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The main thesis of this paper is that minisuperspace quantum cosmology reproduces the observer
dependence of the vacuum found in quantum field theory in curved spacetime. We show that the vacua
picked up by the Hartle-Hawking "no boundary" proposal in two different minisuperspaces sharing the
same classical limit (k =0 and k =1 de Sitter minisuperspaces) are nonequivalent. A closer inspection
suggests that the observer dependence is introduced through the choice of the Wick rotation. This hy-

pothesis is supported by the analysis of the static de Sitter minisuperspace, where two different Euclide-
an sections are available, and where again two inequivalent vacua are obtained. These examples are not
conclusive, but point to the possibility of a similar ambiguity even in full quantum cosmology.

PACS number(s): 04.60.+n, 98.80.Hw

I. INTRODUCTION

One of the fundamental issues in quantum field theory
in curved space-time (QFTCST) is the determination of
the vacuum state of the system under study. One cri-
terion to pick up that state is for example the diagonali-
zation of the Hamiltonian of the system. The starting
point for its application is the selection of a foliation of
the background space-time, or equivalently of a coordi-
nate system [I] in which we will solve the field equations.
Nevertheless, once that selection is done and the Hamil-
tonian diagonalization performed, the resulting vacuum
state is generally not equivalent to the one obtained
working with other possible foliations; under these cir-
cumstances, we talk about observer-dependent quantum
vacua [l].

Another approach to obtaining the vacuum state of a
system is given by the semiclassical limit of quantum
cosmology (QC). It has two formulations, the Euclidean
path integral approach and the canonical approach. In
each of these we would expect that the resulting ground
state wave function of the Universe will be independent
of any choice of foliation, due to the fact that in this
theory there is no a priori foliation of the space-time.
Nevertheless, because of mathematical difficulties in both
methods, we are compelled to work not with the infinite
degrees of freedom of a realistic cosmological model, but
only with a few, freezing out the others. These remaining
degrees of freedom are called minisuperspace. The selec-
tion of a minisuperspace involves the selection of a folia-

tion of the space-time. We are then led to the fact that a
possible dependence on the minisuper space selection
could arise in the semiclassical limit of the minisuper-
space approximation to the full quantum cosmology.

When working with the Euclidean path integral for-
malism, the ground state wave function for the con-
sidered system, let us say a field, is obtained considering
Euclidean field configurations on a Euclidean back-
ground. In such backgrounds the concept of foliation
loses the meaning that it has in Lorentzian manifolds, so
we could think that the results obtained in this formal-
ism, even when working within the minisuperspace ap-
proximation, would not depend on the selected minisu-
perspace. Nevertheless, this is not so. To apply this
method, we start by Euclideanizing the metric by rotat-
ing the parameter that, with the signature convention of
Ref. [2], plays the role of "time, " performing t~ ir-
But the choice of such a time coordinate depends on the
choice of an arbitrary coordinate system. As in general
there are several such systems for each manifold, when
we perform the mentioned rotation we will obtain
different Euclidean sections. Even more, we can associate
to a given parameter t more than one different Euclidean
sections, as happens with the static coordinatization of de
Sitter space-time or with Schwarzschild coordinates of a
black-hole space-time: a periodically identified one that
corresponds to freely falling observers, and a
nonidentified one that corresponds to static observers. So
if the observer is introduced through the selection of the
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Euclideanization, then the results of any formulation of
quantum cosmology which uses Euclidean methods, such
as the Hartle-Hawking one, are potentially observer
dependent.

Let us observe that there is no well-defined and covari-
ant procedure to Euclideanize a generic Lorentzian mani-
fold, nor to Lorentzianize a Euclidean one. There are ex-
amples where a Lorentzian manifold is obtained from a
Euclidean one, such as de Sitter space-time [3]. That Eu-
clidean manifold is referred to as a true Euclidean section.
However it is not the case that we can build all possible
space-times by a similar procedure. Although there is a
covariant method to Euclideanize globally hyperbolic
manifolds [4], it is not a general one, being valid only un-
der restricted circumstances. Therefore, we cannot speak
of a Euclidean section in general, but of a foliation or
observer-dependent one. We believe that this is another
ambiguity in the calculation of the wave function of the
Universe, among others related to the use of Euclidean
methods in cosmology [5,6].

