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It is described how the dimensionality of space-time may be used to check the gauge invariance
of perturbative calculations in pure Yang-Mills (YM) theories. The idea is based on the fact that
pure YM theory in two dimensions is perturbatively free. Thus gauge-invariant quantities evaluated
in a D-dimensional pure YM theory should vanish as D goes to two. The procedure and various
subtleties in its application are illustrated by examples drawn from quarkless +CD at zero and
nonzero temperature. The inclusion of quarks and the use of background 6eld gauges is brieQy
discussed.
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I. INTRODUCTION

Perturbative calculations of gauge-invariant quantities
necessarily proceed in a gauge-noninvariant manner due
to the gauge fixing required in the Lagrangian. In or-
der to verify the gauge invariance of the final result, and
to check against possible errors, computations are usu-
ally repeated for different choices of the gauge fixing or
they are performed in a general class of gauges labeled by
an arbitrary gauge-fixing parameter. In the latter case,
one ascertains that the dependence on the gauge param-
eter drops out for physical quantities. For Yang-Mills
(YM) theories, the complicated tensor structure of the
vertices makes calculations in a general gauge contain-
ing a gauge parameter extremely tedious. In this paper
I describe how, for pure YM theories, one may perform
calculations in any particular gauge with a convenient
propagator (e.g. , Feynman) and yet retain a nontrivial
check on the gauge invariance of the result.

The idea uses the fact that pure YM theory in two-
dimensional (2D) space-time is perturbatively f'ree. This
is established by going to the axial (Aq ——0) gauge
whence the gauge self-interactions vanish. Since, by defi-
nition, gauge-invariant quantities are independent of the
choice of gauge fixing, all gauge-invariant quantities in
pure 2D YM theory must vanish. The strategy to use
this fact for calculating physical quantities in some Do-
dimensional space-time is as follows: perform the Lorentz
algebra and loop integrations for an arbitrary D dimen-
sions; then if the quantity being calculated is truly gauge-
invariant, a necessary condition is that it should vanish
at D = 2. In this way the dimensionality of space-time
is used as a gauge-invariance parameter.

As will be seen later, for all but one example in this
paper the D dependence of the Lorentz algebra gives
the sole useful check on gauge invariance. However we
will encounter an example of a gauge-invariant quantity
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whose only D dependence is in the loop integral. In order
to treat all possibilities in a unified manner it is necessary
to adopt prescriptions for defining the D ~ 2 limit in the
integrals. Integrals such as those &om zero-temperature
Feynman diagrams are defined in D dimensions by ana-
lytic continuation [1—4] with the D ~ 2 limit taken after
doing the integrations. For nonzero temperature inte-
grals containing Bose-Einstein factors, an in&ared cutoÃ
will be imposed.

The reader is advised that it is not the aim of this pa-
per to provide, in a single attempt, a perturbative anal-
ysis of pure YM theory for all Do & D & 2 dimensions
(if indeed such a thing is possible), but rather to de6ne
a pragmatic procedure that connects correctly calculated
gauge-invariant quantities near D = Do to the value zero
at D = 2. The prescriptions are needed for the loop inte-
grals because even if the gauge-invariant quantity is well
defined near D = Do, in the limit D —+ 2 one will en-
counter infrared (IR) singularities symptomatic of lower
dimensional field theories. Of course the prescriptions
mentioned were chosen because they gave sensible results
for the examples considered. They remain to be checked
in other cases as the author has no general proof of their
validity. Note that for zero temperature type of integrals
dimensional continuation is being used here to extrap-
olate gauge invariant quantities &om D = Do down to
D = 2, in contrast with its usual role of regulating ultra-
violet (UV) and IR [1—4] singularities near D = Do.

The D ~ 2 check described above cannot be used for
gauge-invariant quantities which are dimension specific.
An example is the perturbative P function of Do ——4
YM theory which gives information about the UV be-
havior of Green's functions. Within mass-independent
renormalization schemes, the P function is scheme inde-
pendent up to second order and is manifestly gauge in-
dependent when minimal subtraction is used [3,4]. It is
a dimension specific quantity because it is obtained from
the residue of the pole, as D + 4, of the coupling con-
stant renormalization factor. YM theory is superrenor-
malizable for D & 4 and therefore lacks the conventional
UV P function. It is thus not apparent if one may sen-
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sibly extrapolate the conventional P function beyond an
infinitesimal range near D = 4. More examples of dimen-
sion specific gauge invariant quantities may be found in
Dp = 3 pure YM theory with an added Chem-Simons
term [5]. The Chem-Simons term is specific to odd di-
mensions and so here again one does not, in general, ex-
pect gauge-invariant quantities to vanish as D + 2.

