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Following a "collapsing" wave function
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I study the quantum mechanics of a spin interacting with an "apparatus. " Although the evolution
of the whole system is unitary, the spin evolution is not. The system is chosen so that the spin
exhibits loss of quantum coherence, or "wave function collapse, " of the sort usually associated with
a quantum measurement. The system is analyzed from the point of view of the spin density matrix
(or "Schmidt paths" ), and also using the consistent histories approach. These two points of view
are contrasted with each other. Connections between the results and the form of the Hamiltonian
are discussed in detail.
PACS number(s): 03.65.Bz, 05.30.—d, 98.80.Bp

I. INTRODUCTION

A cosmologist must face the the issue of interpreting
quantum mechanics without the benefit of an outside
classical observer. By definition, there is nothing "out-
side" the Universe. The traditional role of an outside
classical observer is to cause "wave function collapse. "
This process causes a definite outcome of a quantum mea-
surement to be realized, with the probability for a given
outcome determined by the initial wave function of the
system being measured. It is common to view this pro-
cess as something that cannot be described by a wave
function evolving according to a Schrodinger equation,
but which instead must be implemented "by hand. "

There is a growing understanding [1—10] that the es-
sential features of wave function collapse can be present
in systems whose evolution is entirely unitary. The key is
the inclusion of an "environment" or "apparatus" within
the Hilbert space being studied. A 8uhsystem can then
exhibit the nonunitary aspects of wave function collapse
even though the system as a whole evolves unitarily. The
wave function can then divide up into a number of dif-
ferent terms, each of which re8ect a diferent "outcome. "
When there is negligible interference among the diferent
terms during subsequent evolution, the "definiteness" of
the outcome is realized in a restricted sense: Each term
evolves as if the others were "not there, " so a subsystem
state within a given term evolves with "certainty" that
its corresponding outcome is the only one. Nonetheless,
the total wave function describes all possible outcolnes,
and one is never singled out.

Some people object to all the "extra baggage" or
"many worlds" [ll] which result from retaining all pos-
sible outcomes. However, this approach has the advan-
tage of allowing quantum mechanics to operate in a much
more fundamental way, and predict which subsystems can

*Permanent address since August 1992.

play the role of classical observers. Unless the predic-
tions are falsified, this approach can never be shown to
be wrong.

In what follows I present a simple toy system which is
designed to illustrate the essential features of a quantum
measurement. A very primitive "apparatus" is coupled
to a two-state "spin. " The whole spin-apparatus system
evolves unitarily and remains in a pure state, even as the
two subsystems exhibit the nonunitary evolution associ-
ated with the measurement. Both the "consistent histo-
ries" point of view, and a more conventional point of view
(using reduced density matrices or "Schmidt paths") are
use to analyze the same process. The connections be-
tween the two points of view are discussed.

This paper is an expanded version of a talk presented
at the "workshop on time asymmetry" in Mazagon, Spain
[12]. The results are the same, but in this paper I describe
the Hamiltonian, and explore in detail the relationship
between the results and my choice of Hamiltonian. . The
purpose is to develop some intuition as to what attributes
make a "good classical observer. " I also discuss the re-
lationship between the "consistent histories" and more
traditional approaches in more detail.

The organization of this paper is as follows. Section
II presents some mathematical tools. Section III intro-
duces the toy model and illustrates what it has to do with
a quantum measurement by analogy with the double slit
experiment. Section IV shows the behavior of the toy
model in more quantitative detail. Section V introduces
the "consistent histories" point of view, and Sec. VI ap-
plies this point of view to the toy model. Section VII
explains specifically how the form of the Hamiltonian al-
lows the density matrix evolution described in Sec. IV to
be achieved. Section VIII explains how the form of the
Hamiltonian allows the consistent histories described in
Sec. VI to be achieved. Section IX discusses the relation-
ship between the Schmidt paths and consistent histories.
Section X explores the fundamental role played by the
statistical "arrow of time" in the processes under study.
Conclusions are presented in Sec. XI, and a number of
technical results are presented in the Appendices. Units
in which h, = 1 are used throughout.
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II. TOOLS

The focus of this paper is the evolution of the spin
and apparatus subsystems from pure into mixed states
due to correlations being set up between the subsystems.
The "Schmidt decomposition" provides a useful tool for
dealing with these issues, and it will be used throughout
this paper.

If a closed system in a pure state I@) is divided into
two subsystems, one might want to think about I@)'s of
the form

I&) = ).~*~li)~ lj)2 (2)

where (Ii)$} and (lj)2} span the two respective sub-
spaces. Then one cannot talk about pure states for sub-
systems 1 and 2. However, one can say something along
these lines if I@) takes the special form

I@) = ) .~'li) ~ li) 2 (3)

for some orthonormal sets (Ii)$ }and (Ii)2}. This form
is special because there is only one summation, and each
state for system 1 is uniquely correlated with a specific
state for system 2. The reduced density matrix of system
2 is then

I@) = l&)~ l@)z.

One could then say subsystem 1 is in the pure state Ig) q,
and subsystem 2 is in the pure state Ig)2. However, this
"direct product" form for I@) is far from general. A gen-
eral I@) would look like

[13]contains the original mathematical result, and a brief
proof is offered in [18].

The Schmidt decomposition allows one to expose pre-
cisely which correlations are present between two subsys-
tems. The special form of Eq. (3) shows that state ll)$
is uniquely correlated with state ll)2 and so on. It also
allows one to make the clearest possible statement of the
"state of a subsystem, " by providing the eigenstates and
eigenvalues of the relevant reduced density matrix.

III. THE TOY MODEL

A. Defining the model

The toy model discussed here is the two-state "spin"
(system 2) coupled to a modest sized "apparatus" (sys-
tem 1). The Hamiltonian is the same one used in [18],
which takes the form

H =H, g 1, +I, @H, +H&,

where Iy represents the unit operator in the space of
subsystem k. The first two terms give self-Hamiltonians
of the apparatus and spin, respectively, and the last term
gives the interaction between spin and apparatus.

