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Microcanonical fermionic average method for Monte Carlo simulations
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We present a comprehensive exposition of a method for performing numerical simulations of lattice
gauge theories with dynamical fermions. Its main aspects have been presented elsewhere. This work
is a systematic study of the feasibility of the method, which amounts to separating the evaluation
of the fermionic determinant from the generation of gauge configurations through a microcanonical
process. The main advantage consists in the fact that the parts of the simulation which are most
computer intensive must not be repeated when varying the parameters of the theory. Moreover, we
achieve good control over critical slowing down, since the configurations over which the determinant
is measured are always very well decorrelated; in addition, the actual implementation of the method
allows us to perform simulations at exactly zero fermion mass. We relate the numerical feasibility of
this approach to an expansion in the number of flavors; the criteria for its convergence are analyzed
both theoretically and in connection with physical problems. On more speculative grounds, we argue
that the origin of the applicability of the method stems from the nonlocality of the theory under
consideration.
PACS number(s): 11.15.Ha, 02.70.Lq, 12.20.Ds

I. INTRODUCTION

There has been considerable progress in the last few
years in the field of numerical simulations of field theo-
ries on the lattice [I]. The main constraint, which char-
acterizes the field from its birth, has been the enormous
amount of computer resources which are required in or-
der to have a reliable simulation with small statistical
and systematic errors. With the development of more
powerful computers [2, 3] and algorithms [4], this aim is
gradually being achieved and the quality of the measure-
ments of various physical quantities is being improved.
Data improvement involves a twofold procedure. On the
one hand, statistical errors must be reduced by increasing
the number of field configurations which are generated
by the simulation method. On the other hand, the scal-
ing region has to be approached by increasing the lattice
size and tuning the field theory's parameters near their
critical values. Only then is the discretized (lattice) field
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theory approximating its continuum counterpart. We are
chiefly interested in simulating gauge theories, such as
@ED and @CD in four space-time dimensions. Thus, the
simultaneous satisfaction of the above requirements (i.e. ,

production of a large number of configurations on large
four-dimensional lattices) has proved a highly nontrivial
task for present day computers.

Historically speaking, the strategy adopted was to
start with the simulation of reduced versions of a given
lattice field theory and gradually work towards the com-
plete theory, with the aid of increasingly more powerful
computers and numerical methods. Thus, the first gen-
eration of computer simulations dealt with pure gauge
theories. As these models involve only the computation
of a local action with complex degrees of freedom (the
gauge bosons), this proved a relatively easy task. The
next step was to include the eKect of fermion fields. The
fermionic action consists of a highly nonlocal determinant
term, which is extremely costly to calculate numerically.
Consequently, the determinant term is habitually set to
unity, in what is known as the quenched approximation
[5]. In the quenched approximation the theory describes
the interactions of gauge bosons with valence fermions;
internal fermion loops are suppressed by the quenching.
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Quenched fermionic simulations may be regarded as the
second generation of lattice field theory computations.
The third generation is the simulation of the complete
theory, including dynamical fermions; i.e. , the effect of
the fermionic determinant is fully taken into account. At
present, quenched simulations are in a satisfactory state,
although a lot remains to be done [6]. On the contrary,
unquenched simulations are still at an embryonic level,
although a lot of progress has been achieved [6].

The aim of this paper is to present a full exposition of a
new method for the simulation of dynamical fermions, de-
scribe its implementation and the technicalities involved,
discuss its shortcomings and advantages in detail, and
present some physics results obtained with it. Several
important aspects of these ideas have already been given
in Refs. [7—11]. In these works, the emphasis was mainly
on the properties concerning the critical behavior of com-
pact and noncompact lattice QED. In the present paper,
we are concentrating on the novelties of the method we
introduced for the simulation of dynamical fermions. In
particular, we address the question of how the feasibil-
ity of the method may be related to the nonlocality of
the action. Moreover, a systematic discussion of the ap-
proximations and their influence on the physical results
is presented. In doing so, different physical models have
been used as examples (QED, Ising, etc.).

The main efforts for the simulation of dynamical
fermions have been in the direction of algorithm develop-
ment. There has been a lot of progress; the earlier pro-
posals involved computational costs of O(Vz) [12] [the
pseudofermion algorithm in practical application being
O(V) but at the price of introducing systematic approxi-
mations], whereas the more recent algorithms have a the-
oretical cost of almost O(V) (for example, the hybrid
algorithm [13] or hybrid Monte Carlo algorithm [14]).
However, these costs are theoretical order-of-magnitude
estimates of the dependence of the computation of the
fermionic determinant on the lattice volume V. In real-
istic calculations near criticality, the cost is mainly deter-
mined by critical slowing down, for which some remedies
have been proposed such as Fourier acceleration [15] and
lower-upper decomposition of the fermion matrix [16].

Another factor affecting the computational cost of the
simulations is the relatively large number of parameters
that characterize a field theory. These are normally the
fermion masses m, the inverse gauge coupling P, and the
number of flavors ny. In order to tackle a typical lat-
tice problem, the calculation must be repeated for, say,
M mass values, B gauge couplings, and sometimes for
F different numbers of flavors. Thus, the real cost of
the computation is CiC2V", where Ci is a factor that
depends on the algorithm and the value of theory's pa-
rameters, p is the volume dependence already discussed
above (both Ci and p include critical slowing down ef-
fects), and C2 = M x B x F is the repetition factor. This
factor is determined by the number of times for which we
have to repeat the calculation in order to achieve a sat-
isfactory understanding of the physical properties under
study. In particular, the fermion mass enters crucially,
in the sense that the continuum limit (at least for the
study of the chiral limit) has to be obtained approaching

zero bare fermion mass, which, with traditional methods,
becomes very costly.

The considerable progress we have sketched above in-
volves a reduction of Cq and p by the development of
fast algorithms and acceleration techniques, but does
not improve C2. Moreover, all the above methods im-
ply measurements of the fermionic determinant at each
upgrade of the gauge configuration. We propose, instead,
a method which should avoid both these problems. First,
it reduces Cp by separating the simulation into two parts,
as will be explained below. Second, we improve upon Ci
in the sense that a good control of critical slowing down
effects of the fermion dynamics is easily implementable.

The method we will describe is based on reexpressing
the theory in terms of an "averaged" determinant, which
is a function of the system's pure gauge energy and of
the fermion mass, and independent on P. All other de-
pendencies are averaged out [7, 8]. In Sec. II we define
this "averaged" determinant, which we call the effective
fermionic action. The idea is that it may then be cal-
culated numerically for a wide energy range, either at a
fixed mass or by means of the determination of all the
zero mass eigenvalues of the fermionic matrix. In the
latter case the determinant is known for all mass values.
As the average determinant does not depend on P, this
calculation, which is the costliest, is performed only once
in the second case or once for each mass in the first case.
We may then use this result in a standard simulation of
the reexpressed theory; the determinant is now a known
function of the energy and the pure gauge part is not
costly to simulate. The repetition factor is essentially re-
duced to Cz ——M or C2 = l. In the latter case (C2 = 1)
we stress that the computation is feasible for every value
of the fermion mass, zero included. The number of flavors
enters trivially in this formulation and does not increase
the computational cost significantly.

