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We present an exploratory calculation of the I =2 77 scattering amplitude at threshold using Wilson
fermions in the quenched approximation, including all the required contractions. We find good agree-
ment with the predictions of chiral perturbation theory even for pions of mass 560-700 MeV. Within
10% error, we do not see the onset of the bad chiral behavior expected for Wilson fermions. We also
derive rigorous inequalities that apply to two-particle correlators and as a consequence show that the in-
teraction in the antisymmetric state of two pions has to be attractive.
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I. INTRODUCTION

In this paper we calculate the I =2 7 scattering am-
plitude at threshold using Wilson fermions. The theoreti-
cal foundations of the calculation have been established
in a series of papers by Liuischer where he shows how the
finite volume dependence of the two-particle energy levels
in a sufficiently large cubic box is related to the scattering
amplitude [1,2]. In the context of lattice field theories, the
leading term in an infinite volume expansion was first
given in Ref. [3]. The subtleties of the lattice calculations
have been described in detail in Ref. [4], where results of
a calculation using staggered fermions is presented. We
closely follow the notation of this reference.

The calculation of the 7 =2 7 scattering amplitude at
threshold has a number of simplifying features. In gen-
eral, scattering amplitudes are complex, and are only re-
lated indirectly to the finite volume energy shift. At
threshold, however, the amplitude is real, and is directly
related to the energy shift. Also, the signal for pions is
much better than for other, heavier, mesons, e.g., p’s. Fi-
nally, one needs to calculate only quark and gluon ex-
changes for the I =2 channel, whereas, in general, there
are also annihilation diagrams. The latter are both more
difficult to calculate numerically, and are affected more
strongly by the use of the quenched approximation.

A major motivation for this work is to test the chiral
behavior of the scattering amplitude derived long ago by
Weinberg [5] using PCAC (partial conservation of axial-
vector current) and current algebra. We use Wilson’s for-
mulation of lattice fermions, for which there are lattice
artifacts arising from the explicit breaking of chiral sym-
metry. We can quantify these corrections by comparing
lattice results against the PCAC prediction and against
results obtained using staggered fermions on the same set
of lattices [4].
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Our calculation is exploratory in at least three different
ways. First, we use the quenched approximation.
Second, we only use two different quark masses, neither
very light. Thus we can only make rough extrapolations
to the chiral limit. And, finally, we have only used one
lattice size (16°X40). This means we must assume the
finite volume dependence predicted by Refs. [1,3], and
cannot check the predictions.

In an earlier calculation, Guagnelli, Marinari, and Par-
isi [6] have done a partial calculation of the scattering
amplitude using Wilson (and staggered) fermions. They
did not include all the contractions which contribute in
the =2 channel, and thus one cannot extract the
scattering amplitude from their results.

The article is organized as follows. A brief theoretical
overview is given in Sec. II and the methodology and de-
tails of the lattices are given in Sec. III. The results are
presented in Sec. IV, and in Sec. V we present a model
which explains some features of the data. Section VI
gives some conclusions. In the Appendix we derive
rigorous inequalities regarding correlators of the type
used in this study, in particular we show that the interac-
tion in the antisymmetric 7 channel has to be attractive.

II. THEORETICAL BACKGROUND

Liischer has derived the relationship between pion
scattering amplitudes and the energies of the two-pion
state in finite volume [1,2]. The derivation is valid as
long as the box (which we take to be cubic) is large
enough that its length L exceeds twice the range of in-
teraction. In general, the relationship is complicated, in-
volving scattering amplitudes over a range of energies
and in many partial waves. The relationship simplifies,
however, if one expands the energies in powers of 1/L
and keeps only the first few terms. We consider only the
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lightest two pion state whose energy we denote by E. For
infinite volume E =2m _, but the energy is shifted by in-
teractions as L is reduced:

2

T m_T m_T
8E=E—-2m,,=? 1_C1_4;I:—+62 4L
+0(L"%,
¢;=—2.837297, ¢,=6.375183. (2.1)

To the order shown, the energy shift depends only on 7,
which is the (nonrelativistically normalized) scattering
amplitude at threshold.