In this Brief Report we study the dependence of the
semiclassical limit of QC both on the choice of minisu-
perspace and on the Euclideanization procedure. To in-
vestigate the former issue, we compute the semiclassical
wave function describing quantum fluctuations of the
metric around a de Sitter configuration, applying the
Hartle-Hawking [7] prescription first describing the de
Sitter universe as a spatially closed Friedmann-
Robertson-Walker model, and then as a spatially Rat one.
In each case, we perform a Wick rotation naturally relat-
ed to the chosen minisuperspace. We conclude, neverthe-
less, that the semiclassical vacua found in each case are
not equivalent.

The dependence of the semiclassical wave function on
the choice of Euclidean section is further highlighted by
considering the static foliation of the de Sitter back-
ground, where two Euclidean sections can be achieved
from the same Lorentzian parameter t, by two ine-
quivalent but physically meaningful Wick rotations; we
obtain again observer-dependent graviton ground state
wave functions.

The paper is organized as follows. We discuss the
semiclassical wave function for metric perturbations of de
Sitter space in spatially closed and spatially Bat coordi-
nates in Sec. II. In Sec. III, we perform a similar analysis
in the static frame.

II. DEPENDENCE ON THE CHOICE
OF MINISUPERSPACE

In this section, we shall demonstrate the dependence of
semiclassical QC on the choice of minisuperspace, by
showing that the Hartle-Hawking boundary condition ac-
tually picks up two inequivalent vacua for the graviton
ground state in a de Sitter universe, depending on wheth-
er this is considered as spatially closed or as spatially Aat.

de Sitter space-time is the solution of the Einstein
equations with cosmological constant A=3H and no
stress-energy tensor. From all possible coordinatizations
there are three most commonly used [3], namely the spa-
tially closed one:

ds = dt +H cosh (Ht )[dy—+sin y d Q ],

dr
ds = —(1 Hr —)dt + +r (dA ),

(1 Hr—)

where —co &t &+ ~, 0&r &(1/H), 0&8&m.,
0 & P & 2m. , which does not cover all the hyperboloid and
presents event horizons.

In the path integral formulation of quantum cosmology
the idea is to extend the formalism of Euclidean path in-
tegrals in Minkowski space-time [8] to gravity. When
matter fields are considered perturbatively, the action for
them and for gravity decouples and the path integral can
be written as the product of one for the background
metric and another for the matter fields. The path in-
tegral for the background has been worked out first by
Hartle and Hawking [7] and later by Halliwell and Louko
[5].

In this Brief Report we calculate the wave function for
three-metric perturbations 5h; of a de Sitter universe. In
the gauge X'=0, %=0, the path integral expression for
the quantum amplitude 'll [5h,j ] associated to a given per-
turbation becomes [9,10]

'P[5h; ]=IdN(tf t ) J 2)[5h—; ]2)[m'']e 7

(2.1)

where g;" denotes the background three-metric. In or-
der to obtain the ground state wave function, we must
perform t~ —i ~ and apply the chosen boundary condi-
tion.

Considering de Sitter space-time as an instance of a
Friedmann-Robertson-Walker universe, we can follow
Ford and Parker's treatment of perturbations on those
backgrounds [11,12). We will then consider three-metric
perturbations that are transverse and traceless.

The equation for them is formally equivalent to that
for a massless minimally coupled scalar field [11,12], and
the action for the perturbation reads [11]

S= ——' d"xV —g [h . h" ' —2A' '"h t'
4 pv;a p ap

—2A' ' h"'ht' —Ah h~'] .ppav pv

(2.2)

When considering the perturbation as a superposition
of modes, for the spatially Hat case we can consider a su-
perposition of plane waves of the form
QJ(k, x) =Ai(k)e'"'*+H. c., where M~ are symmetric ten-
sors of unit norm, whose components are complex num-
bers and do not depend on the coordinates. For the spa-
tially closed foliation we consider Qi as symmetric tensor
spherical harmonics [13].

