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Effective action of a scalar field in a curved spacetime with a small inhomogeneity
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The effective action of a quantum field in an inhomogeneous spacetime is studied. We extend the
Hartle-Hu method, which was developed to investigate the model in a homogeneous spacetime with a
small anisotropy, to evaluate the one-loop effective action for a scalar field in a curved spacetime with a
small inhomogeneity. Through a rather lengthy calculation we obtain the final expression which is then
applied to numerically investigate the quantum-field effect on the dissipation of the space inhomogeneity
in the early Universe.

PACS number(s): 03.70.+k, 04.60.+n, 98.80.Hw

The effective action is a useful tool for studying the
quantum corrections to a classical theory and has been
employed in investigating the theory of quantum fields in
curved spacetime [1,2]. In a series of papers, Hartle and
Hu developed a method to evaluate the one-loop contri-
bution of a conformally invariant scalar field to the
effective action for a homogeneous cosmological model
with small anisotropy [3]. From the effective action they
obtained the dynamical equations of classical geometry,
which were then used to evaluate the particle pair-
production spectrum and to investigate the problem of
dissipation of space anisotropy near the cosmological
singularity [4,5].

The Hartel-Hu method has been applied to evaluate
the effective action for neutrino and photon fields in
homogeneous cosmologies with small anisotropy [6]. The
finite temperature correction to the effective action has
also been discussed [7]. In recent papers, several authors
have extended the closed-time-path formalism [8] to
curved spacetimes and obtained a real and causal
effective action [9—11].

In this Brief Report we will extend the Hartle-Hu
method to evaluate the one-loop effective action for a sca-
lar field in a curved spacetime with a small inhomogenei-
ty. As the space has inhomogeneity the calculations are
more lengthy than those in the Hartle-Hu paper. We
then apply these results to numerically investigate the
particle production and space homogenization, along the
methods in Refs. [4,5]. Using the present result we will
calculate the effective action in closed-time-path formal-
ism in the near future.

The present work is one of a series of investigations
about the back reaction of quantum field in inhomogene-
ous spacetime. We have [12] made efforts to overcome
the mode-mixing behavior coming from the space homo-
geneity which may be small or large, to find the adiabati-
cally regularized quantum stress-energy tensor. We
hoped that these results will enable us to investigate the
back reaction of a quantum field in the Einstein equation.
However, even if such an approach may work, we could
obtain the renormalized stress energy tensor only after a
rather lengthy numerical calculation. On the other hand,
using the effective action approach, which has been
developed only for the modes with a small deviation from

ds =a(g) —dvP+ge ' ' dx;, gP;=0, (2)

where P; are small values. In terms of a new variable
y=aP, the Lagrangian defined in Eq. (1) becomes

tplp tpg a,'y +—
—,'y g ( —2P;;a; —2P;a,')y

l

+,'q y 4p, p„a, +2p', a', ,' p,'+yp', —,
'—~

J

+o(p ) . (3)

Then, after the functional integration, the generating
functional can be written as

Z= e' = Det ianna (4)

where, to second order in p, , the operators b, can be ex-
panded as

6=ho+ V)+ V2,
with

b,0=a„—g a, , (6)

v, =g (2p;;a;+ 2p;a; ),

v, =y 4p, p, , a, 2p', a', +—,' p', +y p—', ,
'

. -(8)

Defining the Green function by

the homogeneous spacetime, we could have an analytic
form of the renormalized stress energy tensor. This
makes the investigation of back-reaction effects of a
quantum field in the einstein equation easier. We have
also studied the problems of particle creation and the
Coleman-Weinberg mechanism in an inhomogeneous
spacetime in recent papers [13,14].

We consider the action describing a massless scalar
field (P) conformally coupled to the gravitational back-
ground

S= f Xd x = J &—g tI) [ —,
' —

—,'R ]P d4x,

where R is the Ricci scalar and P =g" V„V,P =g4'P
For simplicity, we consider an inhomogeneous spacetime
with the line element
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(aha)G(x, x')= —5 (x,x'),
the effective action we will evaluate becomes

lI = i—lnZ= ——Tr[lnG] .
2

(9)

(10) r=r, +r, +r, , (13)

Substituting the Green function solution in Eq. (11) into
Eq. (10) we have the perturbative expansion of the
effective action:

Substituting the perturbative form of b„Eq. (5), into the
equation of G, Eq. (9), we can solve the Green function.
To second order in P, the solution is

G =Go+Go(ah, a )Go+ Go(ah&a )Go

+Go(a b. ,a )Go (a b, ,a )Go, (11)

where the zero-order Green function Go defined by Eq.
(9) can be expressed as

where

(14)

(15)

I 0= ——Tr[lnGO ],
I,= ——Tr[(a V, a )Go],

I z
= ——Tr[(a V2a )Go ]

——Tr[(a V, a )Go(a V, a )Go ] .

d nk eik. (x —x')
Go(x, x') = —a '(g) f (2'�)" k

(12)
I

Formally, these traces are divergent and a renormaliza-
tion procedure is needed to make them finite. Our model
requires the counteraction of the general form [15—18]

n —4

S= d"x& g — (R R ~~ 4R R—~+R )+ (R R Pr 2R R—~+ 'R )—c 4 S76O~' 192O 2 PP P (17)

where we have continued the geometry to n dimensions. The divergences in I will be canceled by the S, leaving the
finite physical results.

