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Can gravitational waves prevent inflation?
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To investigate the cosmic no hair conjecture, we analyze numerically one-dimensional plane sym-
metrical inhomogeneities due to gravitational waves in vacuum spacetimes with a positive cosmolog-
ical constant. Assuming periodic gravitational pulse waves initially, we study the time evolution of
those waves and the nature of their collisions. As measures of inhomogeneity on each hypersurface,
we use the three-dimensional Riemann invariant Z = ®Ry;n ®RY* and the electric and magnetic
parts of the Weyl tensor. We find a temporal growth of the curvature in the waves’ collision region,
but the overall expansion of the universe later overcomes this effect. No singularity appears and
the result is a “no hair” de Sitter spacetime. The waves we study have amplitudes in the range
0.020A < T'/2 < 125.0A and widths in the range 0.080ly < ! < 2.5ly, where Iy = (A/3)™/2, the
horizon scale of de Sitter spacetime. This supports the cosmic no hair conjecture.

PACS number(s): 98.80.Cq, 04.30.4+x

The inflationary scenario [1] has been usually studied
in an isotropic and homogeneous spacetime. In order to
see whether inflation is a universal phenomenon or to
solve the present isotropy and homogeneity problem of
the Universe, however, we have to study an inflationary
model in anisotropic and inhomogeneous spacetimes. As
for this generality of inflation, we know the so-called cos-
mic no hair conjecture [2]. The conjecture is: All initially
expanding universes with positive cosmological constant
A approach the de Sitter spacetime asymptotically. The
de Sitter spacetime is stable against perturbations and
many models support this conjecture, while there exist
some simple counterexamples. So that we expect we can
prove a suitably refined version of this conjecture.

For homogeneous but anisotropic spacetimes, it was
shown that, except in the Bianchi type-IX case, initial ex-
pansion and positive A force an approach to the de Sitter
spacetime within one Hubble expansion time 7y = 4/A/3
[3]. For inhomogeneous spacetimes, on the other hand,
the only practical method we have at present is to solve
the Einstein equations numerically. Assuming a spheri-
cally symmetric spacetime, Goldwirth and Piran [4] stud-
ied the behavior of inhomogeneous scalar field. They
found a sufficient criterion for inflation that the physical
scale of inhomogeneity of the scalar field be larger than
several times the horizon scale.

We may, however, wonder whether this result is valid
for cases with other symmetries or for more generic space-
times. Assuming a plane symmetric spacetime, Kurki-
Suonio et al. [5] studied a new inflationary model and
found that inflation occurs only when the potential is
flat enough. The spacetime they studied is, however, not
sufficiently inhomogeneous in order to investigate the “no
hair conjecture.” This is the first reason why we study a
plane symmetric spacetime in this paper.

Besides the inflaton field, there exist other sources of
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inhomogeneity, one of which is gravitational waves. Al-
though any linear gravitational waves in de Sitter space
will decay exponentially and disappear soon [6], we do
not know what will happen if strong gravitational waves
exist. If the strong gravitational waves are localized,
those may collapse into black holes. Even if those are not
localized as a plane symmetric case, such a strong gravi-
tational field may evolve into a naked singularity. In fact,
Szekeres and Khan-Penrose [7] showed that a collision of
two plane symmetric gravitational waves in Minkowski
background spacetime will form a singularity. We may
wonder what will happen with strong gravitational waves
in de Sitter background. A singularity may be formed
and prevent inflation. In this report, we study such an
inhomogeneity due to gravitational waves. Because they
cannot exist in a spherically symmetric spacetime, grav-
itational wave inhomogeneities may play a different role
in the homogenization process from that of the inflaton
field analyzed previously. This is the second reason why
we study a plane symmetric spacetime here.