For this work I have chosen the parameters so that
the interaction Hamiltonian dominates over the self-
Hamiltonians of the two subsystems. (Speci6cally E$ ——

E2 ——0.1 and Er = 10 in the notation of [18].) The size
of system 1 is ni ——25 here, as opposed to ni ——12 in

[18].
The interaction Hamiltonian is

p2 = tr$. (I@)(&I)= ) c$'*~ Ii)22(i (4)
Hy ——Eg |3H~ + (3 H~

which is diagonal in the (li)2} basis. The result is that
the probability assigned to any state Ix)2 of the spin is

(*lp21&) = ).~,*~'l(&li)21' (5)

which is an incoherent sum over the probabilities of each
state li)2, weighted by the probability n, o., assigned to
that particular state.

One can thus regard system 2 to be in state li)2 with
probability o.,*o, Although quantum mechanics allows
one to assign probabilities for the spin to be in any state,
the basis in which p2 is diagonal is special, because only
in that basis does any matrix element of p2 take the form
of an incoherent sum as depicted in Eq. (5) (with no
interference terms such as (xli)2 2(jl2:)) .

It turns out that the "special form" of Eq. (3) can
always be realized. It is called the "Schmidt" form, and
follows directly from the fact that any density matrix can
be diagonalized. The Schmidt bases, (Ii)~ } and (li)2 },
are the eigenstates of the reduced density matrices pi
and p2, and n; = ~p, , where p, are the eigenvalues (p$
and p2 have the same eigenvalues, and the larger one has
additional zero eigenvalues). For more discussion of the
Schmidt decomposition see [13, 14, 1, 15—18]. Reference

where Hz and Hz are two different random Hermitian
matrices in the system 1 subspace. [Each independent
real and. imaginary part of each element of Hz and Hi is
chosen randomly on the interval [

—0.5, 0.5).] The random
matrices are chosen once and for all at the start of the
calculation, so Hy is time independent. For our purposes,
the role of the self-Hamiltonians for the subsystems can
be described by the statement "the deviation of the total
Hamiltonian from Hp is very small. " For more details
see [18] (a similar model is used in [19]).

The idea behind the form of Hp is very simple: If the
spin is up the apparatus is pushed in one direction by Hi
and if the spin is down, the apparatus is pushed. in a very
different direction by Hi. The goal is to correlate difFer-
ent states in the apparatus with the lt) and Ig) states for
the spin.

B. The purpose of the model

The toy model is designed to perform a very specific
function: The model should take an initial state of the
form

and evolve it into the state
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(9)

where (Y IZ) = 0. Actual numerical results showing this
evolution are presented in Sec. IV, and a detailed analysis
of why this model is able to achieve these results appears
in Sec. VII.

Both Eqs. (8) and (9) are in Schmidt form. Thus one
can see that initially the spin (and the apparatus) is in
a "pure" state. Later, p2 develops two nonzero eigenval-
ues, so the spin is in a mixed state. The eigenstates of
the final spin density matrix are Ig) and I$). Thus, at
the end the spin is clearly no longer in the a Ig)2 + b Ig)2
state, but it may be said to be in an incoherent super-
position of Ig) and I$). An important feature is that the
probabilities assigned to Ig) and It) at the end (a*a and
b*b, respectively) are the same as those assigned initially.
The only difFerence is that the initial state is a coherent
superposition of Ig) and I$). The choice of Ig) and I$)
as the final eigenstates of the density matrix was built
into the dynamics (and the choice of initial state). Al-
though the evolution of the spin is nonunitary (since the
eigenvalues of its density matrix change), the evolution
of the total spin plus apparatus system is chosen to be
completely unitary.

C. Analogy with the double slit

What does this have to do with wave function collapse?
One might expect a parallel description of the standard
double slit experiment: After passing through a double
slit, an electron wave packet becomes spread out into a
distinctive double slit diffraction pattern. At this point
the electron is still in a pure state, and it is at this point
that I wish to make the analogy with Eq. (8), the initial
state for the toy system. After interacting with a screen,
the electron is certainly not in a pure state, but the elec-
tron may be expressed as an incoherent superposition
of localized packets. The probability assigned to each
packet is the same probability assigned to that location
by the original pure electron state. (Extremely low prob-
abilities are assigned at nodes of the double slit pattern,
for example. ) The loss of coherence of the initial state is
due to the setting up of correlations between the electron
and the screen. The screen plays the role of system 1 in
Eq. (9) (of course there would be more than two terms
in the Schmidt expansion of the electron-screen system).

For each localized packet the screen is in a different
orthogonal state. The extent to which the electron den-
sity matrix eigenstates tend to be localized packets rather
than some other types of states is determined by the na-
ture of the interaction, and the initial state of the screen.
It is natural to expect the eigenstates to be localized, due
to the local nature of interactions. Because of the corre-
lation between the screen and the electron, one can deter-
mine the state of the electron by measuring the state of
the screen. In fact, one normally does look at the screen,
not at the electron.

There are three key features of the double slit exper-
iment which are present in the toy system. First, the
density matrix eigenstates (or Schmidt states) take a par-
ticular form after the measurement which is determined

IV. RESULTS

Figure 1 shows information about the spin as the whole
system evolves. Initially, the state is given by Eq. (8),
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FIG. 1. (a) The solid curve is I(g Il) I, and the dashed
~~rve gives (tI p~ I$). (b) The solid curve is the largest eigen-
value of pz, the dashed curve is the entropy of the spin.

by the interactions. This "pointer basis" (I3]) is (Ig), I$))
in the toy model, and fairly localized wave packet states
for the electron in the double slit example.