The nice thing about performing the Lorentz algebra in
D dimensions (in addition to the integrations) is that it
takes almost no more efFort than in doing it for the phys-
ical Dp dimensions. The benefit, as mentioned above, is
that the D parameter used in a simple gauge provides
one with an algebraically eKcient way of checking gauge
invariance. Of course, one may use the D parameter
in conjunction with a conventional gauge parameter (n)
to give additional checks and insight. The D parameter
is a bookkeeping device keeping track of the "relevant"
(D —2) pieces in a calculation while the n parameter
prefaces the "irrelevant" pieces.

What about fermions? Clearly 2D QCD (QCD2) with
fermions is a nontrivial theory [6]. Fortunately, the con-
tribution of fermions to amplitudes can be kept track of
by using the usual trick of working with an arbitrary Nf
copies of them. A gauge-invariant quantity must be sepa-
rately gauge invariant in the NJ: = 0 and Ny g 0 sectors.
In the first sector, the calculations may be performed as
described above using the D parameter to check gauge
invariance while the Ny g 0 sector can be analysed sepa-
rately. Usually diagrams with one or more fermion lines
are algebraically simpler to deal with than those with
only gluon lines so the methodology described here is
not without promise.

The idea outlined in the preceding paragraphs will be
exemplified in this paper for zero and nonzero temper-
atures (T = 1/P) pure YM theory with gauge group
SU(N, ) at Do ——4. In Sec. II gluon-gluon scattering
at zero temperature is considered at the tree level. This
is a relatively simple example since there are no loop inte-
grals to complicate matters. The metric used in Sec. II is
Minkowskian, diag(g„„)= (1, —1, ..., —1). In Secs. III—V
the examples are at nonzero T and the metric is Eu-
clidean, g„„=b„„(for orientation to nonzero tempera-
ture field theory see, for example, [7,8]). The measure
for loop integrals in Secs. III—V is

d(D —1)
dg =T

( )
qo

where the sum is over discrete Matsubara frequencies
[7,8], qo ——27rnT for gauge bosons and ghosts, n E Z.
For quantities which depend on the external momenta,
an analytic continuation to Minkowski space is made as
usual after the loop sums are done [8]. In Sec. III the one-
loop gluon self-energy is considered and the two prescrip-
tions for loop integrals are introduced while in Sec. IV a
discussion is given of "hard thermal loops" and propaga-
tor poles in D dimensions. Section V considers the free
energy of a gluon plasma to third order. The "plasmon"
contribution in D dimensions requires the simultaneous
use of both prescriptions introduced in Sec. III, therefore
providing a check on their consistency. The conclusion is

in Sec. VI while the Appendix contains some expressions
and discussion mentioned in the main text.

The following gauges will be &equently referred to
throughout the paper: the strict Coulomb gauge [$ = 0
limit of the (V' . A)2/2( gauge fixing], the a-covariant
gauge with gauge-fixing terin (D„A„)2/2(a + 1) and the
Feynman gauge (n = 0). The Feynman rules, being
standard [3,4,7,8], will not be spelled out. D vectors
will be denoted by upper case and have Greek indices,
q„= (qo, q), q—:lql, and the (D —1) spatial compo-
nents will be labeled by Roman letters (i, j). Keep in
mind that in D dimensions the coupling g has a mass
dimension (4 —D).

II. GLUON-GLUON SCATTERING

P v cT TM = TPv~7-6162E'3 64 . (2.1)

Here s& l
= s"(k, A~„l) represents the polarization vec-

tor for the nth (n = 1, 2, 3, 4) gluon with physical polar-
ization A(~) and on-shell momentum K = kp —k
K"e„(k, A) = 0. In practice one usually needs the
squared amplitude summed over initial and final spin
(and color) variables. Choosing the basis s„(k, A)
(0, e), one has the transverse projection operator

(2.2)

When the relation (2.2), which is true in any dimen-
sion, is used to evaluate g& lMl in D dimensions, fac-
tors of D will appear For ex.ample, gl""P„= (D —2)
and so in particular P~ = 0 in two dimensions because
then there are no transverse states. From Ref. [10] one
obtains

~spin colorlM(g& ~ g&) I

4 2 2 2 tCt tC8 8t= 4g N (N —1)(D —2) 3 ——————
C C 82 t2 u2

(2.3)