We use the nonrelativistically normalized amplitude in
Eq. (2.1) since this simplifies its physical interpretation, as
explained in Ref. [4]. T is related to the relativistically
normalized scattering amplitude by T®= —(4m2)T, and
to the S-wave scattering length by T'= —4ma,/m .

We extract T from our numerical data using Eq. (2.1).
A priori we do not know the size of the O (L %) terms
which we are dropping. Our numerical results suggest,
however, that the truncation error is small.

Equation (2.1) holds separately for 7 =0 and 2 two
pion states (Bose symmetry forbids 7 =1 at threshold).
We have done the calculation, however, only for the I =2
channel. To understand why, consider the four types of
contraction that contribute to a calculation of the two
pion energy, shown in Fig. 1. With present computer
resources we can calculate only the first two types, which
we label the direct (D) and crossed (C) diagrams, respec-
tively. These are not sufficient to calculate the I =0 am-
plitude which gets contributions from all four diagrams.
For I =2, however, quark-antiquark annihilation is not
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FIG. 1. The four different contractions that contribute to the
two pion correlator: (a) direct, or gluon exchange, channel (D),
(b) crossed, or quark exchange, channel (C), (c) single annihila-
tion, and (d) double annihilation. The diagrams also correspond
to the amplitudes that contribute to 7 scattering.

possible, and the required result is given by the combina-
tion D —C. Here we are adopting the convention of ex-
plicitly showing the minus sign from Fermi statistics, so
that the lines in Fig. 1 represent c-number quark propa-
gators.

We can also calculate the combination D +C. This
does not project onto a definite isospin, but does select a
definite representation in a theory with N, =>4, N being
the number of flavors. D + C picks out the ggqq repre-
sentation having no traced indices, and is antisymmetric
under the interchange of either quarks or antiquarks. We
refer to this representation as the A (for N,=4 it is the
20), and to the corresponding scattering amplitude as
T(A). For arbitrary N r>2, the combination D —C,
which we call the S, projects onto the representation with
no traced indices and is symmetric under quark ex-
change. The generalization of the I =2 amplitude T, is
thus 7T'(S). In the quenched approximation the ampli-
tudes 7'(S) and T'( A) are independent of N, because the
Wick contractions are always the same. In particular,
T,=T(S).

An important test of any calculation of pion scattering
amplitudes is that they satisfy the constraints of chiral
symmetry. In particular, the threshold amplitudes are
determined, in the chiral limit, in terms of f, (which is
93 MeV in our normalization) [5,4]:

4f:2T(S)=1+0(m21nm,) ,
4f T(A)=—1+0(m%1nm )
=—4f2T(S)+0(milnm_) .

(2.2)

These results should apply in the quenched approxima-
tion, as discussed in Ref. [4]. Since T(S)>0, two pions
in an S representation are repelled in the chiral limit,
while in the A representation there is an attraction of
equal strength. This equality can be understood as fol-
lows. The diagrams of Fig. 1 serve dual purpose. In addi-
tion to showing contractions contributing to E, they can
also represent the contributions to a direct calculation of
pion scattering amplitudes. We refer to Fig. 1(a) as the
gluon exchange amplitude T, and to Fig. 1(b) as the
quark exchange amplitude T,. Following the standard
usage for amplitudes, we include the Fermi-statistics sign
in T,; i.e., we use the opposite convention to that for C.
Thus we find that T(S)=T,+7T, and T(A)=T,—T,.
Now, it is possible to show that T, vanishes in the chiral

limit [4], so that T(S)=T,=—T(A).