This method has been applied so far to the simula-
tion of Abelian models, both compact and noncompact.
The results of [7—10] refer to four-dimensional theories,
and work is in progress in simulations in two and three
dimensions [ll]. In all the cases analyzed, our method
has given results in agreement with more traditional ap-
proaches, at a small fraction of their computational cost
[17].

While in principle it is possible to measure the determi-
nant without approximations, for small fermion masses
we might need a huge amount of statistics in order to
measure accurately the efFective fermionic action, as we
will argue in Sec. III. This depends on the form of the
probability distribution of the fermionic determinant. In
order to overcome this problem, we introduce in Sec. IV
an approximation [9]: The effective fermionic action, ob-
tained from our "averaged" determinant, is expanded in
powers of the number of flavors ny, the result is essen-
tially a cumulant expansion which we truncate after the
first two or three terms.

This will be shown to be a satisfactory approximation
in that the truncated terms matter little. In practice,
we have seen that for ny & 4 our cumulant expansion
manages to simulate the theory without any significant
loss of the dynamical fermion effects [7—9]. In theory, the
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method may be viewed as interpolating between quench-
ing and unquenching, having much of the advantages of
quenched simulations in terms of CPU utilization, but at
the same time giving results indistinguishable from tra-
ditional unquenched methods. In Sec. V we show how
our method may be implemented in the calculation of
physical observables, such as the chiral condensate.

Section VI summarizes some results of physical interest
obtained with this method.

In Sec. VII we discuss the reliability of the trun-
cated cumulant expansion in connection with the theory's
structure (in particular the range of the interaction) and
the dimensionality of space-time. The Ising model and
the mixed compact-noncompact @ED are used as case
studies. We also discuss the strong resemblance of the
lowest-order cumulant expansion to the mean Beld ap-
proximation.

Section VIII deals with some technical points. We de-
scribe the implementation both of the microcanonical
and canonical simulations, and the Lanczos algorithm
which we use in the calculation of the fermionic determi-
nant of a given gauge Geld configuration. We discuss the
practical implementation of this method in transputer
networks in Sec. IX

where

( ) = U ( )U ( + )U„( + )U ( )

In the above, p = I/e~ and the Kogut-Susskind fermion
fields y and g are coupled to the fields A„ through the
compact link variable U„(x) = e" &&*); q„(x) are the
usual Kogut-Susskind phases. The bare fermion mass m
is expressed in lattice units. The corresponding partition
function, for ny flavors, is

["X]["X][dUi (x)]e

[dU„(x)] [detA(m, U„(x))] ' e

where det A(m, U„(x)) is the determinant of the fermion
matrix, obtained after integrating out the Grassman
fermion fields y and y. It is a gauge-invariant object
with a complicated dependence on gauge field operators,
such as the plaquette energy, larger closed Wilson loops,
and Polyakov lines. SG. is the pure gauge action.

We first define the density of states at fixed pure gauge
energy as

II. EFFECTIVE FERMIONIC ACTION

In this section we will introduce the essential theoret-
ical ideas [7, 8] on which the numerical method is based.
For the sake of simplicity, consider the compact Abelian
model with staggered fermions which, in four dimensions,
describes four flavors (the generalization to other gauge
models as well as Wilson fermions is straightforward).
We will mention briefly the differences with the noncom-
pact Abelian model that we have also studied extensively
in [9]. The action for the compact case is

N(E) = [dU„(x)]6 ) ReU~ (x) —6VE
x,p(v

In compact models the above expression is well defined
on a finite lattice; on the contrary, if the gauge variables
have a noncompact support it is divergent even on a B-
nite lattice, due to the divergence of the gauge group in-
tegration. This problem can be overcome either by gauge
fixing or by factorizing the divergence, as has been done
in [9].

In terms of N(E), the partition function can be written
as a one-dimensional integral

( ) ( )(U (*) ( + )
&i@

—U„*(x —p)y(x —y, ))
+m) gx)~(x) —P ) ReU„.(x),

X,P(V

dEN(E) 6PvR —s (E,m)

where the effective fermionic action S &(E, m) is given
by the expression

e
—

~ ~~™)= ([detd (m, U„(x))] ' )~

f [dU„(x)][det E(m, U~(x))] 4 h (P ReU„(x) —6VE)

f [dU„(x)]b(Q ReU„(x) —'6VE)

(6)

i.e. , it is related to the logarithm of the value of the
fermionic determinant averaged over gauge configura-
tions at fixed pure gauge (plaquette) energy E. The total
effective action is therefore

S,~(E, V, P, m) = —ln N(E) —6PVE+ S,~(E, m),

(7)

where we have included the contribution from the density
of the states in the effective action. Note that, if the
fermionic effective action is linear in E, the effect of the
fermions merely amounts to a shift in P. We shall also
be using the effective pure gauge action defined by

S,~(E, V, P, m) = —ln N(E) —6PVE.
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There are two ways in which these analytical manipu-
lations can be implemented in practical simulations. In
both ways, S,&(E, m) is obtained numerically for a num-
ber of E values. This is done by generating configurations
at fixed energy E, according to (6) (see below for details).
The value of S,& at intermediate E values is obtained by
the use of a standard interpolating routine.

The first possibility is to exploit the fact that the full
effective action depends only on the plaquette energy
E, in order to perform a change of integration variables
in (5), going back from E to the original link variables
U„(x). Then canonical simulations of the corresponding
effective theory are possible (see Refs. [7, 8] for details).
Almost all our compact U(1) simulations were carried out
using this variant of our method [7, 8, 11].

The second possibility is to perform separate numerical
evaluations of N(E) and S,&(E,m) as functions of E and
obtain the partition function (5) as a one-dimensional
integral. In the case of the noncompact Abelian theory,
for which the underlying gauge theory is quadratic, the
density of states is known analytically [9].

One advantage of these procedures is that the effec-
tive fermionic action (6) does not depend on the inverse
coupling constant P and therefore we do not need to re-
peat the fermionic simulations for each difFerent value of
P. Since the dependence on nf is trivial, we also do not
need to repeat the simulation for each nf value. The
second advantage is that it is now possible to tackle the
problem of statistical correlations between measurements
of the fermionic determinant. This is because when simu-
lating Eq. (6) for the calculation of S,&(E,m), we need to
generate pure gauge field configurations at fixed energy.
This is done by microcanonical methods (see Sec. VIII
for details). The cost of their implementation is negli-
gible when compared to that of the computation of the
fermionic determinant. This enables us to perform a huge
number of microcanonieal sweeps between measurements
of the determinant, thus decorrelating in a satisfactory
manner.