For D = 4 this reduces to earlier results [9] and it also
vanishes when D + 2 as desired. However there are
two subtleties which should be noted. Firstly, since
the on-shell gluons are massless, there are kinematic
singularities in (2.3) even for D g 2: for example,

The scattering amplitude M(gg -+ gg), for two gluons
into two gluons, involves at lowest order four Feynman
diagrams [9]. The first comes f'rom the order g2 four-
point vertex in the Lagrangian while the other three are
formed &om two three-point vertices tied by a propagator
and represent the usual 8, t, and u channel scatterings.
The sum of the four amputated Feynman diagrams gives
the tensor T„,where the Lorentz indices indicate the
external gluon legs. The gauge-invariant amplitude is
then given by
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s = (Kg+Kg)2 = 0 when ki is parallel to kz. As D m 2,
the Mandelstam variables (s, t, u) vanish when the vec-
tors (kq, ks, k4) are, respectively, in the same direction as
ki. Thus the D ~ 2 limit of (2.3) is unambiguous only
if the kinematic singularities are regulated. Secondly,
if one also averages over initial spins in D dimensions,
then (2.3) is divided by (D —2) for each of the incom-
ing lines. This averaging is Gne if one is working near
D = 4 say [10], but is clearly inadvisable if one wants to
check gauge invariance by the D ~ 2 procedure: In the
D ~ 2 method one should check gauge-invariant quan-
tities before performing other extraneous D-dependent
operations.

III. SELF-ENEHC Y

The self-energy by itself is not a gauge-invariant quan-
tity. However at nonzero temperature there is a gauge-
invariant piece of it which is easy to extract at low orders.
This is the inverse screening length for static electric
fields, also called the electric mass m, ~. If b II~„(ko, k)
is the gluon polarization tensor at nonzero temperature,
then at lowest order one may de6ne

grations one obtains

m, &

——g N, (D —2) T~ l~(D) [2J(D) —I(D)], (3.7)

where

I
~(D) ) {3.8)

I(D) = d ~ -'~n (s.9)

J(D) =—
2 p ( dx )

n = 1/(e —1) .

(s.io)

(s.ii)

J(D) = i2(D —1)I(D), D & 3 . (3.12)

The integral I can be written in terms of I and g func-
tions [14]:

I(D) = I'(D —2) ((D —2), D & 3 . (s.is)

Both of the integrals I(D) and J(D) are IR finite for
D & 3. The second term in J(D) may be integrated
by parts, and the surface term dropped when D ) 3,
resulting in

m. , = —Ilpp(0, k -+ 0) . 3.1
Thus one may write Eq. (3.7) as

2%
Iloo(0 k) = [Ap(k) + nAi(k) + o.'A2(k)] (3.2)

where

2(D —2) (2q,' —Q') + 4A."
Q2[qe2 + (q —k)2]

2[4(k. q)2 —2k2Q2+ 2q02k2]

Q4[q,' + (q —k)'] (3.4)

At De —4, the order {gT)2 result for (3.1) is well known
[8,11]. Remarkably it was found in Ref. [12] that the next
term of order g ~k~T in the low momentum expansion of
IIOO(0, k) at one loop is independent of the n parameter
in the o.-covariant gauge and also has the same value in
the Coulomb gauge, thus suggesting that even this term
is gauge invariant. I repeat here the analysis of Ref. [12]
using the D parameter. In the o.-covariant gauge one
Ands for the sum of one-loop gluonic and ghost diagrams,
the relevant object

m, &
——g N, (D —2) T~ l w (D) I'(D —1)((D —2),

D & 3. (3 14)

The divergence as D —+ 3 shows up in the ( function.
In a consistent calculation at Dp = 3, the logarithmic di-
vergence in the naive expression for m ~ will be cutoB' by
g /T [15]. Suppose one continues (3.14) down to D = 2.
Then the result vanishes because of the (D —2) Lorentz
factor. However this may be fortuitous as it is related to
the possibility of simplifying J(D) (3.10) through an in-
tegration by parts, dropping a surface term, and getting
a result proportional to I(D), so that the square brackets
in (3.7) has no net singularity at D = 2. In more com-
plicated examples one may not be so lucky. Therefore
a prescription will now be introduced to handle the IR
singularities in integrals such as I(D) and J(D) above.
It is simply that integrals with Bose-Einstein factors wil1
be interpreted for D & 3 with an infrared cutoK A:

qp'k4
2( ) [ q]Q4[ (3.5)