Recently, Nakao et al. examined time symmetrical ini-
tial data for Brill waves in an axial symmetrical spacetime
with cosmological constant and found that waves with
large gravitational mass do not always provide trapped
surfaces [8]. They also found that a dust sphere with
large gravitational mass in a background de Sitter space-
time does not collapse to form a black hole spacetime
[9], and that there exists an upper bound on the area
of the apparent horizon of a black hole in an asymptot-
ically de Sitter spacetime [10], so that we may conjec-
ture that a large inhomogeneity does not necessarily pre-
vent cosmological-constant-driven inflation. From these
results, it seems plausible that in an inflationary era, in-
homogeneities will simply evolve into many small black
holes in a background de Sitter universe; the only worri-
some possibility is that a naked singularity might form.
Disposing of this worrisome possibility may thus become
the main problem in the study of the cosmic no hair con-
jecture. Our one-dimensional case seems well suited to
address this problem. This is the third reason, since a
singularity formed in a plane symmetric spacetime is al-
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ways naked.

For the above three reasons, we have carried out a nu-
merical study of inhomogeneities due to plane-symmetric
gravitational waves in a vacuum spacetime with a posi-
tive cosmological constant A. Since we have not studied
an inflaton field in this paper, our result may not be ap-
plied to a realistic universe as it is. (See also our comment
in Ref. [16].)

We use the Arnowitt-Deser-Misner (ADM) formalism
to solve the Einstein equation G, + Ag,, = 0, with the
metric

ds? = —(a® = B2/¥s0)dt? + 2Bdtdz + Yooda®

+'Yyydy2 + 'szdydz + 'Yzzdzza (1)
where the lapse function «, the shift vector 8; = (3,0, 0),

and the three-metric v;; depend only on the time ¢ and

propagation direction coordinate x.

We use the Hubble expansion time 7y = 1/A/3 as
our time unit, which is a characteristic expansion time of
the expanding Universe. And our unit of length is also
normalized to the horizon length of the de Sitter universe
lg =1/4/A/3.

Our simulation procedure follows Nakamura et al. [11]:
(i) Determine initial values by solving two constraint
equations. (ii) Evolve time slices by using the dynam-
ical equations. (iii) Check the results of (i) and (ii) using
the two constraint equations on every time slice.

To determine the initial data, we use the fifth-order
Runge-Kutta method (Fehlberg method), and to inte-
grate dynamical equations, we use a finite difference
method with 400 meshes. In our calculation, the max-
imum errors in the Hamiltonian and momentum con-
straint equations are of order 10~% and 10~ on the ini-
tial hypersurface, respectively, and these accuracies are
maintained even after evolution.

We use the conformal approach of York and O Mur-
chadha’s [12] to get initial values. Setting vi; = ¢*¥ij,
the Hamiltonian constraint equation becomes

8 ®DAp= PR — A;; A7 + 2(3K* — A)¢° (2)

where ®)A is the th{ee-dimensional Laplacian of a confor-
mal metric ¥;;, (3R is the three-dimensional scalar cur-
vature, A,-J- is the trace-free part of the extrinsic curvature
Kij, and K (= K) is a trace part of K,] The quanti-
ties with a hat denote physical variables in the confor-
mal frame. In this approach, ¥;;, K, and the transverse-
traceless (TT) part of the extrinsic curvature KET are
left to our choice.

We assume constant mean curvature on the initial hy-
persurface,

K = —V3A(1 4+ 6k) = const  on (t = 0), 3)

where §x is a constant. Here, §x is introduced to find
the periodic gravitational waves. dx = 0 is inconsistent
with the presence of gravitational waves in the initial
data. The reason is that when we have pulselike inhomo-
geneities under periodic boundary conditions, there are
two energy sources; one is a positive cosmological con-
stant and the other is the energy of pulse waves. These
energies give contributions to the expansion of the uni-
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verse, i.e. the first term in the right-hand-side of (3) is
due to the cosmological constant, while the second one
(8x) is due to the pulse waves.

With this slicing, the momentum constraint equation
becomes trivial, and A;; = K :";T If we also impose ¢ — 1
at the numerical boundary edges, the value of 6k is fixed;
it is about 1072 in the physical frame.

For coordinate conditions, we impose a geodesic slicing
condition such as & = 1 and 8 = 0. This slicing condition
entails the risk that our numerical hypersurface may hit
a singularity and stop there. If no singularity appears,
however, then it may be the best coordinate condition
for revealing whether de Sitter space emerges as a result
of time evolution.