Second, the probability assigned to each density ma-
trix eigenstate after the measurement corresponds to the
same probability assigned to that state in the preinter-
action pure state. For the spin, this results because the
coefficients a and 6 are the same in Eqs. (8) and (9). For
the double slit case, the diffraction pattern is represented
in the distribution of density matrix eigenvalues after the
interaction. (This is why, after many electrons strike the
screen, the diffraction pattern is produced. )

Third, it is very unlikely that the process will reverse
itself. For the double slit, it is extremely unlikely that
the screen will emit an electron in a double slit difFraction
pattern. The reason why the toy model is unlikely to
evolve from Eq. (9) back to Eq. (8) will be discussed in
Sec. VII.

One way the analogy does not work is in the details of
the apparatus. The apparatus in the toy model is much
less sophisticated than a realistic screen. Although the
different "outcomes" of the measurement do get corre-
lated with orthogonal states of the apparatus, the appa-
ratus states do not represent a nice "pointer" or "mark on
a screen" which clearly refiects the state of the quantity
being measured.
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the eigenvector becomes essentially It). Thus the behav-
ior promised in the previous section [Eqs. (8) and (9)] is
realized to a good accuracy.

Figure 2 is another representation of the way the eigen-
states of p2 evolve. The first row represents Il), and
the second row represents the other eigenvector. The
three columns correspond to three times. The histogram
in each plot provides two numbers p(t):—I&'t Ii)l and

p($) = I&( Ii) I
for the first row, and similarly for the sec-

ond eigenvector in the second. row. In this way one can
visualize a "collapsing wave function" by following the
eigenstates of p2 as they "collapse" onto the (lt), lg))
basis.

0 0.03 0.15 V. CONSISTENT HISTORIES

FIG. 2. A collapsing wave function. Each plot depicts an
eigenstate of pq in terms of p(g) = I(t Ii)I and p&$):—I($ Ii) I

The columns correspond to three di8'erent times. The two
rows correspond to the two eigenstates.

with a = 0.7, 6 = 0.3. In the lower plot, the solid
curve gives pq, the largest eigenvalue of p~. It starts
out at unity, as required by the "pure state" form of
the initial conditions, and evolves to 0.7, where it holds
steady. The dashed curve gives the entropy S of the spin
(S = —tr[p2 log2(pg)]), in units where the maximum pos-
sible entropy is unity. The entropy starts out at zero and
increases. This is always the case when a system evolves
from a pure to a mixed state. (Note the the combined
"spin &3 apparatus" system remains in a pure state, so
its entropy is zero. )

In the upper plot, the dashed curve gives the over-
all probability for the spin to be up, given by (tl p2 It).
This quantity is a "constant of the motion. " The solid
curve gives I&fll) I2, where Il) is the eigenstate of p2 (or
"Schmidt state") corresponding to the largest eigenvalue.

Since Il) belongs to a two-state Hilbert space, it is
completely specified by I(t Ii) I, up to an overall phase.
One can see that as the eigenvalue (pi) approaches 0.7,

I

I will now make contact with the "consistent histo-
ries" or "decoherence functional" approach to quantum
mechanics of closed systems. Until now I have been using
the wave function to assign instantaneous probabilities to
difFerent states over a range of times. By contrast, the
consistent histories endeavors to assign probabilities to
histories. Consider two projection operators

P~ -=l»&tl Ii P~ -=l~&&~l », (10)

where Ii is the identity operator in the apparatus sub-
space, and (lg), lg) j form an orthonormal "projection ba-
sis" which spans the spin subspace. These projection
operators sum to unity:

Pg + Pg ——I.

and insert the unit operator (P~ + Pg) at will, resulting,
for example, in the identity

One can take the formal expression for the time evolu-
tion,

l&(~)) = -'"'l&(0))

l@(~))=(P,+P„) *"' "(P„+P„)--* -"l@(o))
= P —'H(t —t')P —'Ht, lg(0)) +P —'H(t —t, )P *H"

l@(0)&

+P iH(t tt) P iH——t~ I@(0)—) + P —iH(t —tt )P iHtt l@(0—) &

—= l[t, t]&+ I(t, 4]&+ 1[4, t]&+ IH 4]&

The last line just defines (term by term) a shorthand
notation for the previous line. Each term represents a
particular choice of projection at each time, and in that
sense corresponds to a particular "path. " In the path
integral formulation of quantum mechanics the time be-
tween projections is taken arbitrarily small, and the time
evolution is viewed as a sum over microscopic paths. For
present purposes, the time intervals can remain finite,
representing a "coarse graining" in time. Each term in
the above expression is called a "path projected state, "
and the sum is a sum over coarse grained paths.

One attempts to assign the probability "([i,j]I[i, j])"to
the path (i, j], but, to make sense, the probabilities must
obey certain sum rules. For example, one can define

I[» ]& = l[t &]&+ I[»&]&

(I~ III» l&
= &(»tll(t tl)+((t 411(t &1&. (17)

where the centered dot signifies that no projection is
made at tz. One would want the probability for the path
[g, ] to be the sum of the probabilities of the two paths
of which it is composed:
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However, one can "square" Eq. (16) to give the general
result

&[.» )I[t ]&
= &It tll[»t)&+ &[t, &)l[t, 4)&+ &[t, t)l[t, &)&

+&[t &) I[t t]& (»)
Only if the last two terms (the crossterms) in Eq. (18)
are small is the sum rule [Eq. (17)] obeyed. When the
relevant sum rules are obeyed the paths are said to give
"consistent" or "decohering" histories. Advocates of this
point of view argue that the only objects in quantum me-
chanics which make physical sense are sets of consistent
histories. For a discussion of how this simple example
links up with the (much more general) original work on
this subject ([20—24]) see [18]. Other work on the consis-
tent histories approach includes [25—29].

VI. TESTING FOR CONSISTENT HISTORIES

Table I (lef't-hand side) checks the probability sum rule
[Eq. (17)] for the toy model whose evolution is depicted
in Fig. 1. The projection times are tq ——0.15, t = 0.2, and
the projection basis is (It), I$)}.The sum rule is obeyed
to the accuracy shown. In fact, using the (It), I$&) pro-
jection basis, the sum rule is obeyed no matter which
projection times are chosen and how frequently the pro-
jections are made.