III. FEASIBILITY OF A DIRECT
COMPUTATION OF THE EFFECTIVE ACTION

The first step in the practical application of our
method consists in the determination of the effective
fermionic action (6), namely, in the evaluation of the av-
erage of the fermionic determinant over configurations at
fixed pure gauge energy. As has been outlined above, this
is done by generating these gauge configurations with a
flat probability distribution function (PDF). The prob-
lem is that the fermionic determinant (i.e. , the operator
that we want to measure with this PDF) varies widely
over its range of values and is not an extensive quantity
(i.e. , it diverges exponentially with the lattice volume).
Therefore, we consider the logarithm of the fermionic de-
terminant, which is an extensive quantity, diverging lin-
early with the lattice volume V. On general grounds, we
expect it to have a PDF which may easily be sampled
numerically. In fact, at fixed pure gauge energy E, the
PDF of ln det 4 is numerically found to be bell shaped,
with a sharp peak.

To be definite, consider the logarithm of the fermionic
determinant per unit volume y with a PDF p@(y, V) at
fixed pure gauge energy E, mass m, and lattice volume
V. The average value of the fermionic determinant is
then given by

(det 6)~ = p@(y, V)e "dy.

In the thermodynamic limit, the dominant contribu-
tion to the effective fermionic action comes from the in-
tegration region of (9) around the location yi of the max-
imum of the integrand. The position of this maximum is
determined by the occurrence of two competing effects.

The probability distribution of the logarithm of the
fermionic determinant reaches a maximum at yo and de-
cays from this value with some law.

The second factor in the integrand grows exponentially
with y.

In practical simulations, where the statistics is obvi-
ously limited, the probability distribution p@(y, V) will
be sampled with reasonable precision for values of y near
yo. The distribution far from the maximum, on the other
hand, is difficult to evaluate numerically.

We will now investigate which conditions must be sat-
isfied by a numerical simulation in order to make possible
a reliable computation of the mean value of the determi-
nant and its relative error. To this end, we will make the
hypothesis that the functional form of the PDF of the
logarithm of the determinant p@(y, V) is known.

Let (xi, . . . , xiv) be an ensemble of independent mea-
surements of the fermionic determinant 2:. The central
limit theorem does guarantee that the logarithm of the
average of x,

B=ln —) x,

goes to ln(x) with an error inversely proportional to the
square root of N, for N large enough. However, it may
happen that the minimum value of N for which this is
true is so large that the measurement is not feasible.

A direct analytic calculation of the dispersion of B
is very complex even for a simple p@(y, V), but a good
estimator of the error can be

&B—= »~ (*)+ *
I

—»(x) =»11+t cr

() Nr

(11)

In the N ~ oo limit AB behaves as expected

«1:dB= (1~)
(x) N (x) N

But when N is small, the behavior can be radically dif-
ferent:

» 1:AB —ln * ——lnN; (13)
(x) N

i.e. , the error is almost constant in N, decreasing as
ln ~N. The change in the behavior takes place approxi-
mately at
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2
Np ——e —1.

In the case of a Poisson distribution of the form
pal+1

p~(y, V) = „, y"e "",
we have

Np —— 1+ 1/(A —2A) —1. (»)
To have an idea of the numbers involved, we have fitted

with a Gaussian (Poisson) distribution the PDF of the
logarithm of the fermionic determinant obtained from a
numerical simulation in compact U(1) at lattice size L =
8, energy E = 0.5, and bare fermion masses m = 0.0, 0.1,
and 0.2. The results arep, NGauss 1p12

p

m=01 N ."-=10'
m = 0.2, NGauss 600,

(2o)

which, except for very large masses, show the nonfeasi-
bility of the direct computation, since in practice it is
difficult to have N larger than a thousand. Moreover,
the situation worsens rapidly with increasing V.

In conclusion, we have seen that the extremely slow
increase of the statistical significance of measurements of
the determinant (9) is related to the fact that the PDF
of its logarithm is weighted with an exponential function;
in this way its determination depends on the behavior of
the tails of the PDF.

IV. EFFECTIVE ACTION
AND THE nf EXPANSION

In order to tackle the problems we have exposed above,
we propose a less ambitious procedure which consists in
the evaluation of the first few moments of the distribu-
tion. This can be done by expanding the efFective action
in powers of the flavor number nf [9], and by computing
in practice only the first contributions to this expansion.
In particular, the effective action (6) is related to the av-
erage of the fermionic determinant, computed over gauge
field configurations at fixed pure gauge energy. In gen-
eral, for nf species, the efFective fermionic action

—Sz (E, m, nf) ln(e 4 in det&(m, Uv(z))) (21)

gt 2

N() =— (14)

It is interesting to evaluate the value of Np for some
simple PDF's and to compute its numerical value using
the results of real simulations. Let us first assume that
the PDF of the logarithm of the fermionic determinant
is a Gaussian of the form

p (y V) = exp —(y —yo) /(2& ) ~

/2vr(rz

In this case
g 2

ln(det 6)@ = yp +—
2

can be expanded in cumulants as

S,—&(E,m, nf) = (ln detA(m, U&(x)))~

n2
+ f (((ln det6) )@ —(ln det6)z)

n3
+ (((ln detA —(ln detA)&) )@)

+ 0 ~ ~ (22)

which is nothing but an expansion in powers of the fla-
vor number of the efFective fermionic action. Successive
terms in the expansion represent higher-order Huctua-
tions, and are, in general, increasingly difficult to evalu-
ate. In shorthand notation we can write the above as

OO

ln((Retd) ' )~ = ) ( i)
i=1

Cb
M

I

CQ

I

a
C)

II

80—

60—

20—

0—

k,

k, , kz, ks
Poisson

—20 I

0.30 0.35 0.40
1 —E

0.45 0.50

FIG. 1. Logarithm of the average determinant in an L = 8
lattice, with nf = 4, m = 0 at the first (kl), second (kl, k2),
and third order of the cumulant expansion, as well as for a
Poisson distribution. In this last case error bars are not shown
for clarity; they are very similar to the second order ones. The
y axis is the action with a linear shift (of the results of the
first order) to increase visibility.

where k; is the ith cumulant of the distribution p@(y, V).
Note that up to i = 1 the series corresponds to the ap-
proximation ln(det 4) = (ln det 4), while for a Gaus-
sian distribution the cumulants are zero for i ) 2. In
general, the cumulant expansion has infinite terms: For
instance, for a Poisson distribution k, = (i —1)!"&+

In the simulations reported below, only a few cumu-
lants are evaluated. The truncation of the expansion
thus introduces systematic errors, in addition to statisti-
cal ones.

Figures 1 and 2 show the results for the compact U(1)
model, with L = 8 and m = 0.0, O. l, respectively. We
plot the logarithm of the averaged determinant (nf = 4)
for various orders of the cumulant expansion. We also
show results obtained with a Poisson fit of the PDF of
the logarithm of the fermionic determinant. In all the
cases analyzed (lattices up to 104 and various values of
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of the fit is evident and independent of m. If, from these
results, we assume that the probability distribution of
the logarithm of the fermionic determinant at 6xed pure
gauge energy is Gaussian, then only the erst two contri-
butions to the effective fermionic action will be different
from zero and no systematic errors will be introduced by
the truncation of the expansion.