Testing relations Eq. (2.2) is particularly important for
Wilson fermions, which we use here. This is because Wil-
son fermions explicitly break chiral symmetry, the viola-
tion only vanishing in the continuum limit. Thus we ex-
pect the relativistically normalized amplitude not to van-
ish in the chiral limit but to have a constant term propor-
tional to the lattice spacing: TR<Aa+0(m?2). The
nonrelativistically normalized amplitude will then behave
as T<aA/m?2, where A is some nonperturbative scale.
This artifact will dominate over the constant term in the
chiral limit [7]. This is in contrast with staggered fer-
mions where such artifacts are forbidden by the residual
chiral symmetry [4]. With Wilson fermions one can iso-
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late the physical result by doing the calculation at a num-
ber of values of the quark mass provided f2T is a well-
behaved function of m2. This remains to be checked.
We find that, for 500 MeV <m_, <700 MeV, the chiral-
symmetry-breaking effects are smaller than the statistical
errors ( ~10%).

III. CALCULATIONAL DETAILS

The energy of two pions in a finite box is obtained from
the Euclidean correlator

C(1)= < S 04(x10) S, Oyl(x5,0)85(x3,1 =0)

Xl Xz

X&4(X4,t=0)> . (3-1)

The sources &; create the pions at t =0, and the opera-
tors O; (which we also call the “sinks”) destroy them at
time ¢. The representation of the two pion state is deter-
mined by the flavor of the sources and sinks. For exam-
ple, we can select the I =2 (or equivalently S) representa-
tion if both sources have the flavor of a 71, and both O,
and O, have the flavor of a 7.
At large |t| the correlator will fall as

C,.()=Z_ _exp(—E|t))+ -, (3.2)

where E is the energy of the lightest two pion state. The
ellipsis indicates contributions from excited states that
are suppressed exponentially. This is similar to the
behavior of the two point function used to calculate m :

C.()= < S O(xp, S (x401 =0)>

X

=Z_ exp(—m_|th)+ - . (3.3)

We take all quarks to be degenerate, so the flavor of the
pion source & in this equation is unimportant; all that
matters is that @ has the conjugate flavor to &. It is use-
ful in practice to combine Egs. (3.2) and (3.3):

7{( ) Cm‘r(t) Z7T7T
1= =
c.(t? Z2

m

exp(—8E|t|)+ -+, (3.4)

and directly extract the energy shift SE.

The contractions which can contribute to C,_, are
shown in Fig. 1. The combination which is needed de-
pends on the flavor of the two pion state. It is easy to see
that only the direct and crossed contractions contribute
for two pions in S or A representations [4]. We adopt
the notation that D (z) is a ratio as in Eq. (3.4), with the
numerator being the direct contraction. Similarly, C(?)

TABLE 1. Summary of results from Ref. [8] needed in this
calculation. f, is normalized such that the experimental value
is f,=93 MeV, and is obtained using the mean-field improved
value 0.77 for the axial-vector current renormalization constant.

B K Lattice N eont m, S
6.0 0.154 163X 80 35 0.364(6) 0.057(3)
6.0 0.155 16%X 80 35 0.297(9) 0.055(3)
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FIG. 2. The effective energy shift §E (¢) using Sp correlators
at k=0.154, for both the I =2(S) representation (D —C), and
the A representation (D +C).

is the ratio with the crossed contraction in the numera-
tor. Then, as discussed above, and explained in more de-
tail in Ref. [4], we can extract the energy shifts for the S
and A representations using

—8E /1|
’

D(t)+C(t)=Z 4e (3.5)

—8Egl1

D(t)—C(t)=Zse (3.6)

The amplitudes Zg and Z , are shorthand for the ratios
Z../Z%

We are free to choose the form of the sources and
sinks, as long as they both couple to a two pion state of
the required flavor. This choice does not affect the value
of the energy shift, but it does alter the signal-to-noise ra-

0.05 T T T T ' T T T T I T T T 1 I T T T T
I W ]
’ i
AP o=y T TT % D-C -
o -'I"'r'l' -
| “oacg ) _
N
= o0 -+ ]
e 37nrin 1T il% D+C |
L i |
-0.05 - — .
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FIG. 3. Asin Fig. 2 but for the W correlators.
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FIG. 4. R(t) using Sp correlators at k=0.154.