This result came as a surprise to me. After all the
interesting dynamics described in Figs. 1 and 2, the con-
sistent histories approach o8'ers a completely static per-
spective. The constant "t" and "$" paths are consistent
right through the period when the correlations are being
set up.

One of the very interesting features of the consistent
histories point of view is that typically there are many
different sets of consistent histories. It turns out that for
this particular example some sets of consistent histories
re6ect the "quantum measurement" more directly.

Consider for a moment a static (Hamiltonian = 0) spin,
not coupled to any apparatus. It turns out that as long as
the same projection basis is chosen at t and tz, one always
gets consistent histories. This is true for any projection
basis. One could choose (It), Il,)) or one could choose
the projection basis (IZ'), J )), where IZ) is the initial
state of the spin (a It)2 + 6 Ig)2), and

I
J ) is the state

orthogonal to it. A static spin would naturally result in
unit probability for the [Z, Z] path, and zero probability
for all other paths. Table I (right-hand side) shows the

results for the fully interacting spin, using the (IZ), I
J ))

projection basis, but otherwise the same as the left-hand
side of Table I. Clearly the sum rules are not obeyed in
this case.

When (It), I$)) was used as a projection basis, there
was no difference, from the consistent histories point of
view, whether or not the interactions between spin and
apparatus were present. Consistent histories resulted in
either case. When the (IZ'),

I
J )) projection basis was

used, the effects of the interactions were evident: Only
in the absence of interactions were those histories consis-
tent.

Gell-Mann and Hartle [24, 27] have emphasized the im-
portant role that "records" or correlations among subsys-
tems can have in producing consistent histories. In [18]
I noted that since the Schmidt decomposition gives an
exact account of whatever correlations are present, the
Schmidt states (eigenstates of the reduced density ma-
trix) often make a very good choice of projection basis.

Indeed, I have found the following types of histories
are always consistent for this toy system: For the first
projection time one chooses the eigenstates of p2 (the
Schmidt states) as the projection basis. At the second
projection time one chooses the (It), I$)) projection ba-
sis. These paths are consistent for any choices of the
two projection times. These paths certainly reBect the
measurement process, since (as shown in Figs. 1 and 2)
this process shows up quite explicitly in the behavior of
the Schmidt states. One can expand on this set of paths
by including additional projections on the (It), I$)j ba-
sis. However, one will not get consistent histories if one
makes additional projections on the Schmidt basis (un-
til after it coincides with the (It), I$)j basis). Thus the
actual picture presented by any of these sets of paths is
quite different from the Schmidt paths depicted in Fig.
1.

VII. TIME EVOLUTION
AND THE DENSITY MATRIX

This section, and the one which follows, are devoted
to describing how the Hamiltonian which governs the toy
system is related to the results presented above.

To explore the effect of HI, note that the initial state
[Eq. 8] can be written

I&.) = .It) IX). + l I&) IX)'
Under time evolution according to HI, this state main-
tains a similar form:

Path

&[tt) litt)&
&[All [t&])
([t )I[t )

'Fp violation

Value

0.70
0.00
0.70
O'Fo

Path

&KJ I [ZZ))
(Ã& IÃ& &

([Z ll[Z )
% violation

Value

0.74
0.03
0.61
25'Fo

TABLE I. Testing the probability sum rule [Eq. (15)]
for different paths. For the left-hand side the sum rules are
obeyed for any choice of t& and t. For the right-hand side,
tj ——0.035 and t = 0.06.

I@(t)& = a It) IX~(t))~ + t I&) IXg(t))i (20)

Where IXg(t))q and IXg(t))q are the initial apparatus
state IX) evolved forward in time according to II& and

Hz, respectively. Because H~ and Hi are different ran-
domly chosen operators, on average the states IX~(t))q
and

I Xg (t) ) q have no more overlap than two randomly
chosen vectors in the apparatus subspace. For sufBciently
large apparatus subspaces, the overlap will be extremely
small.

From this point of view the initial conditions, where
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(tl p (t) ll) = b*(x~(t)lx~(t)). (21)

Equation (21) shows that to the extent that the over-
lap of X~(t))q with IX~(t))q is small, (lg), lg)) are the
eigenstates of p2. As discussed in Appendix A, the typi-
cal overlap goes down as the size of the apparatus is in-
creased, so even in this simple example one can see that
large size is an advantage when building an apparatus.

(Xt(0)IX~(0)) = 1, are very special. As time evolves
the value of (Xg(0)IX~(0)) decreases to its more natu-
ral small value. If (Xt(0)IXg(0)) were to become close
to unity later in time, this would correspond to the ap-
paratus "forgetting" its records, analogous to the screen
reemitting an electron in a diffraction pattern state. In
the toy model, this happens very rarely (for large appa-
ratus) because two vectors evolving randomly in a large
space rarely overlap. (This effect has been discussed at
length in this context by Zurek [3].)

Much of the earlier discussion has focused on the eigen-
states of the reduced density matrix for the spin (p2), or
Schmidt states. These states, along with the eigenvalues,
provide the most concise description of the state of the
spin, and they describe the correlations with the appa-
ratus as well. The Schmidt states start out being very
different from the the (lt), lg) j basis, but approach very
close as the measurement is completed. The Schmidt
states then stabilize close to the (lf'), lg)) states and do
not change much after the measurement.