In the spatially closed coordinates, the path integral
(2.1), replacing the mode decomposition in the action

where dQ =(d8 +sin 8dg ), 0 g m. , 0 8&rr,
0& P & 2m. , —oo & t & + ~, which encloses the whole
space-time; the spatially +at one:

ds = dt—+e '(dx +dy +dz )

where —~ & t & + ~, —~ &x,y, z & + ~, which en-
closes only one-half of the hyperboloid; and the static
coordinates:
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(2.2), performing the Wick rotation r~(i /H)(m. /2 —r)
and applying the Laplace method to evaluate the time in-
tegral, leads to the wave function (I(, of Ref. [14]. The
modes used to build this wave function are equivalent to
those of Ref. [15],where it is shown that the ground state
built with them is de Sitter invariant. So this wave func-
tion represents a state that carries the full de Sitter syrn-
metry [16].

In the spatially Hat coordinatization, a prescription of
the form t ~—i ~ turns the scale factor into a complex
function. Nevertheless, as this is the usual way in which
manifolds are Euclideanized, we will follow the treatment
of Ref. [17], performing t~ ir, —H~iH, the metric
then becomes Euclidean but the scale factor, which in
this case is a(t) =e ', remains real. In Ref. [17] this cri-
terion is employed to calculate the modes corresponding
to a massive conforrnally coupled scalar field in de Sitter
space-time, obtaining those associated to the Euclidean
vacuum [18,19]. In view of this result we can consider
this Euclideanization prescription as a good one for this
minisuperspace.

Another thing that must be taken into account is the
fact that Rat coordinates only cover one-half of the full de
Sitter manifold. This is of no importance because by
transforming to conformal time 2)= —(1/H)exp[ H~]—
and letting it take values in the interval —~ & g & + ~,
we cover the full manifold.

The path integral over phase space yields

(2.3)

III. DEPENDENCE ON THE CHOICE
OF EUCLIDEAN SECTION

In order to analyze the relationship between the Eu-
clideanization procedure and the implementation of the
Hartle-Hawking boundary condition, we are going to
work with a minisuperspace that consists of three-metric
perturbations h„of the static de Sitter foliation, such
that the line element reads

ds2= —(1 Hr—)dt + +r dfI
dp

(1 Hr —
)

2r C—( r, t )sing d 8 d P . (3.1)

where the dot means a time derivative and the prime a
derivative with respect to r. Proposing as solution a
mode decomposition of the form g e' 'C (r), we obtain
an equation for the spatial dependent part that can be put
in the hypergeornetric form. The solutions for the modes
are

e (aaHp. ( 1 H2r 2)(ice/2H)

It is easy, but somewhat lengthy, to show that h„ is a
linear combination of odd waves according to the
classification made by Regge and Wheeler [21].

The (0$) Einstein equation to lowest order in the func-
tion C(r, t) reads

r2
C+r(1 Hr )C—"

(1 H~T )—
+2r(1 2H r—)C' —2C =0 (3.2)

where the modes that satisfy the Euclidean field equation
and the boundary condition, i.e., the ones that remain
bounded when 2)~ —~, are [18]

P(1)(~ ) ( (~k)
3

/[2( (k )11—1/2
1 ( (k 2) )

—3/2 ]e (((kq n/4)— —

In this case the behavior of metric perturbations is the
same as for a massless minimally coupled scalar field
[11,12]. The range of mode solutions for the time-
dependent equation is the same for the two systems. In
de Sitter space-time this system has no vacuum states
that are invariant with respect to the syrnrnetry transfor-
mations of the space-time, as shown in Ref. [18]. The
modes used to calculate the wave function (2.3) represent
an idealized vacuum state with less symmetry than the
one of the full de Sitter group [18,20] but with the highest
possible symmetry for the chosen coordinatization of the
background. In view of what we have just said, we can
conclude that our wave function does not represent a de
Sitter invariant state, and then the vacuum state obtained
in these coordinates is not the same as the one obtained
in the previous ones. Indeed, for a massless minimally
coupled scalar field, the chosen boundary condition does
not pick a de Sitter invariant state [19].