tio. In order to improve this ratio, we should use sources
with a large overlap with the lightest two pion state.
This state will not consist of two independent pions.
Nevertheless, as indicated in Eq. (3.1), we use sources and
sinks consisting of a product of two independent single
pion operators. For the single pion sources [the &; in Eq.
(3.1)], we use Wall and Wuppertal quark sources, which
we have shown to be reasonably effective in producing
single-particle correlators [8,9]. In addition, we use both
pseudoscalar (P=1y ) and axial-vector (A, =y ¥ s¥)
operators for each of the sources. There are thus four
sources in all, which we label W, (Wall with pseudosca-
lar), W, (Wall with axial vector), Sp (Wuppertal with
pseudoscalar), and S, (Wuppertal with axial vector). For
the sinks [the O; in Eq. (3.1)] we use local operators, with
the Dirac structure either P or A. Of the various possible
combinations of sources and sinks we consider only those
in which both sources are of the same type, and both

LANNL S B L N L B LB L
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FIG. 5. 7(t) using Wp correlators at k=0.154.
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FIG. 6. 72(t) using S 4 correlators at k=0.154.

sinks have the same Dirac structure as the sources. Thus
we can label the ratios #2(¢) according to the choice of
source, i.e., as W , Wp, etc. Finally, we always define
the ratio J2(¢) with the same sources and operators in
both the numerator and denominator. This is of no
consequence for the energy shifts, but does affect the am-
plitudes Z , 5, which we discuss further in Sec. V.

We use 35 pure gauge configurations of size 16°X40
generated at 8=6.0. We use Wilson fermions at two
different quark masses, k=0.154 and 0.155. The corre-
sponding pions have masses of about 700 and 560 MeV,
respectively. The quark propagators are calculated on
lattices doubled in time (i.e., of size 16°X80), with
periodic boundary conditions in all directions. We have
previously used these lattices and propagators to study
the spectrum and matrix elements [8,9], and we list the
relevant results in Table I. The value of f, given in
Table I is different from that quoted in Ref. [8] for two
reasons. First, we use the normalization such that the ex-
perimental value is £, =93 MeV, and second we now use
the mean-field improved value 0.77 for the axial-vector
current renormalization constant [10], rather than the
previous estimate 0.86. The statistical errors in individu-
al data points shown in Figs. 2-6 are calculated using
the single elimination jackknife procedure. The “for-
ward” and “backward” propagators on the underlying
16°X 40 lattices give us two results for R () on each lat-
tice. Since these are correlated, we average them and
treat them as a single result.

IV. RESULTS

To display our results, we use the quantity
SE (t)=In[R(t)/R(t +1)] . 4.1)

This “effective energy shift” should reach a plateau of
height 8E when ¢ is large enough that the lightest state
dominates. Figures 2 and 3 show 8E (¢) for the pseudo-
scalar operator ? at k =0. 154, using Wuppertal and Wall
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sources, respectively. The results using the axial operator
A 4 are of poorer quality, and are not shown. There is a
clear signal of a nonvanishing energy shift. We extract
SE by fitting #(¢) to a single exponential, selecting the
range of time slices separately for each channel based on
the extent of the plateau in the effective energy shift. The
solid lines in the figures indicate the fit value over the
range of the fit, while the dashed lines show the lo jack-
knife errors.

It is apparent from Figs. 2 and 3 that the signal for
Wall sources has smaller statistical errors than that for
the Wuppertal sources. We can partly understand this as
follows. The Wall source produces pions with p=0,
while the Wuppertal source couples to pions having all
possible momenta. Consequently the Wuppertal source
correlators have an additional unwanted contribution at
small ¢ from an excited state of two pions of equal and
opposite momenta, each of magnitude p =27/L. For
large volumes this state approaches the lightest state con-
sisting of two pions both having p=0, and provides the
largest contamination to 72(¢) rather than the states made
up of radially excited pions. It may therefore become
necessary to use Wall sources for calculations on larger
lattices.