We now begin to evaluate the eifective action. For the same reason as in the Hartle-Hu paper [3], in the dimensional
regularization procedure the terms Tr(aV, a)Go and Tr(aVza)G0 are equal to zero. The quantum correction parts of
the effective action are

r, =r, +r, +r, ,

where

(18)

I ~
= i f d x—d x'a(q) QP,.(x)B; a(g)GO(x, x')a(g') QP;(x')8; a(g')Go(x', x), (19)

I ii= i f d —x d x'a(g) gP;;(x)B; a(g)GO(x, x')a(g') +P, ,
.(x')i3, a(q')Go(x', x), (20)

I c= 2i f d x d —x'a(q) gP;;(x)B; a(g)Go(x, x')a(q') +P,.(x')8; a(g')Go(x', x) . (21)

f d x d x'gP;(x)P. (x')K "'(x,x'),
2m 2"

EJ (k;+l;) l
K '(k) = d "I

(k+l)2l 2

(k, +l, )l
K '(k) = d "l

(k+l)'l' '

(k;+l; )l
K,' '(k)= i d "l-

(k + l) l

(26)
(22)

r, = — ', f d x d x' g P, , (x)P. (x')K '(x, x'),
27r 2"

LJ

(27)

(23)
(28)

I c= — f d x d x'QP;(x)P (x')Ki. '(x, x'), .2l

2' 2"
1J Rotating both ko and lo through an angle +sr/2 in the

complex plane so that the denominators in the integrals
K,' (k), K,'. '(k), and K,' '(k) become the norm Euclide-
an four-vectors we can then carry out the integrations in
a standard procedure [19]. Near n =4 the results are

(24)

where

K (x)=f d neik. xK(L)(k) I, g g C (25)
I

Substituting the solution Go, Eq. (12), into the above equations we have
Ir- with

K "'(x)=i' —'(1+26; )k —ink —y+ —+—'(k +k. ——'k k 5; )k
n —4 2

1 +ink +y —12

n —4

I k2k2 1 k2
30 & J ~ 4

(29)
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K '(x)=l ir'—'k;k +lilk +y +—'5, .k
2

n —4 12 ~J
+ink +y —1

n —4 (30)

rC'"(x) =~' 'k—k—'
~J 24

2 +ink +y —1 + —'k, k —ink —y
2 1 2 2 2

n —4 n —4
(31)

where y is the Euler constant. Notice that as the space-
time is inhomogeneous we shall preserve the terms pro-
portional to k, . It is these terms that render the calcula-
tions in this Brief Report more lengthy than those in the
model without inhomogeneity [3].

After the lengthy calculations we find the divergent
part of I

pdlv f d4x ( g)1/2C CcxPrs (32)
1

1920ir (n —4) aPy5

This divergence shall be canceled by the counteraction in
Eq. (17) and the finite parts of I' will come from the log-
arithmic and finite terms in Eqs. (29)—(31).

Now, because of spatial inhomogeneity we can not per-
form the spatial integration. Thus, we rotate ko back
through an angle ~/2 in the complex plane. This will
make the ink acquire a negative imaginary part, i.e.,

where C„& is the Weyl tensor in four dimensions, ink = ice—(ko —k )+1n~k (34)

sCi"r~= . g 2P, +8P. ..—4g P; . +P;,i

+2 Xpij
J

2

+4 gp;;; 2.

(33)
I

Using this formula and after a rather lengthy calculation
we have the following expression for the one-loop ap-
proximation to the effective action:

2

1o+I~+S,= f d x a a
a

gP;+ — g 2P;;++(P;~ 2P; P )).— .