In Figs. 4(a)—4(c) we present our results for the first
three contributions to S+ir, respectively, as a function of
energy at m, = 0. The results for the third contribu-

1 —E

FIG. 2. Same as Fig. 1, but at m = O. l

I

1000—

750—

I

+
I I I

m), an apparent stability settles in after the second order.
The relevance of systematic errors will now be dis-

cussed for the special case of noncompact @ED [9) where
we have the best statistics. Figure 3 is a plot of the
PDF of the logarithm of the fermionic determinant in a
8 lattice, m = 0.0, and normalized pure gauge energy
E = 1.20 (note that 0 & E & oo in the noncompact
case, —1 & E & 1 in the compact one). This case has
been chosen because the statistics are particularly good
(1300 configurations). We stress that every measurement
(i.e. , every diagonalization of the fermion matrix needed
for the calculation of the determinant) is separated from
the previous one by 1000 iterations of a canonical Monte
Carlo (MC) process, followed by an appropriate rescal-
ing of the gauge fields in order to bring the energy to
the required value. This procedure guarantees the decor-
relation of the successive gauge configurations on which
measurements of the determinant are performed. Com-
ing back to Fig. 3, the solid line is a Gaussian fit of
the distribution measured numerically. For the range of
masses we are interested in (0 & m & 0.1), the goodness

g$

0
O
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FIG. 3. Probability distribution of ln&(m, A„) at m =
0.0, E = 1.20, and Nf ——4 for an 8 lattice. The solid line is
a Gaussian fit, with y /1VDF = 0.487.

FIG. 4. (a) First, (b) second, and (c) third cumulant of
Sf vs E at m = 0 for an 8 lattice.
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I
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I 1 I I

I

I ln(detA)@ V. The same argument suggests that
(ln detE)@ V, and that successive terms in the ex-
pansion diverge, Ot most as V. Hence a situation is con-
ceivable in which the analysis of the previous paragraph
would imply that, although the direct evaluation of the
average determinant is impossible, the first term in the
cumulant expansion gives the exact result in the thermo-
dynamical limit.

To illustrate this possibility, we have taken the data of
the compact model in the 44 lattice, at m = 0.1 and E =
0.5103, fitted the PDF with a Gaussian, and extrapolated
this fit to larger volumes assuming that cr ~ V . In
Figs. 5(a) and 5(b) we present the PDF of the logarithm
of the determinant and its product with the exponential
in (9) for V = 4 and 12, respectively. It is evident that
the direct evaluation of the average determinant in the
last case would fail, while the first term of the expansion
(22) would give the exact result in the thermodynamic
limit.

1000—

500—

0 I I I

2220
I I I I I I I I l I

2240 2260
In det 6

V. ny EXPANSION
FOR PHYSICAL OBSERVABLES

It must be stressed that the efFective action does not
have a direct physical meaning, and so the fact that sys-
tematic errors in its evaluation are small does not guar-
antee a priori the correctness of numerical determination
of other physical quantities. The possibility of evaluating
physical quantities by the method used for the effective
action can be studied by means of power expansions sim-
ilar to (22). To be more specific, let us consider the case
of the chiral condensate in the Abelian model [9].

The vacuum expectation value (~) can be computed

FIG. 5. PDF of the logarithm of the determinant and its
product with the exponential in (9) for V = 4 (a) and V =
12 (b).

1 I d@e s,qg(E, rn, p, n—y, v) & gI" (g ~ & )

(24)

tion are compatible with zero, according to the previous
drs cuss&on.

At this point it is important to comment on the de-
pendence of the various terms of the expansion on the
lattice volume, since at the end one is interested in the
thermodynamic limit V —+ oo. Since the logarithm of
the determinant is bounded, it is easy to show that

namely, the chiral condensate is the average value of the
derivative with respect to the mass of the normalized
fermionic effective action, with a probability distribution
deriving from the total effective action.

The expansion of the effective fermionic action in pow-
ers of the number of flavors (22) leads to a similar expan-
sion for the contributions to the chiral condensate:

n2
(TrA )~ + ((ln det A —(ln det A)~)(TrA —(TrA )&))&

n3
+ ((ln detA —(ln det A)a) (TrA —(TrA )z))a +

64
(25)

Therefore the chiral condensate is given by the average
value over the probability distribution implicit in (24) of
the successive terms in (25), normalized by V.

Here, as in the computation of the effective fermionie
action, the difBculty with which successive terms in the

expansion (25) can be numerically evaluated, increases
with the expansion order. In practice, also in this ease
we will be forced to truncate the expansion to a certain
order. Thus the evaluation of the chiral condensate will
also be affected in principle by systematic errors due to
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this approximation.
However, following the previous analysis for the effec-

tive fermionic action, the only nonzero contributions to
the chiral condensate are the first two in (25), assuming
that the PDF of the logarithm of the determinant at fixed
pure gauge energy is Gaussian. The results obtained from
the first two contributions in (25) for the noncompact
lattice @ED reported in [9] were in very good agreement
with results obtained by other groups using the hybrid
MC technique [18]. Thus, the truncation of the series
appears to be justified.

To obtain expressions similar to (25) for any other op-
erator 0, which is not a term of the action, it is enough to
introduce an external source coupled to 0 in the original
action. Differentiation gives

ofy( )Pi fi )0E(o) = (26)

with

+ 0 ~ ~ (27)

In this way the average value of any operator can be
obtained as a power series in nf. The convergence of this
type of expansion will be better at smaller ny, and/or
for a narrower PDF p@(y, V) of the logarithm of the
ferrnionic determinant. This point will be further con-
sidered in Sec. VII.

VI. SOME EXAMPLES
OF PHYSICAL APPLICATIONS

0@ = (0)@ + ((ln det 4 —(ln det 4)@)(0 —(0)@))&
n2

+ ((ln det 4 —(ln det 4)@) (0 —(0)@))z

all the cases considered we have checked that the choice
of interpolation has no effect on the physical results.

In [7, 8] we studied in detail the compact U(1) model.
In this model the pure gauge theory shows a first-order
phase transition at finite coupling [20—22]. We refer the
interested reader to Refs. [7, 8] for more details on the
results obtained in the unquenched case. Here it suffices
to say that our results agree extremely well with results
obtained with standard methods [17]. Entirely new are
the results at m = 0, which cannot be obtained by other
methods. In particular, it was shown that the strength
of the transition increases at decreasing mass: At m = 0
the system managed to make a single tunneling in 200 000
iterations [8].

As an example we analyze here the shift of the value
of the critical coupling of the deconfining transition in
compact U(l) and the latent heat. Since the tunneling
between the two states at the first-order phase transition
point is very difficult at m = 0.0, it is preferable to do
this kind of analysis directly on the effective action (7).
In this way we will also have a better understanding of
the reason for the strengthening of the transition.

The technical problem in this case is that for large
lattices a simulation at fixed P, needed to evaluate nu-
merically N(E), generates configurations with energies
in an exceedingly narrow interval. We have solved this
problem by performing simulations at difFerent P in such
a way that the energy intervals are superposed. In this
way it is possible to use the method proposed in [23] for
extracting N(E). Note that in the case of noncompact
@ED the situation is much more favorable since the ef-
fective pure gauge action can be computed analytically.