In Figs. 4—7 we show the ratios 72(¢) at k=0.154, for
both ? and A, operators. These plots show that there is
a contamination from ‘“wraparound” effects starting at
t ~30. One of the two pions can propagate N,—t =80—¢
time steps backwards, because of the periodic boundary
conditions. This results in a contribution which is in-
dependent of ¢, but suppressed by roughly

exp(—m_N,)/ exp(—2m 1)

compared to the forward propagation of the two pion
state. In practice, we always fit to time ranges satisfying
tax = 26, for which we can ignore this contamination.
The results of our fits, together with the time ranges
used, are given in Table II. For both Sp and Wp correla-
tors we fit using the full covariance matrix over the range
of the plateau. We are unable to do this for the S, and
W , channels because some of the jackknife samples are
too noisy. Our results for these channels are obtained

wt
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FIG. 7. R (t) using W, correlators at k=0.154.

keeping only the diagonal elements of the covariance ma-
trix, i.e. neglecting correlations in J2(¢) between different
time slices. Because of this, we use only the S, and Wp
results to extract scattering amplitudes. The data show
that the interaction in the D +C channel is attractive,
consistent with the result derived in the Appendix.

Our results for scattering amplitudes are presented in
Table III. We illustrate our procedure for obtaining
these results using 7°(S) as an example. For each jack-
knife sample we first average the fit value for 8E (S) from
the Sp and W, sources, and then solve the cubic po-
lynomical given in Eq. (2.1) for T(S). The central value
and the error are given by the jackknife procedure, re-
garding the 35 data points as statistically independent.
Within the same jackknife procedure we also calculate
T(4), and extract T,=[T(S)—T7(A4)]/2 and
T,=[T(S)+T(A4)]72.

When solving Eq. (2.1) for T(S) or T( 4) we monitor
the effect of the 1/L* and 1/L° terms (using the values of
m . given in Table I). These turn out to be, respectively,
~31% and 8% of the leading term. This suggests that

TABLE II. Results for the amplitude and energy shifts obtained from fits to J2(¢) of correlators for
the D*C channels. The four kinds of correlators Sp, Wp, S 4, and W, are described in the text. We
also give the range of time slices over which the fit is made.

D+cC D—C
Correlator Fit Z, —E, Fit Zg Eg
k=0.154
Sp 9-16 1.19(4) 0.020(2) 8-25 0.93(7) 0.022(6)
w*r 8-16 1.10(2) 0.022(3) 8-15 0.92(2) 0.018(4)
S 4 8-16 1.77(10) 0.019(7) 8-20 0.46(7) 0.019(10)
W 4 8-15 1.30(5) 0.025(6) 8-26 0.78(7) 0.016(9)
k=0.155
Sp 8-17 1.23(6) 0.022(6) 8-18 0.87(6) 0.022(8)
Wp 8-18 1.14(3) 0.027(3) 8-15 0.92(3) 0.024(5)
Sy 8-15 2.07(17) 0.020(9) 8-20 0.27(11) 0.023(25)
W, 8-15 1.49(9) 0.023(5) 7-20 0.67(8) 0.017(13)
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TABLE III. Final results for the scattering amplitudes.
k=0.154 k=0.155
T(S) 58.7(8.7) 69.6(10.7)
T(A) —61.8(6.5) —73.0(6.6)
T, 60.2(4.6) 71.3(6.6)
T, —1.6(5.0) —1.7(6.0)
42T (S) 0.76(14) 0.84(16)
4f2T(A) —0.80(12) —0.88(13)
4ff,Tq 0.78(10) 0.86(12)
41T, —0.02(7) —0.02(7)

the error introduced by truncating the series is a few per-
cent in the scattering amplitudes. This is smaller than
the statistical errors, which are approximately 10%.