(3.15)

m, = g N, (D —2) [dq]
(2q' —Q')

(3.6)

After performing the frequency sum and angular inte-

The only difference between the integrands in Eqs. (3.2)—
(3.5) and the expressions studied in [12,13] is the presence
of the factor (D —2), coming from the Lorentz algebra, in
Eq. (3.3). This factor is invisible in [12,13] because they
work with D = Dp ——4. From the above expressions, one
gets for the electric mass squared at order g

That is, the lowest order electric mass is given in D ) 3
dimensions by the expressions (3.14) and is defined, for
the purpose of this paper, by (3.7)—(3.11) and (3.15) in
D & 3 dimensions. The cutoff in (3.15) is left unspecified
since it is required here only to allow the limit D —+ 2
to be taken with impunity. If one is really interested
in the problem in Dp & 3 dimensions then the cuto8'
must be determined self-consistently. In this paper the
interest is in gauge-invariant quantities near Dp ——4 and
the prescription (3.15) allows the connection to be made
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with the free theory at D = 2. The prescription (3.15)
will be tested in Secs. IV and V.

Now consider the order ~k~T term in (3.2) for D = 4.
As discussed in [12], this can only arise from the infrared
region of the integrals. That is, it only arises from the
qo ——0 part of the frequency sum (1.1) in (3.3) and (3.4).
For the gauge-fixing-dependent piece (3.4), the zero mode
contains pieces exactly of order ~k~T but the net contribu-
tion vanishes after the elementary integrations are done
[12]. The zero mode in the n-independent piece (3.3)
contributes

T
d~~ 'lq —2(D —2) 4k'

(2~)(Li—il (q —k)2 q (q —k)
+ (3.16)

The first term in (3.16) vanishes by dimensional regu-
larization. The second gives, at D = 4, the contribution
proportional to ~k~T found in [12]. In D dimensions this
last piece has no (D —2) factor from the Lorentz algebra
but the integral is highly singular for D & 3 even when
k g 0. As the integral is similar to that occurring in zero
temperature field theory [indeed (3.16) is a contribution
in the effective (D 1)-dim—ensional Euclidean field theory
which represents the far infrared, or infinite temperature,
limit of the D-dimensional finite temperature field the-
ory [8,16]], it is natural to use dimensional continuation
methods [1—4] for its evaluation. A standard calculation
of (3.16) yields

(D —2) kl~ 1T
4 ) (4~sr) ~ l I (D/2) cos(mD/2)

317

IV. "HARD THERMAL LOOPS" AND
PROPAGATOR POLES

For QCD4, at nonzero temperature, there are an in-
finite number of bare loop diagrams which are as large
as the tree amplitudes when the momentum entering the
external legs is soft ( gT) and the internal loop mo-
mentum is hard ( T). These "hard thermal loops"

Amazingly, D = 2 is the only positive value of D for
which (3.17) vanishes. Thus the (kT) term in (3.16) at
D = 4 does satisfy the necessary condition for gauge in-
variance once the integral is defined by dimensional con-
tinuation for the D ~ 2 limit. Of course the above anal-
ysis does not explain why the kT term is gauge-invariant.
In Ref. [12] it was related to a higher order term in the
free energy but its direct physical significance is unclear
to the present author. It might be interesting also to
have a general proof for the gauge-invariance of the kT
term using, for example, the techniques of Ref. [17].

The use of dimensional continuation to evaluate zero
temperature type integrals is the second prescription that
will be used in this paper. Another example of its use will
be given in Sec. V. Here it is noted that with the replace-
ment (D —1) ~ D, the second integral in (3.16) occurs in
the zero temperature self-energy in D dimensions. The
zero-temperature self-energy thus diverges when D ~ 2

[i.e., D ~ 3 in (3.17)] but this is not worrisome since the
self-energy is a gauge-dependent object.

(HTL's) occur only at one loop and have been exten-
sively analyzed by Braaten and Pisarski [18] and Frenkel
and Taylor [19]. The HTL's exist for amplitudes when
all the N & 2 external lines are gluons or when one pair
is fermionic and the other (N —2) are gluons. By ex-
plicit calculations [18,19], the HTL's were found to be the
same in Coulomb, o.-covariant and axial gauges. Gen-
eral proofs of gauge-fixing independence may be con-
structed [20]. A gauge-invariant generating functional
for the HTL's that was constructed by Taylor and Wong
has been cast into myriad forms [21]. In some recent
work, Blaizot and Iancu [22] have rederived the results
of [18,19,21] by analyzing the kinetic equations obtained
through a self-consistent truncation of the Schwinger-
Dyson equations for sources and fields at finite tempera-
ture.

