent times [19]. We as-
sumed for the measurements of o.„and A„B„a relative
accuracy of 10 as from the discussion of Ref. [14], and
for A LR &

we assumed a (mildly optimistic) relative accu-
racy of 5X10 . With these representative values, we
obtained for Mz the detectability limits, at variable
M~ /Mz, that we represent in Fig. 1.

As one sees from inspection of the figure, the largest
amount of information comes from the longitudinal
asymmetry and the muon cross section. We also show
the result which follows from combining quadratically
these informations. The forward-backward muon asym-
metry is, on ihe contrary, never competitive. This is due
to the interplay between the combinations of vector and
axial-vector components that appear in the observables,
that lead in some cases to strong cancellations (as one can
see particularly for values Mz /Mz = 1.2).

Concerning the detectability limit for M~, one sees
that it is strongly dependent on the value of the ratio
Mz/M&. In particular it ranges from approximately
1.15 TeV when Mz /M~~ ~ to approximately 2.4 TeV
when M~ /M ~ —+ 1.1. For the "canonical" value
Mz /M&=1. 6 we find a detectability limit of

r

mg
M~ = +1.2 TeV .

M~ m

The limits that we just mentioned were obtained under
the constraint of Eq. (39) S & 1. Since the next experi-
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Vq' = 500 GeV S=&

My (Gev)

2250

2000

1750

1500

1250

1000

750
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I

1.2 1 .4
I

1 .6

FIG. 1. Limits on M& at variable MzM /M obtained at
V q =500 GeV from o (dot dashe-d), ALR1 (d(dotted), and AF~ „
(dashed) and ~S 1 The full line represents the result of
combining quadratically the previous limits.

mental data are expected to reduce sensibly the expen-
i ht wondermental errors on various quantities, one mig

what would be the impact on our limits of a tighter con-
straint on S To i roduce a reasonable answer, we as-

ex ectedd that as a consequence of the near future expectesume a,
LEP 1 accuracies [20], the error on e3 ts reduced y a
tor of 2. In agreement with this hypothesis, we reduce
correspondingly (although this is probably a drastic atti-
tude) the bound on S by the same factor; i.e., we assumed
~S

~

& —' With this new input, we obtained the new

limits that are represented in Fig. 2, and that are roughly
lowered by a reduction factor 1.3. Therefore, the limit
for the canonical value in Eq. (45) would now be reduce

one shouldTo appreciate the meaning of these bounds, one s ou
review t e pre ic ionsh d t ns of a number of popular existing
technicolor models. For instance, in the so-ca e
"minimal model" [21], one has the prediction Mi, =1.8
TeV. More elaborate models [22] predict values of about
9000 GeV or less. But more recently, it has been advo-
cated [23] that the lightest techniresonances could be
"much lighter than naively supposed, " in particular

h =550 GeV. We think, therefore, that our
presented i&mits should be considered as a reasonably un-
b d f investigating whether a relatively ig t
strong resonance exists in a mass region t at mig e
rea islistic for several respectable mode s. pIn articular, the
generality of our approach makes it applicable also

~ ~

to a
class of models of nontechnicolor origin [24] where no a
priori pre]u ice ord f the values of the resonance masses ex-
1sts. " model weAs a final example of a possibly exotic m

~q~ = 500 GeV S=1/2 Vq2 = 190 GeV S=1
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HSRFIG. 2. Same as Fig. 1 for ~S

FIG. 3. Same as Fig. 1 for ~S "~ (1 at +q =190 GeV with
accuracies expected at LEP 2.



4044 J. LAYSSAC, F. M. RENARD, AND C. VERZEGNASSI 48

have considered one where only an axial resonance is pre-
dicted (the situation with only vector resonance can be
deduced by Figs. 1 and 2 taking the limit of large M~).
In this case, o.„and ALR I would provide no information
and the limits would be entirely provided by AF& „. This
would lead to a limit of approximately 800 GeV for Mz.
As a second example, particularly motivated by the dis-
cussion of Ref. 23, we have repeated our analysis for the
LEP 2 case, +q = 190 CxeV, for ~S ~

( 1 (in this case,
one should consider as a variable A, rather than ALR &).

The outcome of the analysis is depicted in Fig. 3. It re-
sults in a limit on Mz that ranges from about 300 GeV to
about 500 GeV, showing that, in principle, this could be a
meaningful search for some models.

The conclusions of our preliminary analysis are, we be-
lieve, therefore encouraging. %'e have shown that, if a

couple of strong resonances exists in the TeV range, they
would be identifiable via specific virtual effects at e+e
colliders of a realistically near future, without too many
specific assumption son the details of the theoretical ori-
gin, and fully exploiting the existing experimental (in par-
ticular LEP 1) information. In a forthcoming paper, a
more quantitative discussion that takes into account
some neglected one loop effects will be given.
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