To test the current algebra predictions, we calculate
the combinations 4f2T. These are included in Table III
and shown in Fig. 8. The errors are calculated assuming
that £, and T are uncorrelated; we have checked on sub-
samples that the errors are similar if correlations are in-
cluded. In the chiral limit the following relations should
hold: 4f2T(S)=1, T(S)=T,=—T(4), and T,=0.
Our results show that, within our errors, the second rela-
tion holds even at the relatively large quark masses we
have used, and 42T lies between 0.76 and 0.88. There is
a small increase in T between k=0.154 and 0.155, but be-
cause of the size of the statistical errors we cannot con-
clude if this is related to the 1/m?2 divergence expected
for Wilson fermions in the chiral limit. Also, the errors
are too large to extract a value for the gluon exchange
amplitude T,. All we can say is that it is much smaller
than the quark exchange amplitude.

It is interesting to compare our results with those ob-
tained using staggered fermions on the same lattices [4].
For technical reasons, we were able to calculate only the

2
a1
o
T

4 f

0.5 0.6 0.7
m,z,/mg

FIG. 8. 42T plotted vs m%/m? to test the chiral behavior.
The data for T, has been displaced by —0.05 along the x axis
for clarity.

quantity 4Q =T, —2T,T,(c,m,/4wL) with staggered
fermions, and not T, and T, separately. If we use the
values for T, obtained here, however, we then find that
4Q =T, to good approximation. To compare the results,
we note that the pion mass and f, match for the follow-
ing parameter values: staggered m,=(0.02+0.03) with
Wilson k=0.154 and staggered m,=(0.01+0.02) with
k=0.155 [11]. The staggered results at these two masses
are T,~40Q =67(8) and 78(6), respectively, which agree
within errors with the results obtained here. It is reassur-
ing to find that the two formulations, each with their
separate technical problems, yield mutually consistent re-
sults.

V. EXPECTED BEHAVIOR
OF A(t) WITH WILSON FERMIONS

As shown in Table II and Figs. 4-7, different source
and sink operators give considerably different values for
Z 4 5. This variation is more marked for smaller quark
mass. It turns out that the values for Z , ¢ can be under-
stood semiquantitatively using a simple model, as we ex-
plain in this section. This model is similar to that used in
the analysis of our staggered fermion data [4].

We begin by imagining that the source creates two
pions each having p=0. The pion operators could be lo-
cal or smeared, but should have a finite extent that is
much smaller than the lattice size. Also, the same source
operators are used in the numerator and denominator of
Eq. (3.4). In this case we expect that Z , ¢—1 as L — o
because the lightest two pion state differs from two in-
dependent, zero momentum pions by terms which vanish
as L-—> . Thus the Z factors in the numerator and
denominator of Eq. (3.4) cancel. Assuming Z 4 =1, and
using Egs. (3.5) and (3.6), the behavior of the direct and
crossed contractions is

E.+E
D(t)=1-———s——2——At +0(s?),
(5.1)
ES”EA
C(t)=—————2 t+0(t?)

for ¢ large enough that the contributions of excited states
have died away. What is important here is that only D (#)
is nonzero when extrapolated back to ¢t =0; the constant
term corresponds to the two pions propagating from
source to sink without interactions, which is only possible
in the direct channel. In the crossed channel, at least one
quark exchange interaction is required. This gives rise to
the term linear in ¢, since the interaction can occur at any
time. The term linear in ¢ in D (¢) is due to the gluon ex-
change interaction.

In practice Z, and Zg differ from unity, for two
reasons. First, the two pion state is altered by interac-
tions. This gives corrections proportional to 1/L? [4],
which we assume are small and ignore. Second, our
sources are not two independent pion operators each hav-
ing p=0, but rather a single Wall or Wuppertal quark
source. This gives large corrections to Z g, due to the
overlap, which do not vanish as L — «, and it is these
which we estimate.
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In our setup a state of two quarks and two antiquarks,
all in close proximity to one another, is created rather
than two separate pions. We attempt to pair the quarks
and antiquarks into pions by making two color singlets,
each with pseudoscalar quantum numbers. But, by per-
forming a combined color and Dirac Fierz transforma-
tion, we find that we are also creating, with nonvanishing
amplitude, two pions with the opposite gg pairings. Ex-
plicitly, the Fierz transformations are