We computed the total effective action (7) for L = 8
(nf = 4) and different masses. In Fig. 6 the effective
action (7) at m = 0 in the second-order approximation

In this section we briefly review some results which
have already been obtained through the use of our
method [7—9]; we also present some unpublished ones.
Let us first describe the general realization of simula-
tions.

As described above, we first produce eonfigurations at
fixed pure gauge energy through a mierocanonical pro-
cess. Next, the fermionic matrix is exactly diagonalized
at zero mass, by finding all its eigenvalues, using a mod-
ified Lanczos algorithm [19]. This allows us to compute
once and for all the fermionic efFective action at all mass
values, including m = 0.0 (see Sec. VIII for details). This
part of the computation is the most costly in terms of
CPU and the time needed is of order V . It is conceivable
that other faster methods could be used to compute the
fermionic determinant at fixed mass, especially at large
volumes. In this case the fermionic calculation should be
repeated for each value of the mass. From the eigenval-
ues we compute the fermionic effective action for several
fixed values of the pure gauge energy. We subsequently
use numerical interpolation of these results in a canonical
simulation of the effective theory.

Alternatively, in the noncompact ease, since the den-
sity of states is known analytically, a one-dimensional nu-
merical integral suffices to extract physical quantities. In
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FIG. 6. Effective potential S,~(E, V, P, m) for L = 8,
nf ——4, and m = 0 obtained by summing the pure gauge
contribution computed by folding di8'erent Monte Carlo sim-
ulations, and the fermionic action in the Gaussian approxi-
mation (cumulants expansion up to kq). The solid line corre-
spoiids to P = 0.853 (our determination of P,). Dashed lines
correspond, respectively, to P = 0.852 and P = 0.854 and are
shown to allow an estimation of the error.
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1.00—
T.—:m=oo

0.95—

(Gaussian distribution) is reported.
In Fig. 7 we report the change of P, from the pure

gauge value, as a function of the order in the cumulant
expansion for various masses. Again, one observes an
apparent stability from the second-order contribution on-
wards.

In the case of the latent heat (Fig. 8) the errors are con-
siderably larger, but the conclusions remain unchanged.

The results for the efFective fermionic action allow us
to understand why the pure gauge transition becomes
stronger when dynamical fermion effects are included:
In fact, the fermionic effective action shows a convexity
for energies between the two minima of the pure gauge
effective action.

For m large enough (i.e. , m = 0.1), where tunneling
between the states is easier, it is still possible to extract
the same observable by means of a standard canonical
simulation, including the effective fermionic action in the
Metropolis algorithm in a straightforward way. This pos-
sibility can be used as a consistency check of the results
shown above.

We used in these canonical simulations four different
forms of the effective fermionic action.

(1) Average logarithm of the fermionic determinant
(first term in the cumulant expansion).

(2) Average logarithm and first fluctuation (first and
second cumulants, i.e. , Gaussian approximation).

(3) Same as case (2), but smoothing in energy the sec-
ond cumulant. This procedure is performed to avoid
(nonphysical) fluctuations of the first derivative of the
fermionic effective action S,&, due to the use of differ-
ent ensembles of configurations as samples for very near
values of the pure gauge energy.

(4) Average logarithm plus the smoothing of the sum
of the other cumulants. This is done in a spirit similar
to that of case (3).

For these four choices of the action we have performed
extensive canonical simulations (typically 70000 cycles,

0.150

0.125—

0.100— m=0. 0

0.075— +& m=0. 1

0.050—

0.025—
I

0 1

No. of cumulants

FIG. 8. Latent heat as a function of m.

each consisting in a three-hit Metropolis plus four over-
relaxation sweeps [8]) at Pii

——0.8935, a value near enough
to the estimated critical coupling to allow the use of the
Ferrenberg-Swendsen [23] procedure to reconstruct ther-
modynamical quantities in the whole critical region.

The main results are reported in Table I. As can be
seen, we always have consistency with the results ob-
tained with the effective potential method.

Finally, the method described in the previous para-
graphs, including the expansion in cumulants, has been
used in [9] for an extensive analysis of the noncompact
Abelian model. This model is particularly interesting:
While the pure gauge theory is quadratic and, hence,
trivial, when dynamical fermions are added it develops a
second-order transition at finite coupling [24), where the
continuum limit might reside, possibly giving an exam-
ple of a nonasymptotically free theory [9, 25, 26]. As for
the method we propose, the particularity here is that the
density of states N(E) can be computed analytically, so
that the computation of the partition function and its
derivatives can be done through a one-dimensional nu-
merical integration, and there is no need to perform a
canonical simulation.

Again, our results on physical observables (plaquette
energy, chiral condensate) agree very well with the ones
existing in the literature. It is particularly important to
note that, being able to obtain the plaquette energy at

0.90—

1 2

No, of cumulants

ITI=0. 1

m=0. 0

I I I I I

TABLE I. Numerical results for the critical coupling P„
height of the maximum of the specific heat h„Binder param-
eter B, and latent heat LI, . Each row is labeled in correspon-
dence with the choice of one of the four fermionic effective
actions enumerated in the text.

FIG. 7. Measurement of P, in an I = 8 lattice for compact
U(1) with nj: = 4. The x axis corresponds to the order of
the approximation in the cumulant expansion. The values
corresponding to the quenched (m = oo), m = 0.1, and m =
0.0 cases are presented.

C

0.893(2)
0.897(3)
0.893(2)
0.895(3)

21(5)
27(7)
16(3)
16(3)

B
0.663(1)
0.663(1)
0.664(1)
0.664(1)

0.07
0.07
0.05
0.06
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m = 0, we can obtain the position of the phase transi-
tion in a way completely independent from the extrapo-
lation of the chiral condensate at zero mass. The values
of the critical coupling we obtain [P, = 0.224(3), 0.208(4)
at ny = 2, 4, respectively] agree with those reported in
Refs. [25, 26].

VEE. ESING AND COMPACT-NONCOMPACT
+ED MODELS

In the previous paragraphs we have introduced the
method we propose, studied the limitations and approxi-
mations involved, and discussed some applications. This
paragraph is more speculative; it attempts to explain,
at least partially, the reasons for which the procedures
described so far give reliable physical results.

From the discussion developed in the previous para-
graphs, we can argue that a numerical determination of
the expectation value of the fermionic determinant at
fixed pure gauge energy is possible if the fluctuations of
ln detA are small, i.e. , if the PDF of this quantity at
fixed energy has a very narrow width. This is in fact a
condition for the fast convergence of the eumulant expan-
sion (23). Taking into account just the first term in the
cumulant expansion (23), we are neglecting the contribu-
tion to the effective fermionic action of all fluctuations,
and this corresponds to some kind of mean field approx-
imation. On the other hand, it is well known that mean
field techniques give good results when the dimension-
ality of space-time d is large or the interaction is long
ranged. In our case, ln det 4 is a nonlocal operator: We
expect that its fluctuations at fixed energy are bounded.