As for the initial data, we consider two complementary
cases: (i) The inhomogeneities reside in the three-metric
4;; and KET = 0; (ii) the three-metric is conformally
flat and the inhomogeneities reside in KET In this Brief
Report, we present mainly the results of simulations for
case (i), and we examine a pulselike wave propagating
in the z direction and expressed by the metric in York’s
conformal frame as

diag (%i;) = (1,1 +a e=(@/=0)* 1y, (4)
where a and zo are free parameters. Varying these pa-
rameters, which we interpret as the wave’s amplitude and
width, we study the effects of a family of gravitational
pulse waves on the spacetime structure.

As a measure of inhomogeneity, we first use the Rie-
mann invariant scalar T = ()R, @R where
(3)R;;x1 is the Riemann tensor of the three-metric on X,
and we introduce a dimensionless variable normalized by
the cosmological constant,

1/2

C(t,z) = IT on X(t), (5)
and call it the “curvature” hereafter. We estimate the
magnitude of the inhomogeneities in the 3-space ¥ by
the maximum value of this “curvature” on each slice,
i.e., Cmax(t) = max{C(t,z) | zex}-

As we mentioned above, a pulselike wave has two char-
acteristic physical dimensions, a width and an amplitude.
We use Cmax(t) as an amplitude measure, and we define
the width [(t) by the proper distance between two points
where the trace « of three-metric «;; (the square of the
three-volume) decreases by half from its maximum value
Ymax- When a and z, are given, the initial form of a
gravitational wave is determined, and the width (0) and
Cmax(0) may be calculated.

In Fig. 1, we show a typical time evolution of this
model for the case a = —0.10, o = 0.20; [ = 0.33lg,
Crmax(0) = 1.25. We see that the wave given on the initial
surface propagates both in the +z and —z directions, and
the “curvature” seems to be superposed in the interact-
ing region of the waves. The spacetime, however, finally
succumbs to the overall expansion driven by the cosmo-
logical constant, and becomes virtually indistinguishable
from de Sitter spacetime within one Hubble expansion
time 7g.

We also use four-dimensional variables as a measure to
see the homogenization process. In the vacuum space-



3912
‘ \\\ =10 x
A N
A ;.‘\:\\{\{\\i\‘\“\‘\
r=-1.0
t=0.0
t=10.8 time
FIG. 1. A typical example of the time evolutions of prop-

agating plane waves. The “curvature” C(t,z) [see Eq. (5)] is
shown for the initial pulse shape of I = 0.33ly and Cmax(t =
0) = 1.25 [a = —0.10, zo = 0.20 in Eq. (4)]. We see the ini-
tial pulse propagates both in the +xz and —x directions, but
is smoothed out by the expansion of the universe within one
Hubble expansion time.

time, if the Weyl tensor C,,,, vanishes, the space-
time is homogenized and isotropized. We use the de-
composition of the Weyl tensor: E,, = C,u5n*n”,
Bpo = *Cpuouyn#n”, where *Clypo = 308 e0p,, and
n* is a timelike vector orthogonal to the hypersurface X.
In analogy to electromagnetism, the three-dimensional
variables E,, and B,, are called the electric and mag-
netic parts of the Weyl tensor, and we can reconstruct
the Weyl tensor completely from this pair of tensors. We
introduce

H(t,z) = E,, E* + B,,B", (6)

as a sort of gravitational “superenergy” (in fact the
purely timelike component of the Bel-Robinson ten-
sor[13]). If #(t,z) — O, then C,,,r — O unless the
hypersurfaces become null. We find that H(¢,z) almost
vanishes within one Hubble expansion time, and that this
indicates that our spacetime does indeed approach a ho-
mogeneous one ( i.e., de Sitter spacetime).

In our simulation, [ and Cunax(0) are in the ranges
0.080lg <1 < 2.5l and 0.020 < Cpax(0) < 80.0. From
the present results, we conclude that for any large Rie-
mann invariant and/or small width inhomogeneity on the
initial hypersurface, the nonlinearity of the gravity has
little effect and the spacetime always evolves into a de
Sitter spacetime.