PRP— L(PRIPH+ARA, ),

A @Ay LPRP+ARA, ), 2
where

POP= (17 592) (P37 59s)
and

A g@A L= (P17 47 502) (P37 4V s¥)

parentheses implying spin and color traces. The sign due
to fermion exchange is not included in these Fierz identi-
ties, since we do not include the sign in our definitions of
D(t) and C(z). The Fierz relations hold for both Wall
and Wuppertal sources, in the latter case because all the
products of link matrices begin at the same site. We have
shown only the P®? and A,®A, parts of the Fierz-
transformed combinations because the correlators of
these operators make the dominant contribution. Other
tensor structures contribute in two ways, both of which
are suppressed by powers of 1/L. For definiteness, we
focus on V@ V. If the ¢ and ¢ in each of the two vector
bilinears are near to one another, but the bilinears them-
selves are well separated, then the source will create two
p mesons. Since with wall sources the bilinears can have
any relative position, the two p mesons have zero three-
momentum. The p’s then scatter into two pions, leading
to a factor of 1/L° because of the interaction. Alterna-
tively, when the two bilinears overlap there can be a
direct coupling to two pions. This is suppressed by
powers of 1/L, because it requires all four fields in our
smeared sources to be close. Note that if all four fields
are distant from one another the result is suppressed both
by powers of 1/L and by the rapid falloff of meson wave
functions. Contributions of operators consisting of two
color octets require all four fields to be close, and are thus
also suppressed by an overlap factor. The magnitude of
these neglected terms can be significant, especially for
Wuppertal sources, as shown by the difference between
our data and the estimates presented below.

There is no large Fierz contribution from the sinks,
since these do consist of two independent pion operators,
each having p=0. The only contribution occurs when
the two operators overlap and are suppressed by powers
of 1/L.

The Fierz relations mean that our crossed contractions
contain a part in which the quarks have already been ex-
changed before we can identify the state as one with two
pions, so that no subsequent quark-exchange interaction
is necessary. This leads to a constant term in the crossed
contraction. The Fierz contributions to the direct con-

TABLE IV. Model predictions for the intercepts of 7 (¢).

Correlator Z, Zg
k=0.154

Sp 1.10 0.90

W 1.12 0.88

S, 1.60 0.40

w, 1.30 0.70
k=0.155

Sp 1.09 0.91

Wy 1.11 0.89

Sy 1.88 0.12

W, 1.38 0.62

traction do not, however, affect the constant term, for
there must be an additional quark exchange interaction
to bring the quarks and antiquarks back to their original
pairings. This discussion motivates the following as-
sumptions for the constant terms:

D(t=0)p 4~1,
C(t=0)p~L(1+C%/CP), (5.3)
C(t=0),~L(C}/CL+1).

The subscript indicates the type of correlator, and the
constants C 4,Cp are the amplitudes for creating single
pions with p=0 using the operators A, and P, respec-
tively. The ratio Cp/C, is 2.5 and 3.1 for Wuppertal
sources, and 1.6 and 1.9 for Wall sources, at k=0.154
and 0.155, respectively. Using these values, we can calcu-
late the Z’s using

Zy=D(t=0)—C(t=0), Z,~D(t=0)+C(t=0).
(5.4)

The predictions are collected in Table IV. They give a
good semiquantitative representation of the data for Z ,
in Table II. In particular, we can understand the small
value of Z; for the S, operators as being due to a large
cancellation between the direct contraction and the Fierz
contribution to the crossed contraction, the latter being
enhanced by the large ratio Cp/C, for Wuppertal
sources. This cancellation is most likely the reason why
the signal is so noisy in this channel.