A simple physical model (i.e. , the Ising model) gives
a very good illustration of these points. In this model,
the partition function Z~- can be written as a sum over
magnetizations M:

=) ) 6 ),—M
M s ( i )

= ) gH(M)(e ('))M,

where giv(M) indicates the number of configurations in
a N spin lattice with a given magnetization M.

In this case the effective Hamiltonian Hsg(M) is a
function of the magnetization M.

Let us consider two possible cases.
(i) The nonlocal Ising model:

Hi = —J) sis&,
(i j)

where now the sum is over nearest-neighbor spins. In
this case the Hamiltonian, computed over configurations
of fixed magnetization, suffers from large fluctuations.
The effective Hamiltonian per unit volume can be defined
through the relation

pH~(s)—s NH ff(M)
/M —&

N being the total number of spins.
A straightforward but tedious computation gives the

first four cumulant contributions to the effective Hamil-
tonian per unit volume:

Hsp(M)

= dFm + —F (1 —m ) + F(4—m —8m +4m )2 6

+—F [6d —7 + (20 —24d) m —(36d —10)m,
12

—(12+ 24d)m + (9+ 6d)m ]

+ s ~ ~

)

where d is the dimensionality of space, m = M/N,
F = J/KT, and we have neglected contributions to
the effective Hamiltonian which vanish in the thermo-
dynamic limit.

Successive powers of F in the above expansion multiply
increasingly high-order fluctuations of the Hamiltonian.
Thus, from expression (33) it follows that in the local
model the energy suffers from large fluctuations even at
fixed magnetization, making physically relevant the con-
tribution to the cumulant expansion of orders higher than
the first.

In the nearest-neighbor Ising model, if we truncate the
series (33) to lowest order, NH, p(m ) = (Hi(s))M, we
get the mean field approximation. However, using the
four terms in (33) gives much better physical results, es-
pecially for higher dimensions. In particular, in one and
two dimensions we find a first-order phase transition, but
our results in d & 3 approach those obtained in exact nu-
merical simulations. In Table II we report the critical
values of F and the order of the phase transition for sev-
eral values of d. The results reported in this table show
unambiguously how the convergence of the cumulant ex-
pansion improves significantly with increasing space di-

J
M . (29)

TABLE II. Critical values of I and order of the ferromag-
netic phase transition for several values of the space dimen-
sionality d. These values have been obtained using the four
cumulant approximation to the effective Harniltonian.

In this case the Hamiltonian depends only on the mag-
netization M, which implies that at fixed magnetization
it does not fluctuate. This means that

(&
—PH„~(s) 4 &

—P{H„~(s))M.
/M )

i.e. , the only nonvanishing cumulant is the first one.
(ii) The local Ising model:

d
2
3
4
6
10

0.42055
0.216076
0.147672
0.092023
0.052836

Order
First

Second
Second
Second
Second
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mensionality d. This is not surprising since, as stated
above, the mean Beld approximation gives better results
for increasing space dimensionality and/or long-ranged
interactions, suggesting that the main criterion for the
reliability of our numerical method in QFT might be the
range of the interaction.

In the case of a quantum field theory (QFT) with dy-
namical fermions, the analogue of the Ising Hamiltonian
is ln det A. Its nonlocal character may be responsible for
the smallness of the fluctuations of this operator, as a
function of the pure gauge energy, in accordance to what
we observed in the numerical simulations.

The relevance of nonlocality for the convergence of the
cumulant expansion can be further discussed in a simple,
pure gauge Abelian lattice model with a mixed compact-
noncompact action. In this model it is possible to per-
form an analysis similar to that for noncompact @ED [9].
The effective action is therefore

~
—S (E) (~—S (U, ) 4 (34)

0.8 I

i

I I I

0.4—

0.8—

0.0
0.5 1.0 1.5

FIG. 9. First cumulants of e " = (e o " )~
[Eq. (34)].

where SG(U~,„) is the compact contribution to the total
action, and ()@ is now the average over configurations of
fixed noncompact pure gauge energy E.

Figure 9 contains the numerical results for the first con-
tributions to the cumulant expansion of (34) as a function
of the noncompact energy E. As can be seen, the con-
tribution of the second and third cumulants (or, more
relevantly from a physical point of view, their deriva-
tives with respect to E) are of the same order, or even
larger than the first term. This is a completely different
behavior from that of noncompact @ED, in which the
contribution of the second cumulant was less than 2%,
the third cumulant being compatible with zero [9].

It is important to note that the compact gauge action
which appears in the exponential of (34) possesses the
full local symmetry of the noncompact action, as in @ED.
This has to be compared with the Higgs model at fixed
norm of the scalar field:

e
—s,n(E) (e

—sH (U „)) (35)

where S~(U „) is the Higgs term in the action. In this

case the computation also fails, the failure being partly
due to the fact that the Higgs part of the action, after
integration of the scalar field, does not possess the local
symmetry of the pure gauge part.

The main difFerence between the model with a mixed
action and the fermionic case is that the compact pure
gauge action is local, whereas in /ED the logarithm of
the fermionic determinant, which appears in the expres-
sion analogous to (34) defining the fermionic effective ac-
tion, is nonlocal in terms of the gauge variables.

These examples once more suggest that the nonlocal
character of the operator which defines the effective ac-
tion (eff'ective Hamiltonian for the Ising model) is essen-
tial for the feasibility of the numerical computation of
the fermionic effective action.

VIII. FERMIONIC
NUMERICAL CALCULATIONS

As already stated, the realization in practical simu-
lations is logically divided into the following parts: (a)
generation of decorrelated configurations at Bxed energy;
(b) diagonalization of the fermionic matrix and determi-
nation of its zero mass eigenvalues; (c) canonical simula-
tion of the effective theory.

We will now describe in some details the practical re-
alization of the above points. As for point (a), the gen-
eration of configurations at fixed energy, i.e. , the micro-
canonical process, can be realized in different ways, de-
pending on the theory under consideration. In particular,
for the compact U(1) case we have used the overrelax-
ation method [27] in which each link is changed deter-
ministically, so that the energy remains fixed. This has a
unique realization in U(l). In SU(2) the solution to the
overrelaxation equations is not unique, and in general
the choice of the new value for the link is done so that
the distance from the previous value is maximized. For
SU(3) overrelaxation does not exist, but microcanonical
methods do [28]. Note that in any case, due to machine
precision, after many iterations of any microcanonical
procedure the energy will slightly change. To avoid this
problem, after a fixed number of cycles some sweeps are
performed, guided so that the energy is forced towards
the correct value.

In the case of the noncompact Abelian model a dif-
ferent approach is used. In fact, the overrelaxation pro-
cedure would move the fields towards very large values
since in this case they are not bounded. This will cause
problems related to machine precision In orde.r to over-
come the problem, we chose instead to exploit the fact
that the pure gauge action is quadratic in the fields, while
the measure is linear. Thus, a rescaling of the fields will
produce configurations with any desired energy. So the
procedure in this case consists of a canonical Metropolis
process, performed at a value of P chosen so as to achieve
the best possible acceptance, followed by a rescaling of
the Belds in order to get the desired energy.