The degree to which the Schmidt states are (lg), lg)}
can be studied by examining the off diagonal matrix ele-
ment of p2 in the (lg), lg)) basis:

can get without causing the Schmidt states to exhibit
large deviations &om the desired behavior. On the other
hand, given any arbitrarily close values of a and b, there
exists a sufficiently large choice of nz so that the desired
behavior is achieved. In Appendix A I show that the
minimum value of Ia —bl scales as 1/~nq. (Note that the
"nq" of a real macroscopic apparatus is huge. )

I also argue in Appendix A that if one accepts the de-
parture of (tl p2(t) lg) from zero as an indication of the
precision of the apparatus, then there is nothing partic-
ularly wrong with the apparatus in the a —+ b limit. The
apparatus is just unable to precisely resolve the value of
a —b. One could even argue that the sensitivity of the
Schmidt basis to the precise value of (tl p2(t) lg) in this
limit makes the Schmdit basis misleading when Ia —bl
falls below the "experimental resolution. " (This amounts
to a major concession to Zurek, with whom I have been
having ongoing informal debates about the value of the
Schmidt decomposition. )

B. Some red herrings

I came up against the special behavior discussed in Sec.
VII A early in the course of this work. Although I appre-
ciated the overall delicacy of the degenerate eigenvalue
case, my efforts to preserve the desired behavior in that
limit were not always to the point. In this subsection I
critique some remarks on this subject in previous papers
of mine.

The eigenstates of HI [&om Eq. (7)] have the form of
either

A. A catch I&I) = I&) l~g) (24)

The case where a and b are nearly equal deserves spe-
cial attention. In this case the eigenvalues of p2 become
nearly degenerate at late times, and the form of the eigen-
states of p2 becomes a delicate matter.

Consider first the case of strict equality:

a = b = 1/2 . (22)

In this limit (gl p2(t) lg) = (|,
l p2(t) lg) = 1/2, and

the form of the eigenstates is completely determined by
(tl p2(t) lg). In this special case the eigenstates are either

(I&) + e*' I&)) (23)

if (gl p2(t) lg) is nonzero (no matter how small), or unde-
termined if (gl p2(t) lg) is exactly zero. (See Appendix A
for the definition of the phase 8 and further details. )

A physicist need never worry about the "measure zero"
case where Eq. (22) is exactly obeyed, but there is a more
general point to be made: As a and b get close to one
another, even very small values of (tl pq (t) Ig) can be "too
large" and cause the eigenstates of p2 to deviate greatly
from the desired It) and lg) states.

In the toy system, the mean magnitude of (gl p2(t) lg)
is never zero, although it can be made arbitrarily small
by increasing the size of the apparatus. Thus for every
apparatus size there exists a limit of how close a and b

or

l&1) = 14) l&z) (25)

where the IAg) and IAg) are the eigenstates of Hzt and

H&, respectively. The addition of subdominant "self-
Hamiltonians" for the two subsystems does not have a
large overall effect. However, frequently a handful of
energy eigenstates deviate greatly from Eqs. (24) and
(25). (The reason is that among the random set of en-
ergy eigenvalues there are always a few which are quite
close together. Under such circumstances small pertur-
bations can greatly affect the form of the eigenstates, as
was already discussed regarding p2. )

Some of my previous efforts to produce a "good mea-
surement" in the a —+ b limit focused on avoiding the bad
energy eigenstates, which are not close to Eqs. (24) and
(25). In [18] (Sec. VIA) I further reduced the coeKcients
of the self-Hamiltonians, and in [12] I specially chose the
initial conditions to avoid the bad energy eigenstates. In
fact none of these efForts were useful, because they did
not reduce the overlap of IX~(t))q with IXg(t))q. This
overlap is present even when the energy eigenstates are
exactly given by Eqs. (24) and (25), and the form of the
eigenstates was not the problem which needed address-
ing. The overlap is most easily reduced in the toy system
by increasing the the size (nq) of the apparatus.
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VIII. CONSISTENT HISTORIES
AND THE HAMILTONIAN

where lit(t))i and Il~(t)&i are ll) i evolved under Hi and
Hz~, respectively. Likewise,

1[21(t)) = e " "'"' (vK, I2&'12)i)
= I&) (v» &tl2)') I2~(t)&i

+ I&) (~» &&I 2)') 12'(t)&i. (27)

Given the form of Eqs. (26) and (27) it is easy to see the
effect of later projecting an the {Ig),Ig)} basis. The re-
sulting four path projected states are just the two terms
&om Eq. (26) and the two terms from (27). The rele-
vant cross terms, which must be zero to give consistent
histories are

and

&[1', 1]l[t, 2]& - &It(t)12t(t)) (28)

&[$, 1]l[$,2]) ~ &1g(t)I2g(t)) . (29)

The states lt) and Ig& for the spin are absolutely stable
under the action of Hl. Once one projects with Pg the
projected state will remain of the form Ig) lsomething) i
from then on. Projecting with P~ and Pg at different
times is certain to give zero. If {Ig&,Ig) }is the projection
basis, then the only path projected states with nonzero
amplitude have all the projections either uniformly up or
uniformly down (regardless of the values and frequency
of the projection times). The only cross term in Eq.
(18) which could potentially cause sum rule violation is
the dot product between the uniformly up and uniformly
down path projected states. This cross term is also zero
because (gl $& = 0. Thus using the {Ig),Ig)} projection
basis is sure to give consistent histories for this model, no
matter what the initial state. Although these histories do
not explicitly exhibit dynamics associated with the evolv-
ing correIations, their consistency is closely linked with
these dynamics via the special stability of the {Ig),Ig)}
basis. In Zurek's [3] language, the {lt),Ig)} basis is a
"pointer basis, " which does not lose quantum coherence
via the interactions.

The {Ig),Ig)} basis is special because of the form of
HI [Eq. (7)]. The basis {IX&, l J)} is nothing special
&om the point of view of the Hamiltonian, and it is not
surprising that consistent histories were not found using
that projection basis.

The other sets of consistent histories discussed in Sec.
IX involved projecting first on the Schmidt states and
then on the {Ig),Ig)} basis. After the first projection,
the two resulting path projected states are just the two
terms (~p, I1)2 I 1)i and ~pq I2) 2 I2) i ) of the Schmidt
decomposition of the total wave function at tq. The sub-
sequent evolution of each path projected state may be
treated as in Eq. (20):

I[11(t)& = e " "'"' (~»I1)' II)i)
= I&) (v» &tl1)') 11~(t))i

+ I&) (M»411)2) 11~(t))i .