From the expressions contained in [18] or [21,22] one
sees that the Nf ——0 sector of the %-gluon HTL contains
an overall factor of (D —2) when the Lorentz algebra is
done in D dimensions. Even the HTL's with external
quark lines are seen to be proportional to (D —2). As
noted in the above papers, this is because the HTL's,
which are the leading high temperature (and essentially
classical) parts of the one-loop diagrams, receive contri-
butions only from the (D —2) physical transverse gluon
degrees of freedom.

To consider the pure gluonic HTL's in D dimensions
(the Ny g 0 sector is not of interest here), the D depen-
dence of the integrals must also be taken into account
(see also Frenkel and Taylor [21]). For the purpose of
power counting it is convenient to introduce the dimen-
sionless coupling go in D dimensions through the relation
g = goT, where the temperature has been chosen
as the mass scale since that is the natural parameter in
the problem. Now a hard momenta is of order T while
soft refers to goT. With this notation one can repeat
all the relevant analysis of [18,19,21,22] and show that
it remains valid for D & 3 dimensions. However naive
power counting suggests that for D & 3 dimensions soft
thermal loops (loop momenta goT) are no longer supp-
resed relative to HTL's. This is related to the occurrence
of IR divergences; for example, the static limit of the
HTL in the gluon self-energy [23] is simply the electric
mass squared (3.1) which was noted in the last section
to diverge in the naive D ~ 3 limit. Therefore, just as
in the case of m i, for the purpose of taking the D —+ 2
limit, HTL's are defined in this paper for D & 3 with
the infrared cutoff (3.15). Then they vanish as D -+ 2

simply because of the Lorentz algebraic factor.
Just as at zero temperature, the physical poles of the

propagator at nonzero temperature are gauge invariant
[20]. At nonzero temperature, the real part of the gauge
propagator pole at zero external three-momentum de-
fines the induced thermal masses for the gluons and for
Do ——4 the leading ( gT) result is easily obtained at
one loop [8]. When using the D parameter, the thermal
mass will vanish near D = 2 as g(D —2), just like
the electric mass (3.1), when the prescription (3.15) is
adopted. The imaginary part (at Do = 4) turns ollt to
be of subleading order (g2T) and a practical consistent
calculation requires the Braaten-Pisarski [18] resumma-
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tion using propagators and vertices dressed. with HTI 's.
If the calculation of the imaginary part is done in D di-
mensions there will be three sources of D dependence:
&om the HTL's in the efFective propagators and vertices,
&om the Lorentz algebra of the dressed diagrams, and
&om the loop integral of the dressed diagrams. It would
be interesting to see how the D + 2 limit looks like in
this case but this will not be attempted here because the
analysis is tedious. In the next section an example will
be considered which also involves a resummation but is
easier to analyze.

V. FREE ENERGY

The &ee energy is physical quantity equal to the nega-
tive of the pressure and is directly obtainable by calculat-
ing bubble diagrams in perturbation theory [24]. Since it
is physical, it must be gauge invariant. In the Feynman
gauge, the ideal gas pressure (Pp) of gluons is given by
[7,8]

POV

T
(1tt —1) 1e( Det( 55„) '—Det( —tt )) (5.1)

(D —2)(N, —1) ln[Det( —(9 )] (5.2)

where V is the volume. The first determinant in (5.1)
is the contribution of gluons while the second determi-
nant is the ghost contribution. The first two terms in
(5.2) count the number of physical degrees of freedom.
The remaining expression in (5.2) may be evaluated (see
appendix) to yield the free gluonic pressure in D dimen-
sions:

The result is positive for D & 2 and vanishes smoothly
in the limit D -+ 2. The first singularity appears in the (
function at D = 1 when field theory collapses to quantum
mechanics.

Consider next the order g correction to the ideal gas
pressure P2. In the Feynman gauge one obtains, after
some algebra,

P2 ——g N (N, —1) ——
l

—
l
+ —[2D(l —D)][dq] 1 (11 1

Q2 2 (2) 8

+—(5(D —1)))
D 2il gN(N 1)

[d]

2

N, (N —1) T~ i u) (D) I (D) .
2 I

(5.5)

(5.6)

The terms within curly brackets in (5.4) come, respec-
tively, &om the two-loop bubble diagrams with one, two,
and three gluon propagators. Shown explicitly in front
of each contribution are the symmetry factors and the

Pp —(D —2)(N —1) T 7r ~ I'(D/2)((D), D ) 1 .