We want to stress here how, given a system, this
boundary condition picks out different vacuum states
when working in different Euclidean sections of the same
manifold.

XI' —+ ™;2+;;H r +c.c.—, (3.3)
2 2H' 2H' 2'

[C' C* —C C'*] .
CO CO

(3.4)

The function C (r, t ) is a minisuperspace variable, be-
cause the Einstein equation (3.2) coincides with the equa-
tion obtained by taking variations in the Einstein-Hilbert
action, and the (00) Einstein equations also coincide with
the Hamiltonian obtained by the usual Legendre transfor-
mation [24].

In order to write the path integral over all the Euclide-
an configurations, we must first work out the Euclidean
action. For this purpose we replace a perturbation of the
form JdcoB„(t)C (r) in the Einstein-Hilbert action [2]
and perform the Wick rotation t ~—i ~, whereby we get
the expected result

S = fdeaf dr[B '(r)+co B'(r)] .

The path integral over the modes and its momenta leads
to the known result for a harmonic oscillator, describing
the transition amplitude from an initial configuration B~

where the hypergeometric function is expressed accord-
ing to Ref. [22]. These solutions are orthonormalized by
the relation [23]

2

(1 Hr )—
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at Euclidean time 7 p, to the desired configuration B f at
Euclidean time ~f.

To obtain the ground state wave function we must ap-
ply the boundary condition. Without loss of generality
we can consider ~f =0 and B~=0 Vm, then following
steps of the previous section, we obtain a ground state
wave function by taking the limit 7 p~ Oo. In doing so
we can evaluate the remaining integral by the Laplace
method obtaining

—(m/2')8
e (3.5)

This wave function is not, properly speaking, a Hartle-
Hawking one, because we did not consider regular modes
to evaluate it, i.e., modes defined in what is considered
the Euclidean section of de Sitter space-time. In static
coordinates, the Euclidean section of de Sitter space-time
is obtained by the same rotation t~—i w, but considering
the Euclidean time ~ as a periodic variable with period
2n/H, where H ' is the radius of the four-sphere. The
configurations that are to be taken into account must be
defined in a complete spacelike hypersurface, ' in our case
this hypersurface consists of two disconnected parts. In
order to build a regular configuration, we need to specify
field amplitudes on the part of the hypersurface that is in-
side of one of the wedges, and field amplitudes on the
part that corresponds to the other wedge. For simplicity
we will consider that these two surfaces are separated in
the Euclidean section by rf ro= tr/H. —

All this is translated to the time integral by considering
the integration over all possible Euclidean intervals be-
tween two subhypersurfaces located, say, in ~p=0 and in

rf =n/H, and fie.ld amplitudes B~ on ro and B„fon rf
As, again, our integral has a saddle point in the lower ex-
treme of integration, we can apply the Laplace method,

obtaining

2m% sinh[mo/H)

' 1/2

(3.6)
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Equation (3.6) is the Hartle-Hawking wave function. It
was built taking into account the regularity of the Eu-
clidean section and of the modes, by periodically identify-
ing the Euclidean time. Applying the thermofields for-
malism with Euclidean path integrals [25], it can be
shown that the vacuum state (3.6) is perceived by static
observers as a thermal state with temperature
T=H /2n kit, where kii is the Boltzmann constant.

We conclude that the path integral formalism leads to
the vacuum perceived by static observers, when a non-
periodically-identified Euclidean section is employed, and
to the vacuum perceived by free falling observers (the
Hartle-Hawking one), when the Euclidean section is
periodically identified, to avoid a possible singularity.
Since these vacua are not equivalent, we conclude that
the Hartle-Hawking boundary condition does not pick up
a unique vacuum but different ones, depending on the
considered Euclidean section.
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