The quantity in Eq. (28) is exactly zero because Ilg(t))
and I2t(t)) started orthogonal, and were unitarily evolved
by the same Hamiltonian, so they must remain orthogo-
nal. Likewise for Eq. (29).

Unlike the first set of consistent histories discussed,
these histories are consistent because of orthogonality
of the path projected states in the apparatus subspace.
One can say that records of the spin at t~ are present in
the apparatus. The Schmidt decomposition (at ti) was
used to resolve these records. [If any other projection
basis had been used at ti, the counterparts of Il~(t)& and
I2~(t)) would not have started out orthogonal, and the
cross terms would not have come out zero. ] The choice
of second projection was also crucial. By choosing the
stable {Ig),Ig)} basis, one avoided losing track of the
records between tq and t2, when the second projections
were made.

IX. COMPARING CONSISTENT HISTORIES
WITH INSTANTANEOUS PROBABILITIES

The consistent histories approach involves assigning
probabilities to histories. In contrast, the wave function
at a particular time can be used to assign a probability
to any state (possibly a state specified only for a sub-
system). One just projects onto the state in question
and squares to get the probability. This procedure can
be repeated at different times (always evolving the whole
unprojected wave function). The Schmidt paths just give
a way of following the probabilities assigned to a partic-
ular set of states. Often these Schmidt states are very
interesting because they exactly reBect the correlations
which are present

The consistent histories formalism actually coincides
with the instantaneous probabilities view in the special
case where the "paths" are defined at a single instant,
utilizing just one projection time. In this case there is no
difference between assigning a probability to a "path" or
a state. In fact, such probabilities automatically obey all
necessary sum rules, which is why no additional consis-
tency conditions are discussed when taking the instanta-
neous probabilities view.

The consistent histories formalism allows one to go be-
yond the instantaneous view and (at the cost of extra con-
ditions) assign probabilities to extended histories. That
is, histories defined over more than one moment in time.
A number of authors (for example, [25, 30, 28]) have at-
tached great importance to this way of going beyond the
instantaneous point of view.

In general the extended histories and the instantaneous
probabilities ofFer very different points of view. However,
the two can be quite similar in the particular case where
good measurements are made within the closed system
being treated. In that case projecting on a particular set
of records (at a single time) should be completely equiv-
alent to projecting (even at earlier times) on the corre-
sponding state of the system being recorded, as long as
the projection is made at a time after the measurement
has been completed (see, for example, Refs. [27, 25]).
Since the Schmidt decomposition can be applied to ex-
pose the correlations among all the relevant apparatuses
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and systems, one might expect that the paths traced out
by the Schmidt states after a measurement should bear a
lot of resemblance to one set of (extended) consistent his-
tories. However, based on the work in this paper, it does
not seem that the extended consistent histories and the
Schmidt paths bear much resemblance during the mea-
surement process, when the correlations are actually be-
ing set up.

Much of this paper studies the measurement process
from the instantaneous probabilities point of view. It has
correctly been pointed out [25, 24, 28, 30] that the infor-
mation provided by a wave function at a single moment
in time is of limited use in investigating many important
issues in quantum mechanics. Nonetheless, by following
the time development of the instantaneous probabilities
one is able to provide some useful insight into the na-
ture of the quantum measurement. (This is the used in
the pioneering work by Zeh and Zurek. The whole no-
tion of Zurek's "pointer basis" [3] or Zeh's "stability of
the Schmidt states" [1] is connected with time evolution,
as is the issue of "permanence" of the record, which both
these authors address. Their analysis, which involves the
time development of instantaneous probabilities, is very
different from just looking at a wave function at a single
moment in time. )

Like Zeh and Zurek, I have found the time develop-
ment of the reduced density matrix to offer a convenient
perspective on the measurement process. One can an-
swer questions such as "how long does the measurement
take?" [6, 31], and "what is the state of the system half-
way through the measurement?" (Fig 2). In turn these
insights can help one deduce the features which make a
good measurement apparatus.

In this particular application I have not found the gen-
eralization to extended histories offered by the consistent
histories formalism particularly illuminating. No single
set of extended histories appeared to be following the cor-
relations in any continuous way, and no set indicated the
duration of the measurement process. No doubt these
features can be extracted by considering a large number
of different sets of extended consistent histories but not
in a particularly direct way. In short, the time develop-
ment of the reduced density matrix seems to allow one
to focus more directly on the measurement process, as
compared with the extended histories point of view.

This is not to say that the different focus offered by the
extended -histories is "bad." After all, in many realistic
situations one does not mant to focus on the details of the
measurement process. For example, the "constant" spin
up and down consistent histories are probably exactly
how an observer who measures the spin in the ([t), [$))
would want to think of the history of the spin. Whether
the spin was once in a coherent superposition of up and
down, and whether some other system had already mea-
sured the spin in the f[g), [$)) basis before his measure-
ment occurred would be of no practical interest to the
Qbsel ver .

X. THE ARROW OF TIME
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As has been noted, for example by Zurek [3] and Zeh
[33, 16, 34], there is an arrow of time built into the dy-
namics discussed here. This is dramatized in Fig. 3,
which is identical to Fig. 1, but with the time axis ex-
tended to the interval [

—2, 2]. One can seen that the
pure "initial" (t = 0) state (which has zero entropy for
the spin), is a very special state and the "collapse of
the wave function" proceeds in the direction of increas-
ing spin entropy. The t ( 0 part of Fig. 3 illustrates
an "uncollapsing" wave function, where the correlations
present between spin and apparatus at early times are
lost, and the pure state emerges at t = 0. Then, for pos-
itive values of t correlations are established again. The
stability of these correlations (and thus the goodness of
the measurement) depend on another such "entropy dip"
not occurring for t ) 0. In the language of Sec. VII, one
is depending on the random evolution of [Xg(t)) q and
[Xg(t))q not to cause these two states to overlap appre-
ciably at later times. (This issue has been discussed at
length in [3].) Even the simple system discussed here
is complex enough for such large entropy dips to occur
very rarely. Still, with such a small apparatus, noticeable
fluctuations are present. (Note that the portion of Fig.
3 which is shown in Fig. 1 is uncharacteristically well
behaved. See Appendix C for further discussion. )

Aside from questions of stability, how fundamentally
is the arrow of time linked to quantum measurement?