(5.3)

minus sign for the ghost loop. The functions u(D) and
I(D) in (5.6) are those defined earlier in Eqs. (3.8) and
(3.9). When D ) 3 one may also use Eq. (3.13) and at
D = 4 one recovers a known result [24]. For D & 3 the
prescription (3.15) is again to be used for the integral
I(D). Then the net result in (5.6) vanishes for D = 2 as
required for a gauge invariant quantity. The main point
here is that if one had made errors [for example, in the
symmetry factors in (5.4)], these would likely have shown
up in the nonvanishing of the net result at D = 2. A sim-
ilar calculation in an o.-covariant gauge for the purposes
of checking algebra is far more tedious, especially for the
diagram with three gluon lines. The complexity of the
algebra in an o. gauge in fact increases the sources of
possible errors at intermediate steps. As a curiosity, it
might interest the reader to note that nevertheless the re-
sult (5.5) can also be established in an n-covariant gauge
before doing any explicit integrals, albeit with greater al-
gebraic e8'ort, the o. dependence canceling in the sum of
diagrams as required (see appendix).

The next correction to the pressure in four dimensions
is of order g . This "plasmon" correction is a nonper-
turbative contribution and it was computed in @CD by
Kapusta [24,25]. It is obtained by summing an infiriite
class of IR divergent diagrams, formed by adding two or
more self-energy subdiagrams along the gluon line of the
one-loop bubble diagram. The leading correction ( g )
is due to the electric mass, IIpp(0, k m 0). Summing the
electric mass insertions in D dimensions gives

2P (2') ~D —'l (, q' )
2m

Q2

(5.7)

The above expression is well defined for D ) 3 with
m, ( given by (3.14). The loop integral may be evaluated
using zero temperature techniques (see appendix) to give

(N:-1) I'('-, )( .', ) ~

(4~) ~
(5.8)

Since m, ( g, the result (5.8) is subleading, when
D ) 3, to the order g contribution P2 given by Eq. (5.6).
Also note that (5.8) is positive for 3 & D & 5 so that it
opposes P2 in that range. In order to apply the D + 2
check on (5.7) we need to use both of the prescriptions
introduced earlier. Firstly, for D ( 3 the electric mass
m, ) is defined by the cutoff prescription (3.7)—(3.11) and
(3.15). Secondly, the loop integral in (5.7) is IR divergent
for D ( 3 and so it is de6ned by the analytic contin-
uation prescription [the IR divergence coincides with a
physical eKect: the magnetic contribution may no longer
be subleading (see appendix)]. Thus one takes the D ~ 2
limit in (5.8) with m, ) defined by (3.7) and (3.15). Since

m, i g(D —2), therefore when D ~ 2, Ps vanishes as

(D —2)~ with p =
2 + ~

2
l . The D dependent expo-

nent p is another sign of the nonperturbative nature of
the plasmon term. The nontrivial point here is that the
loop integral has not introduced any adverse powers of
(D —2) which would have had a disastrous effect for the
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D m 2 limit. This example shows a successful cohabita-
tion of the two IR prescriptions that were introduced for
defining the D ~ 2 limit.

for very helpful discussions. I also acknowledge stimu-
lating and hospitable visits to DAMTP-Cambridge and
Martignano-Italy during the course of this work.

VI. CONCLUSION

The dimensionality of spacetime (D) has been p»-
posed and illustrated as a possibly efIicient and bene-
ficial way to check gauge invariance in pure YM theories.
Gauge invariant quantities which are not dimension spe-
cific should vanish as D ~ 2. The converse is not nec-
essarily true. For example, any quantity, even if gauge
variant, when calculated in the axial gauge should vanish
as D ~ 2 due to the &ee nature of pure YM2.