We now pass to the problem of Bnding the eigenvalues
of the fermion matrix, which is the most CPU time con-
suming. This matrix is large (V x V) and sparse (i.e. ,
most of its entries are zero). The I anczos algorithm [29]



MICROCANONICAL FERMIONIC AVERAGE METHOD FOR. . . 413

is the best suited method for finding the eigenvalues of
such matrices. Since we follow closely the version of the
algorithm described in [19], we will only present its es-
sentials in order to facilitate the implementation of our
method by the interested reader.

The Lanczos diagonalization of any Hermitian matrix
H takes place in two steps. First, we find the similarity
transformation which tridiagonalizes the matrix; i.e. , we
find a unitary matrix X of size V x V, such that

XtHX = T, (36)

where

Xtx= i, (37)

and T is a tridiagonal, real, symmetric matrix of the form

Pi
A nz Pz

P2 ns

jav —s nv —2 Pv 2—
Pv 2nv —1— Pv 1—

Pv 1 nv—
(38)

x, x, =b;, . (40)

Rewriting (36) as HA = AT and using (39) we obtain
the Lanczos equations

Hxi nlxl + Plx2~ (41)
Hx;=P, ix, 1+nx, +Px+1, 2&i & V —1, (42)

Hxv = pv lxv 1+nvx—v— (43)

These equations may be iterated V times and, using
the orthonormality condition (40), lead to the following
algorithm.

Step 1: Choose a starting vector xi, the conventional
choice is

x = (1,0, 0, ..., 0). (44)

Step 2: Calculate ni, pi, and x2, using Eqs. (41) and
(40):

~~ —x,ax~,
Ul ~x1 1x1)
Pi2
xg = (Hxi —nixr)/Pi.

(45)

Once the tridiagonal matrix is found, it is diagonalized
with the aid of Sturm sequences. The Lanczos algorithm
is based on the idea of parametrizing the unitary matrix
A as a set of V column vectors, the Lanczos vectors
x, (i = 1, ..., V), each of dimension V x 1:

A = (xi, x2, . . . , xv i, xv).
The unitarity of X ensures that the column vectors x,

form an orthonormal basis that spans the V-dimensional
space of the fermion matrix:

Step 3: Now iterate step 2 V —1 times (i = 2, . . . , V)
in order to calculate the n, 's, the P, 's and the x,+1's,
using Eqs. (42) and (40):

o,, =x,Hx, ,
U, :=Hx, —P, ix; 1 —n, x, ,
P2 UtU

x,+1 =(Hx, —n, x, —P, ix; 1)/P, .

(46)

Either sign may be used when obtaining P, from the
square root of P; conventionally we use the positive one.
Also note that Eq. (43) is automatically satisfied after
the last iteration (since Uv is orthogonal to all Lanczos
vectors) and thus Pv ——0.

Some comments are in place here. We use the Lanczos
algorithm in order to find all the eigenvalues of the mass-
less fermion Kogut-Susskind matrix A(m = 0) (the mass
term will only shift these eigenvalues by a constant m).
The matrix 6(m = 0) is anti-Hermitian; we therefore
consider the matrix id, (m = 0) when applying the Lanc-
zos algorithm. We also note that A(m = 0) has a zero
diagonal. It can immediately be seen from Eqs. (45) and
(46) that Chis implies that all n s are zero. This brings
about a simplification of all the above equations. Once
the P's have been computed, Sturm sequences are used
in order to calculate the eigenvalues of the tridiagonal
matrix T.

The trouble with the Lanczos algorithm is that; the
rounding errors grow exponentially. The Lanczos vec-
tors loose orthogonality after some iterations and Pv is
nonzero. This implies that, after V iterations, the eigen-
values found by the algorithm are not those of the fermion
matrix. One possible way out is Gram-Schmit reorthogo-
nalization of each new Lanczos vector x; to all the earlier
ones. This solution, however, is characterized by large
computer storage memory requirements and has to be
ruled out.

We have adopted the alternative suggested in Refs. [30]
and [19]. The technique essentially consists of iterating
the algorithm W times, with W ) V. Recall Chat, due
to rounding errors, Pv g 0, and so this is always possi-
ble. Typically W = O(2V). We therefore end up with a
tridiagonal matrix T, which, being W x W in size, has W
eigenvalues. These eigenvalues fall into three categories.

(a) The "true" eigenvalues are those which are also
eigenvalues of the smaller V x V fermion matrix. They
are the ones we are interested in. Since b, is essentially
almost random (its nonzero entries have been produced
by a Monte Carlo simulation), it is assumed to have a
nondegenerate spectrum. This assumption has always
been verified a posteriori; no degenerate "true" eigenval-
ues have ever been found. Also, the eigenvalues of 4
should not depend on the number of iterations 8 .

(b) The "ghost" eigenvalues are degenerate eigenval-
ues of T which repeat themselves several times. Their
number increases with W.

(c) The "spurious" eigenvalues are eigenvalues of T,
the value of which depends on W. They are recognized
by the fact that they do not repeat themselves as R' is
increased.

So, by empirical tuning of two cutouts, the "ghost" and
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"spurious" eigenvalues are identified. The remaining set
of V "true" eigenvalues are those of iA. A property of
the Kogut-Susskind fermion matrix is that the sum of the
squares of its eigenvalues is dV/4. We use this property
in order to check that all "true" eigenvalues have been
found. Our check is satisfied to an accuracy of 1.5x 10
Note also that the sum of the eigenvalues to the fourth
power is a linear function of the (compact) energy. In the
above calculations we use 64-bit arithmetic, to ensure
that we end up with all the true eigenvalues (and no
others). This algorithm converges after O(V) iterations;
thus it has a cost of at least O(V2).

IX. PRACTICAL IMPLEMENTATION OF THE
METHOD ON A TRANSPUTER NETWORK

The advantage of the method we have proposed is that
supercomputers are not needed for the simulations. In
fact, earlier results in the compact model have been ob-
tained on a (shared) Vax 8650 [7, 8]. Even so, a large
amount of computer time is needed: As an example, the
extensive simulations presented in [9] have required the
equivalent of 255 h of Cray-YMP, making unpractical
their implementation on shared computers.

We therefore decided to exploit the transputer tech-
nology to build up custom made machines, partly based
on commercial boards, on which to run our programs.

Recently, transputers have been widely used for a va-
riety of applications which require parallel elaboration of
data. A transputer is a chip ideally suited for multiple
instruction multiple data (MIMD) architecture; it has
an on-chip fioating point processor and fast static inter-
nal memory, and can run at 30 MHz with 30 Mips and
2.25 MFlops peak performance. Each processor has its
own private external memory; processes can run in par-
allel on the same transputer, or they can reside in difFer-
ent transputers, communicating through hardware, fast
(up to 20 Mbits/s), serial channel (links). Each trans-
puter possesses four bidirectional links, so that different
communication topologies can be established. For the
simulations performed, we have used difFerent transputer
boards, hosted on personal computers or on a pVax,
which also manage disk I/O.