For some related ideas see [32].
FIG. 3. The same plots as Fig. 1 extended over a wider

time range.
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The initial state, I@,.&
has zero entropy for the spin, so it

is not surprising that just about anything will cause the
entropy to increase. What about starting with a more
general initial state'7 Schmidt tells us that {in a suitable
basis) the most general state can be written

(3o)

I show in Appendix 8 that if one requires an evolution
which generalizes Eq. (9) to give

I@') ~ l&f)
= v»((T I»2 I&& I&)~+ (&11)z I&) l&)~)

+v& ((& I» It) I|-") + (& I» I&) ID) )

then one must have increasing (or constant) entropy of
the spin ( —tr[pzln(p2)]) as I@;) m Igf). Thus "good
measurement" appears to be closely linked with increas-
ing entropy, even for high entropy initial states. [Note
that I have chosen all four apparatus states, IA)z, IB&q,
IC&q, and ID)q to be mutually orthogonal. This means
that in I@f &

the apparatus has a record of whether the
spin is up or down, and which term of Eq. (30) has been
"measured. "

]

was very little resemblance between any given set of ex-
tended consistent histories and the Schmidt paths for the
system. I argued that the reduced density matrix overed
a more convenient point of view &om which to analyze
the measurement process.

I have employed a perspective on wave function col-
lapse which explicitly does not make a choice among the
possible outcomes at the end of the measurement process.
This results in Everett's "many worlds. " An advantage of
this perspective is that the question of what makes a good
apparatus can be addressed quite directly. To this end, I
have discussed in detail the Hamiltonian used to evolve
the system, and the features necessary to accomplish the
desired evolution. Even in this primitive example, the
quality of the apparatus is very clearly linked with its
size, and with the statistical "irreversibility" associated
with the thermodynamic arrow of time [33].
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XI. CONCLUSIONS

The ideas put forward by Zeh [1], Zurek [3], Joos and
Zeh [35], and Unruh and Zurek [7] have sufficiently de-
mystified the notion of wave function collapse that one
can actually unitarily follow the evolution of a system
right through the collapse process. I have investigated a
simple system which exhibits "wave function collapse. "
I find Zeh's idea of watching the evolution of the eigen-
states of the reduced density matrix (Schmidt paths) par-
ticularly appealing. This approach allows one to follow
exactly the evolution of the correlations among subsys-
tems. It also allows one to visualize the collapse pro-
cess quite explicitly, as illustrated in Fig. 2. How-
ever, when eigenvalues of the reduced density matrix are
nearly degenerate, the eigenstates become very sensitive
to "noise, " and can give a misleadingly unstable picture
of what is going on.

I also applied the "consistent histories" analysis (of
Griffiths [20], Omnes [21—23], and Gell-Mann and Har-
tle [24]) to the same system. In one limit, this approach
can reproduce the reduced density matrix results where
probabilities are assigned at instants in time. More gen-
erally, the consistent histories allow one (when the consis-
tency conditions are satisffed) to assign probabilities to
extended histories of the system. In the example studied
here, many diferent sets of histories passed the consis-
tency test. It is intriguing that one set of consistent his-
tories for the spin did not reflect the interesting evolution
of the correlations between the spin and the apparatus.
Instead, it was more a reflection of the stability properties
of the spin. That set of histories would look the same for
a static spin, decoupled from the apparatus. Other con-
sistent histories exhibited more direct links to the "quan-
tum measurement" process underway. However, there

APPENDIX A: NEARLY DEGENERATE
DENSITY MATRICES

1. Mathematics

Consider the matrix

&1/2+ b

1/2 —h)
'

Its (unnormalized) eigenstates are

(Al)

h+gb +co
4J

(A2)

If one takes the limit u ~ 0 while keeping b fixed the
eigenstates become proportional to (0, 1) and (1,0). This
is what the toy model is trying to accomplish for p2 at
late times, by making the off diagonal terms (here w)
small. However, if one takes b —+ 0 while keeping u fixed
the eigenstates become proportional to (k~, 1). [Since
ur corresponds to (tl p2 !$),e in Eq. (23) is just the phase
of ab*(X~(t) IXt(t)).]

If one wants to require the eigenstates to be close to
(0, 1) and (1,0), one can require

b —Qh'z + (u*~
(A3)

for some small e. For small values of Ice!/Ibl, Eq. (A3)
becomes

(A4)

This paper involves the case where cu is the overlap of
two random vectors in a space of size nq. The magnitude
of such a quantity is the net distance traversed by an
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nq-step random walk with average step size proportional
to ~ni, so ur oc 1/~ni. Combining this with Eq. (A4),
one can see that the minimum allowed value of b goes as
1/~ni.

2. Physics

The goal of the interactions was to get the wave func-
tion into the form given by Eq. (9):

IA) = ~ lt). I&) i + b ll), I&) i

with

(A5)

P iZ) =0. (A6)

When a ~ b the Schmidt decomposition tells us that
if one insists on Eq. (A6) holding exactly (which is
what Schmidt does), then the Schmidt expansion can
look very different than Eq. (A5). This is because even
small nonzero values of (Xt(0) ~Xg(0)) [= tu in Eq. (Al)]
can have a large impact on the eigenstates in this limit.
However, how badly does the wave function deviate from
Eq. (A5) when l(Xt(0)IXS(0)) I

)) la bl [that is, when
1 )) u )) 6 in Eq. (Al)]? One check is to look at the
"overlap" between actual reduced density matrix for the
spin [p2 given by Eq. (Al), for example] and the ideal
result

(1/2+ a 0PI—:
I 0 (A7)

hgp2pi ——1+ O(iv ). (A8)

At least according to this measure, p~ and pI are very
close when u is small, even when their eigenstates are
very difFerent.