Although in most of the examples it was the Lorentz
algebra which contained the useful D-dependent infor-
mation, the procedure required the use of two ad hoc
prescriptions to define the D —+ 2 limit in loop inte-
grals. Zero-temperature-type integrals were defined by
analytic continuation while integrals containing a Bose-
Einstein factor were cut ofr by an infrared regulator. In
the examples considered the prescriptions allowed one
to extrapolate gauge-invariant quantities calculated near
D = Do ——4 down to D = 2 in the required manner. In-
stead of the two prescriptions, one might try the following
single condition: analytically continued gauge invariant
quantities in pure YM theory should be nondiverging at
D = 2. A relook at the examples shows that this also
provides a nontrivial check. In the absence of an a priori
justification of the prescriptions, one is actually checking
both the IR prescriptions and the gauge invariance. Still,
the analysis of gauge-invariant structures for a variable D
appears instructive and one might want to consider more
examples and at higher order. It might also be interest-
ing to explore the D -+ 2 procedure for gauge-invariant
quantities correctly evaluated near Do ——3 [15,16] .

Fermions can be accommodated by using the number
of flavors, Nf, as a parameter. The Ny g 0 part of any
gauge-invariant quantity must be invariant by itself. At
low orders in perturbation theory, one may even entertain
the notion of calculating the Ny = 0 and Nf g 0 sectors
with difFerent gauge fixing. For example, the pure glue
part can be calculated in the Feynman-D gauge while the
Ny g 0 part can be calculated in the n gauge to check
gauge invariance. Whether such hybrid calculations are
useful or practical should be decided on a case by case
basis. Likewise, scalars can be coupled by taking N,
copies of them.

Finally some comment on the background field gauge
[29]. This is one way of calculating in quantum field the-
ory while keeping classical gauge invariance at every step.
The gauge-invariance here is with respect to the back-
ground field H& which is introduced for this purpose and
gives no information about the physical gauge invariance
of any quantity calculated. In particular, the quantum
part of the action must still be gauge fixed. Thus even
here one might use the D parameter without redundancy.
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APPENDIX

(1) Some formulas are collected here for ease of refer-
ence.

(a) The bosonic (qo ——2vrnT) sums needed in Sec. III
are [8]

). 1 n(q) 1

Q q 2q' (A1)

T)
go

2g

1 dn(q) 1

2q dq 4q
+ (A2)

dOii i (D 2l (D —1 l

(A3)

(c) The zero temperature integrals in Secs. III and V
are evaluated using [1—4]

CL g 1 s 2 (s —4)= (4~) (K )

I'(2 ——') I'2 ( —' —1)
I'(s —2)

(A4)

2 ~ ~ M= —:M '."rl
2

(A5)

(d) Expressions containing I functions can be simpli-
fied with the very useful identities [14]

I'(1 + z) = z I'(z),
r(.) r(1 —.) = .

sin Kz

~~ r(2.) = 2&"-'l r(z) r(. + —,') .

(2) The one-loop gluon self-energy is given by

(A6)

(A7)

(A8)

II„(IC) = J [dq)(L„(K, Q) + M„'(tCQ)— ,

+-,'N„„'(K,Q)),
where (pv) are the Lorentz indices and (ab) the group
indices. The symmetry factors have been explicitly dis-
played. L is the ghost loop contribution (—1 factor in-
cluded), M the tadpole diagram, and N is due to the
trigluon coupling. Expressions for I,M, and N in D
dimensions may be found, for example, in [4]. The com-

where n(q) = [exp(Pq) —1] is the Bose-Einstein fac-
tor. The last terms in the above sums are temperature
independent and drop when dimensional regularization
is used for the q integrals.

(b) The angular integrals for (D —1)-dimensional Eu-
clidean space have been defined by [4]
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piete result at zero temperature, in an o.-covariant gauge,
with the integrations done, may also be found in [4]. For
the Landau gauge (o. = —1) the expression is contained
in Ref. [27] which studies @CD in 2 + e (e « 1) dirnen-
sions and also notes the divergence of the self-energy as
~ m 0.

(3) The free energy is computed as follows.
(a) The contribution of each massless, bosonic degree

of freedom to the ideal gas pressure is

1 1
[dq]) -T (—D II)P«2P

(K2 —1)
2P

G r
+(D —2)

I ')

(A18)

(A19)

Po = — InDet( —c) )2VP

[dq] ln(Q')
2

(All) D- b"b- + 8"8-. fb A."k+
) (A20)

In the above D' is the free propagator in the (strict)
Coulomb gauge,

dE'~-'~q
T — ln(1 —e ) (A12)

( —)l (1
—

) (A13)

OO

~(D) ).—
I 0

dxz~ -'~e-" (A14)

= T (D)r(D —1)q(D)
= TD 7r ~ {,'(D)r(D/2) .