Jensen and Stein-Schabes [14] proved an extension of
Wald’s theorem, showing that inflation invariably elim-
inates all inhomogeneities consistent with a nonpositive
scalar three-curvature. Such inhomogeneities are hardly
generic, however. In our models, we find that (3 R is ini-
tially negative, but it eventually becomes positive along
the propagations of the distortions and finally ¥R — 0
when the spacetime is homogenized (see Fig. 2). This
convinces us that the behavior we have found is not the
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FIG. 2. The evolution of ¥R at z = 0 (center) for the
same initial data as in Fig.1. This shows also the maximum
deviations from zero at each time. We see that (*)R does not
remain negative for all time, so that our simulations are not
governed by the case proven by Jensen and Stein-Schabes.

case envisioned by Jensen and Stein-Schabes.

Next, we simulated collisions of two gravitational pulse
waves. The motivation for such a simulation is the ex-
istence of exact solutions for colliding plane waves in
which scalar curvature singularities occur. Szekeres and
Khan-Penrose [7] were the first to find such solutions.
Szekeres treats the collision of two thick or sandwich
plane waves, while Khan-Penrose treat two é-function-
like shock waves. These solutions show the nonlinearity
of the gravity. Thus we are interested in such a phenom-
ena in more general and realistic situations.

It may be interesting to see whether singularities also
occur when gravitational waves collide in the presence of
a cosmological constant. To investigate this possibility,
we construct initial data representing two nearby pulse
waves. Since we impose periodic boundary conditions,
there is no difference between the present case and the

case with a single pulse wave in one-half of our numerical
region. But in the present setting the collision does not
occur on the boundary, so it may be better to see the
interaction of two waves. In Fig. 3, a typical example of
the time evolution of the “curvature” is shown. We see
that the waves start to propagate in opposite directions
(+z and —=z) and then collide with each other. When
the waves collide, the “curvature” is just superposed as
in Fig.1, but more clearly. After the wave crossing, each
wave propagates away. (This behavior is reminiscent of
solitonic waves.) Consequently, the spacetime is again
homogenized by the expansion of the universe within one
Hubble expansion time 7g. For a wide range of initial
widths and “curvatures” (0.080lg < ! < 0.10lg, 40.0 <
Cmax(0) < 125.0 and the periodic distance d is 0.20lg <
d < 0.50lf), all inhomogeneities decay below 1 % of their
initial “curvatures” within one Hubble expansion time.

That these spacetimes become homogeneous even if we
include colliding waves is consistent with the calculations
by Centrella and Matzner [15], who examined the colli-
sion of gravitational shock waves in an expanding Kasner
background.

We also computed the evolution of [case (ii)] initial

data, 4;; = &;; and diag(IA{};'r = (0,a e~(=/=0)*
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FIG. 3. The time evolution of the “curvature” C(t,z) re-
sulting from waves that are located closely. Two waves are
the same form, ! = 0.10ly and Cmax(t = 0) = 51.0, and the
periodic distance is 0.30lz. We see them collide, and in the
collision region the “curvature” seems to be superposed, but
finally the spacetime is homogenized by the expansion of the
Universe.

—a e~ (@/0)* ), and found that all inhomogeneities present
in them also decay within one Hubble expansion time.
We also tried similar calculations with a different shape
for the initial pulse waves, i.e., assuming a [1 +
acos?(z/zo)]-form for the ¥,, components, and found
the same results for time evolution. We conclude from

this that our result is generic: all initial inhomogeneities
decay within one Hubble expansion time and disappear.

The present result suggests no additional condition of
the kind needed to make the cosmic no hair conjecture
a theorem, but it does give a wide class of examples
in which gravitational inhomogeneities succumb to cos-
mological constant-driven expansion. We could not find
any characteristic scale length. All inhomogeneous space-
times expand to a de Sitter universe. In this sense, our
results are different from those of Goldwirth and Piran
[4], who simulated effects of spherically symmetric in-
homogeneities due to a realistic inflaton field. We do
not yet know whether our results reflect the generic be-
havior of inhomogeneities driven by gravitational waves,
or whether they are largely due to our ansatz of plane
symmetry. In order to answer these questions, further
simulations including a inflaton field, or more gravita-
tional degrees of freedom—for example, those present in
cylindrical or axially symmetrical, or even more general
spacetimes—are required. Such simulations are under
way [16].
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