J

4P2~ g pt2

—g 2P,', ; —Q P,',, +2~—gp; 2P;;; Qp;,„—
J J

+2k. — g 2P;; —g P, ——4—+3a 2 . A. a a
a . ",. " 3 a al 1

gp 2

+k(lnpa) g ,'(2P, +P, ,, )
——6g(P, . +P, , . )+3 gP; -. +6 'gP, ,,

+Afd x ,f d y f d k e'"" '[iire(k —k )
—in~k ]

1

(2ir )

X g —,'P;(x)P;(y)+6P, ,;(x)P;;;(y)—3 g [P;,(x)+P, , (x)][P; (y)+P, ; (y)]
l J

+ —,
' g p;,, (x) gp; J, (y) +3 gP;;;(x)

l

gp;;;(y) (35)

where l = ( 16irG ) '~, G is gravitational constant,
A,

—:(288ir ) ', and we have combined all scales into a
single regularization scale p which appears in the term
(lnpa). The above equation is the main result of this pa-
per. Note that it can be seen that as each pole term in
Eqs. (29)—(31) is always accompanied by the ink term
and each ink will contribute an imaginary part as shown
in Eq. (34), thus the total particle production probability
will have the same form as that in the divergent part of
I ~ and is proportional to the square of the Weyl tensor.
This result is consistent with the calculation from the S-
matrix method [20].

To apply the above result to numerically investigate

the quantum field effect on the inhomogeneous spacetime
we need the evolution equations for a(i)) and /3;(x),
which can be obtained by varying the effective action
with respect to a and p;. However, the equations so ob-
tained will be rather complicated and we will adopt
several approximations to simplify the numerical work.

First, we neglect the nonlocal term in Eq. (35). This
step is hard to justify, but Hartle [5] showed that this
does not change the results significantly. Note that the
approximation of "local truncation" has been adopted in
Refs. [4,7]. Second, we assume that P,. are functions of 2)

and x;; i.e., P, do not depend on x. if i%j. The equation
for P; is then
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[(Aa., )'+Bn;] + —,'[(AL;;) +CL;( ];.=0,
where

A—:—ln(pb ) i—,'n—,.

(36) 0.2

-0.2 ~

2b +b b2

b2
(37)

-0, 6 '

4b 2 17 bC=
3 3 b

b2

b2

-0, 8-

0. 05 0. 1 0. 15 0. 2 0. 25 0. 3

and

n, =dP, /dg, L;; =—dP;/dx; . (38)
FIG. 1. Time evolution of real part RL and imaginary part

IL of the inhomogeneous function L;;.
We have followed the Hartle-Hu prescription [4] which
used the scale-invariant variables defined by

a(rl)=lp„' b(y), g=y6'~ /p„'

x —= 6'i/ ' (39)

where the value p, is the constant giving the density of
classical radiation according to p„=a p, in the Fried-
mann universe. Note that the derivatives in Eq. (36) are
defined by F=dF/dy —and F;=dF/dy;—. To obtain the
evolution equation (36) we have neglected the terms in-
volving higher derivatives with respect to x;; i.e., we as-
sume that the spatial inhomogeneity is varying smoothly
in the space. This is the third assumption.

Despite the adoption of several approximations it is
still dificult to solve Eq. (36). We thus consider the case
of L;; »n. ; (the case of L;; =0 is that investigated by Har-
tle and Hu [4] for the mode in a homogeneous spacetime).
Neglecting the a; terms in the above equation and in-
tegrating the equation we have

( AL;; ) +CL;; =f(y), (40)

where f(y) is an integration "constant" which does not
depend upon x;. The nonhomogeneous solution of the
above equation can be chosen to be spatially independent
and what is really interesting to us is the solutions to the
homogeneous equation corresponding to (40). We thus
can write the inhomogeneous function I.;; as

L,, (y, x;)=c;(x, )L(y) . (41)

The remaining problem is to see whether the function
L(g) will approach zero within a short time. If this hap-

pens then we may conclude that the quantum field can
quickly smooth out the space inhomogeneity in the early
Universe. Using the fact that for the model with a small
inhomogeneity the metric b(y) implicitly appearing in
Eq. (40) will not be affected by space inhomogeneity (just
like that in the homogeneous anisotropic mode discussed
in Ref. [4]), thus we can easily find the homogeneous
solution. We will investigate the model in the classical
geometry which is the Friedmann universe.

Under the above discussions, a typical numerical solu-
tion of L;; is shown in Fig. 1 (we use p= 1 ). Note that
the bottom scale in Fig. 1 measures the cosmic proper
time in the units of Planck time. We thus see that both
the imaginary part IL, which is a consequence of the par-
ticle creation, and real part RL, which represents the
space inhomogeneity, approach zero within a short cos-
mic time. Therefore we have seen that quantum field
does quickly smooth out the space inhomogeneity in the
early Universe.

In conclusion, we have in this paper extended the
Hartle-Hu method, which was developed to investigate
the model in a homogeneous spacetime with small anisot-
ropy, to evaluate the one-loop effective action for a scalar
field in a curved spacetime with small inhomogeneity.
We see that as the space has inhomogeneity the calcula-
tions are more lengthy than those in the Hartle-Hu pa-
per. We apply our result to investigate the effect of a
quantum field in inhomogeneous spacetime and find that
spatial inhomogeneity in the early Universe could be
quickly smoothed out.
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