(A15)

(A16)

The determinant above is evaluated with the required
periodic boundary conditions [7,8]. In the second line
a T-independent piece was dropped. The interchange,
in order, of the integration and power series summation
is justified for D & 1. Final simplification is achieved
using the definition of the I and {,

' functions [14] and
the use of formulas in (1) of this appendix. In passing
it is noted that for massless fermions at zero chemical
potential, each modes contribution to the ideal pressure
will turn out to be Eq. (A16) multiplied by a statistical
factor (1 —2(i D)). For the case of' massive particles,
nonzero chemical potentials, and background fields, see
[26].

(b) For the calculation of the order g2 contribution to
the pressure, one can save some eKort and reduce errors
by proceeding as

P2 —— [dA, ] [dq]D(K)12L+ s~M+ r'2N) . (A17)

That is, compute the expression in curly brackets first.
IIere D"& (K) = ~, (b"" + n ~, ) is the free propaga-
tor in the o.-covariant gauge and I, M, and N are the
n-dependent tensors used in Eq. (A9) above. The o.
dependent pieces of P2 cancel only after frequent use of
the identity 2K Q = (K+ Q) —K —Q, changes of
sum-integration variables, and shifts of sum-integration
variables (assumed valid), to obtain the final answer dis-
played in (5.4). Expressions similar to (5.4) in the back-
ground Feynman gauge may be found in [28].

(c) The plasmon contribution in four dimensions has
been calculated by Kapusta [24] in the Feynman gauge.
Here I sketch the D-dimensional analogue in the Coulomb
gauge, using the notation of Toimela [25]. One begins
with

II is the one-loop self energy, E = IIpp and G is the
transverse part of II,~. : (D —2)G = II,~(8;~ —q, q~/q ),
with sum over repeated indices.

In order to obtain the leading plasmonlike () g ) con-
tribution from P~~ „one need only look at the infrared
region which lies in qp sector. Now, in four dimensions
we have F g T and G ~ g kT. In D dimensions
near D = 4 one therefore expects E g T ~ ~ and
G g Tk~ ~. Using the dimensionless coupling gp
defined by g = gpT, and assuming gp((1, consider
the contribution of soft ( goT) loop momenta to the pth
term in P~i«. The electric (E-type) contribution will be

2Z (4—D)T(D —2) q
&

I ( T)'
( T)2» — qp

while the magnetic (G-type) contribution is

(A21)

2T{4 D)T( T)(D——s) q
&-T

~

qo»,
~

(»T)(D-')
(»T)'

=TD q( -"+( -'" (A22)

The electric contribution is plasmonlike for all p and for
D ( 5. When D & 3, the magnetic contribution is plas-
monlike only for p & (5 —D)/(D —3). Also since p ) 2,
this implies D & 11/3. Thus for 3 & D & ll/3, only
the finite number of terms, 2 & p & (5 —D)/(D —3),
give a plasmonlike contribution in the magnetic sector.
The magnetic contribution might also be plasmonlike for
D & 3. On the other hand, it is easy to see from the equa-
tions that for D ) 3, the magnetic contribution is always
subleading to the electric contribution. Thus the leading
plasmon contribution for D ) 3 is given by Eq. (5.7) of
the main text. The integral may be evaluated by the for-
mulas listed in (1) of this appendix: The second term in
(5.7) drops in dimensional regularization while the loga-
rithm is integrated by considering first its derivative with
respect to I,,&. It is amusing to note that the peculiar
ratio ll/3 appearing in the above analysis occurs in a
natural but apparently unrelated way also in the P func-
tion.

(4) The P function may be evaluated as follows.
The P function is easiest to calculate by using back-
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ground field techniques [29]. One first computes (see
Abbott [29] for details and further references) the wave
function renormalization factor Z~ of the background
field B~ obtained &om its self-energy. In the background
Feynman gauge one can obtain

+( ) ( b) (K) = g fV crab(K gpv KpKv)
(~) = —2 2

(7D —6) dDq I
(2D —2) (2vr)~ Q2(Q+ K)2

(A23)

Like the usual self-energy (A9), this self-energy (A23) is
not gauge invariant. Using formulas given in the begin-
ning of this appendix one may check that this background
field self-energy also diverges as D m 2. The gauge-
invariant information in (A23) comes from the residue,

Z&, of the e = (4 —D)/2 pole in Z~, when the integrals(~)

are computed in dimensional regularization. The P func-
2OZ~ )

tion is given by P(g) = —2g &s . The D-dependent
terms outside the integrals in (A23) give the famous 11/3
factor.
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