VI. CONCLUSIONS

We find that it is straightforward to calculate the finite
volume energy shift for channels not involving gq annihi-
lation. The calculation is much less involved using Wil-
son fermions than the one we carried out with staggered
fermions [4]. We are able to work on a lattice of modest
size (L =~ 1.6 fm) because the interactions in the channels
we consider are relatively weak. From the energy shifts
we extract the quark-exchange amplitude and place a
bound on the gluon exchange amplitude. Our results are
consistent with the predictions of current algebra; on the
other hand, the quarks used in the calculation are not
light enough to expose the expected artifacts due to the
breaking of chiral symmetry by Wilson fermions.
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It is important to extend this work to smaller quark
masses, where the divergence in T due to chiral symme-
try breaking should show up. Furthermore, the result
should be checked on a larger volume to verify that the
asymptotic form of the finite volume dependence can be
used.
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APPENDIX: CORRELATION INEQUALITIES
FOR SCATTERING AMPLITUDES

One can derive rigorous inequalities among correlation
functions for vectorlike gauge theories such as QCD.
The basis of such inequalities is the positively of the mea-
sure in the Euclidean path integral:

[dA‘u.][dlz][dl/J] exp[ _Sgauge _Sfermion ] 0.

This property has been exploited, both on the lattice [12]
and in the continuum [13], to derive inequalities among
two-point correlation functions. As a result it was shown
that the pion is the lightest meson. Here we apply the
same arguments to four-point correlation functions in
finite volume to derive constraints on 7 scattering am-
plitudes. The only other work extending the derivation
of inequalities to higher-order correlation functions that
we are aware of is Ref. [14], where it is shown that the
pion wave function is largest at r=0 using a four-point
correlation function.

We consider the four-point correlation functions corre-

(A1)

C(0,t;p=0)=3 <Tr [ [2 G(x,0;y,T)G(z,0;y,T) ] [2 G(x,0;w,T)G(z,0;w, T) )T ]> ,

X,z y

sponding to the 7w scattering at threshold. Let the
sources for the two pion be at time # =0 and the two pion
sinks be at time ¢t =T. We take all four pion operators to
be pointlike with Dirac structure ¥y sy and zero three-
momentum. In terms of the quark propagator
G (x,0;y, T), the direct and crossed correlators are

D(0,T;p=0)
= 3 (Tr[G(x,0,y, NG (x,0;y, 1]

xY,Z,wW
X Tr[G (z,0;w,T)G (z,0;w, T)]) ,
(A2)
C(0,T;p=0)
= S (Tr[G(x,0;y,T)G"(,0;y,T)G (z,0;w, T)
X,y,zZ,w

XGT(x,O;w, n,

where the trace is taken over the color and spin indices.
Using the Schwarz inequality

=Ko 2, (A3)
we get the relation
D(0,T;p=0)=[P(0,T;p=0)]?, (Ad)

where the zero three-momentum pion correlator,

P(0,T;p=0)= 3 (Tr[G (x,0;y, TG (x,0;y, 1]} ,

Xy

(AS5)

is by itself positive definite. This inequality implies that
the contribution of this diagram to the two pion interac-
tion is attractive.

These results can be generalized to other Dirac struc-
tures. In fact, the interaction between any two mesons,
e.g., two p’s, is attractive in the direct channel. Note that
the derivation of this inequality did not depend on the
volume of the system. This is analogous to the zero tem-
perature mass inequalities of Refs. [12,13] which can be
used at finite temperature to give relations between ha-
dronic screening lengths.

The crossed correlator given in Eq. (A2) can be rewrit-
ten as

(A6)

and is therefore also positive. Combining this fact with the inequality in Eq. (A4) shows that the scattering amplitude
in the flavor antisymmetric channel, corresponding to the combination D +C, is

D(0,T;p=0)+C(0,T;p=0)>[P(0,T;p=0)]*.

(A7)

This inequality on the correlators implies that the exponential falloff with time in this channel is slower than that for
two noninteracting pions. It follows that the interaction energy 8E in the antisymmetric channel is negative, i.e., the
scattering length is positive.
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