One can further explore the suitability of the system
as a "measurement apparatus" in the a ~ b limit by con-
sidering the interaction of a third system with the appa-
ratus. One feature of a good apparatus is a "pointer, "
which clearly exhibits the outcome of the measurement,
and which can subsequently be measured by other sys-
terns to determine the outcome of the original measure-
ment. (Zurek [3] emphasizes this point by clearly parti-
tioning out the pointer from the rest of the apparatus. )
As discussed earlier, this feature is absent from the toy
model.

For the sake of discussion I will force the issue by as-

The quantity trgp2pI is a good measure of the overlap
which can be understood by writing each p in terms of its
eigenstates. The value of trgp2pI is unity when p2

——pr,
and is zero when no eigenstates (with nonzero eigenval-
ues) overlap. Taking p2 from Eq. (Al) and pI from Eq.
(Al), and expanding for small ur (keeping b fixed) one
gets

suming there is a third system which has detailed in-
formation about ~Xg(t)). It can use this information to
suitably measure the apparatus. If the apparatus is found
in ]X~(t)) the third system will conclude that the spin is
up. The issue is being "forced" only in the sense that
one is asking the third system to know something very
complicated [namely [Xt(t)), a complete "microscopic"
state with messy time evolution] in order to use the ap-
paratus. In a good apparatus some simple feature (such
as a blip on a screen) should indicate the outcome.

So how much of a mistake does the third system make
by using this procedure'? The errors come because the
overlap of ~@y) with ~Xt(t)) receives contributions not
just Rom the first term in Eq. (20), which is indeed
correlated with ~t), but also from the second term (corre-
lated with ~$) ) due to the non-zero value of (Xg(t) ~Xg(t)).
To the extent that (X~(t) [X~(t)) is small, the errors are
small even in the a —+ b limit. The size of (Xg(t)~Xg(t))
simply represents the precision of the apparatus.

Repeated measurements by the third system of iden-
tically prepared spin-apparatus systems should yield
inferences of the values of a and b. These infer-
ences should be increasingly good as the number of
repetitions increases. The one "problem" encoun-
tered as a + b is that the actual value of a —b

falls below the precision of the apparatus. In this case
the third system could only conclude that a —b within
the experimental uncertainties. As long as the precision
of the apparatus is acceptable, there is no problem with
the apparatus in the a ~ b limit.

However, by choosing to look at the Schmidt decom-
position, one is looking at something which can be very
sensitive to a —b, as illustrated at the beginning of this
appendix. In the case where the magnitude of a —b

falls below the acceptable resolution of the apparatus,
one could argue that the Schmidt decomposition can be
very misleading. For example, the spin-apparatus sys-
tem could be in a state sufficiently close to Eq. (9) for
practical purposes, but the Schmidt decomposition could
yield something that looks completely difI'erent.

This more wary attitude toward the Schmidt decompo-
sition represents a step back from the enthusiasm I have
expressed on other occasions (see [18] at the very end of
Sec. IIB, for example).

APPENDIX B: GENERALIZED
MEASUREMENTS AND THE

ARROW OF TIME

The point of this appendix is to show that the 6nal
state in Eq. (31) has higher entropy (relative to the spin-
apparatus partition) than the generalized initial state
given by Eq. (30).

Equation (30) is manifestly in Schmidt form, and Eq.
(31) can be put in Schmidt form by collecting even and
odd terms together. For the initial state, the eigenvalues
of the density matrix are pq and p2. For the final state,
the eigenvalues are

The square root of the operator p2pI is de6ned in the usual
way. The operator is expressed in its eigenbasis and the square
root of its eigenvalues are taken.

p~ = pil(&11).l' + J2I(t 12)21' (B1)
(B2)
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�

/i+3, z 1 —A
I('t ll)zl' + l(t l»zl'

I

—1
2

(B4)

= & (l(t l»2 I' —
I
V' 12)21')

= & (21(t l»zl' —1) (B6)

where the normalization condition (g I f) =
I (t

ll)zl + l(t]2)zl = 1 was used in the final step. Since

The fact i(AIC) i ——i (HID)i ——0 is important for obtain-
ing Eq. (Bl).

Since the entropy is monotonically decreasing in lpi-
p21 it will suffice to show that Ipg

—pal & Ipi —p. l.
Without loss of generality I take pg ) pg and p~ ) p2-

pt —pl. = 2p~ —1 = 2 (»1(t ll) z I' + pz l(t I2) 21') —l.
(B3)

Now define L = p~ —p~. Using this definition and pq +
p2 ——1 on can rewrite Eq. (B3) as

(2I(g ll)z[2 —1) is manifestly bounded above by unity,
the desired result lpg

—pl I
( lpi —p2] is obtained.

APPENDIX C: SEARCH TECHNIQUE

Figure 1 is a "blow up" of a small portion of Fig. 3.
The reader might have noticed that the portion shown in
Fig. 1 is much closer to the "desired behavior" than any
other portion of Fig. 3. This is due to the fact that I did
a fair amount of Addling around, trying to choose param-
eters which would make a good quantum measurement.
The time range I looked at while searching parameter
space was the same range used in Fig. 1. Given this
search "technique, " it is not surprising that my search
ended on an atypical case. I stopped when I had found
what I wanted (within the window of Fig. 1). One could
say that Fig. 1 is slightly misleading. On the other hand,
one could just as well say that I understand the appara-
tus: I am able to prepare it in a suitable manner so that
a good measurement is performed, and the record is kept
for a specified period (in this case, 0.2 units of time). Just
about any apparatus must be dealt with in this way.
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