We have used the following four network configu-
rations: (1) one single transputer board situated at
the Frascati National Laboratories (LNF); (2) three 4-
transputer boards situated at LNF and L' Aquila Uni-
versity; (3) one single transputer board connected to an
8-transputer board, situated at LNF; (4) a 64-node, 64-
MBytes, electronically reconfigurable transputer-based
machine (RTN) [31], situated at Zaragoza University.
The collective memory of the first three configurations
amounts to 49 Mbytes.

The specific implementation of our method varies ac-
cording to the problem under consideration. A first possi-
bility is by "brute force" parallelization: Either the same
program is run on different transputers, with the same
parameters (to increase statistics), or with different ones.
This approach has partly been used in the simulations of
the compact model.

The second approach used is based both on the struc-
ture of the simulations and on the topology of the boards
available: It has been implemented on (two) 4-transputer
networks.

The simulation consists of three logically separated
parts: (a) microcanonical simulation, to produce the
pure gauge configurations; (b) tridiagonalization of the
fermionic matrix; (c) determination of its eigenvalues by
means of Sturm sequences.

The CPU costs needed for these computations are es-
sentially fixed (at given volume) for (b) and (c); within
some limits, they are variable at will for (a).

The minimum requirement for microcanonical simula-
tions is that configurations are well decorrelated, before
diagonalization. In the simulations performed, this is al-
ways the case.

On the other hand, it turns out that, with our choice of
the cutoff parameters for finding the true eigenvalues, the
CPU time needed for the Lanczos tridiagonalization is
approximately one-half of the time needed for the Sturm
diagonalization. Moreover, the Sturm algorithm for find-
ing eigenvalues is strictly sequential, so that even a part
of the eigenvalues can be searched for independently. We
have therefore divided the Sturm sequence into two parts,
the first (second) searching for the first (second) half of
the eigenvalues, and so the complete Lanczos process can
be divided between three jobs, each running on a differ-
ent transputer. The fourth transputer, which is the one
linked to the host, performs the microcanonical process,
to produce the next configuration, tuned so as to spend
approximately the same CPU time of the other parts: In
all the simulations performed, this choice has produced
very well decorrelated configurations.

A disadvantage of this method is that a complete it-
eration is lost at the end of the simulation; on the other
hand, with this subdivision it is possible to have a larger
part of the code of the computer intensive parts in the
on-chip memory, which allows faster execution.

In this implementation the optimal topology consists
in a linear chain of four transputers, one of which is linked
to the host. We have used this configuration both in com-
pact and noncompact simulations using two 4-transputer
boards at LNF.

In the noncompact case other configurations of trans-
puters can be used, taking advantage of the fact that,
since the pure gauge action is quadratic (and the mea-
sure linear) in the fields, the same configuration can be
rescaled to have any energy required. This choice of the
configurations over which to sample the distribution of
the fermionic part can be shown to effectively reduce
(nonphysical) fiuctuations of the first derivative of the
effective fermionic action. In this case the following re-
alization has been used: A job does the microcanonical
simulation to obtain the next configuration, while the
previous one is distributed to the other jobs, appropri-
ately rescaled in order to diagonalize the fermionic matrix
at difFerent, predetermined, energies. This procedure is
then repeated as many times as required to have the nec-
essary statistics. This particular realization has run both
on a one + 8-transputer board at LNF and on the RTN
(64 transputers) of the Zaragoza University.
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X. SUMMARY AND OUTLOOK

The main objective of this paper has been to express in
a systematic way the principal features of the method we
have proposed. Here we summarize the most important
aspects.

In our approach, the simulations with dynamical
fermions have been factorized into the pure gauge gener-
ation of the configurations and the measurement of the
fermionic determinant. This factorization has been ac-
complished by integrating over all the gauge-invariant
variables which enter in the fermionic determinant, apart
from the pure gauge energy. Hence configurations are
generated through a microcanonical procedure, i.e., at
fixed pure gauge energy. The main advantage of this
method is that the most computer intensive part of the
simulations does not have to be repeated for different
values of coupling and flavor number. Furthermore, the
above factorization allows us to have a very good decorre-
lation between the configurations used for the fermionic
part of the computation.

The present implementation of the computation of the
fermionic determinant uses the Lanczos algorithm: In
this way, by finding all the eigenvalues of the femionic
matrix, this part has to be performed only once for all
values of the fermion mass, zero included. On the other
hand, since our method is particularly well suited to the
generation of decorrelated configurations, the problem of
critical slowing down is under control. We stress again
that, to the best of our knowledge, for observables which
are not order parameters for the chiral symmetry, the
zero mass value is accessible only to this method.

In practical computations the direct evaluation of the
average fermionic determinant is numerically diKcult,
and so we resort to an approximate evaluation through
an expansion in cumulants, which turns out to be an ex-
pansion in the number of fiavors. It is the use of this
expansion which gives us a good control over systematic
errors, at least for nf & 4. In all cases considered, the
truncated expansion we use is shown to give results in
very good agreement with those in the literature. In ad-
dition, while the original presentation of our method in-
volved only the computation of thermodynamical quan-
tities as derivatives of the free energy, an approximate
evaluation of any operator not already included in the
original action is possible through the use of the cumu-
lants expansion.

The considerations we have presented for the Ising

model and gauge models with a mixed action strongly
suggest that the nonlocality of the original action is at
least a prerequisite for the applicability of this method.
We have to stress, however, that we have no description
of the relation between non locality and the suppression
of the fluctuations that makes the numerical evaluation
possible.

Up to now this method has been used in extensive sim-
ulations of the Abelian model in 3+ 1 dimensions. The
advantage of its use is evident in the amount of CPU
used. For the detailed study of the noncompact Abelian
model we have used the equivalent of 255 h of Cray YMP.
We have generated through a microcanonical procedure a
total of 7771 configurations (44), 9370 (6 ), 6639 (8 ), 464
(104); these configurations have been fully diagonalized,
thus allowing us to extract physical observables for att
values of P, m, nf. All the above configurations are very
well decorrelated, the fermionic measurements being typ-
ically separated by thousands of complete microcanonical
sweeps. The results presented in [9j derive from a sub-
sample of these configurations corresponding to ~ 90 h
of Cray YMP.

As already stressed, the main physical results we have
obtained refer to the Abelian models in four dimensions.
Work is in progress both on (2+1)-dimensional Abelian
theory and on QED in 1+ 1 dimensions (the Schwinger
model). The latter is particularly interesting because,
being solvable (at m = 0) in the continuum, it is ideally
suited for testing the approximations introduced by the
method and evaluating possible improvements.

We are also working towards the implementation of our
method in SU(3). Here the main objectives are the study
of the (unquenched) finite-temperature phase transition
and the possible application to a full understanding of the
particle spectrum beyond the quenched approximation.

As a last remark, the study of the effect of nonlocal-
ity sketched in Sec. VII shows that the present method,
implemented with the cumulant expansion, has validity
beyond lattice gauge theories coupled to fermions, giv-
ing, for instance, interesting results in the discussion of
the Ising model beyond the mean field approximation.
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