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Three postulates asserting the validity of conventional quantum theory, semiclassical general relativi-

ty, and the statistical basis for thermodynamics are introduced as a foundation for the study of black-
hole evolution. We explain how these postulates may be implemented in a "stretched horizon" or mem-
brane description of the black hole, appropriate to a distant observer. The technical analysis is illustrat-
ed in the simplified context of (1+1)-dimensional dilaton gravity. Our postulates imply that the dissipa-
tive properties of the stretched horizon arise from a course graining of microphysical degrees of freedom
that the horizon must possess. A principle of black-hole complementarity is advocated. The overall
viewpiont is similar to that poineered by 't Hooft but the detailed implementation is diferent.

PACS number{s): 04.60.+n, 97.60.Lf

I. INTRODUCTION

The formation and evaporation of a macroscopic black
hole is a complex process which certainly leads to a prac-
tical loss of information and an increase of thermal entro-
py. The same is true of almost all macroscopic phenome-
na. It is exceedingly diScult to keep track of all the de-
grees of freedom involved when a large block of ice melts
or a bomb explodes, but, in principle, it can be done. Ac-
cording to the standard rules of quantum field theory in a
fixed Minkowski spacetime, the time evolution of any sys-
tem from a given initial state is described unambiguously
by a unitary transformation acting on that state, and in
this sense there is never any loss of fundamental, Pne-
grained information.

The situation is less clear when gravitational effects are
taken into account. It has been suggested [1] that funda-
mental information about the quantum state of matter
undergoing gravitational collapse will be irretrievably
lost behind the event horizon of the resulting black hole.
In this view, the Hawking emission from the black hole is
in the form of thermal radiation, which carries little or
no information about the initial quantum state of the sys-
tem. If the black hole evaporates completely, that infor-
mation would be lost, in violation of the rules of quantum
theory. We believe such a conclusion is unnecessary [2].

This paper is based on the assumption that black hole
evolution can be reconciled with quantum theory, a
viewpoint which has been most strongly advocated by
't Hooft [3].' We shall introduce three postulates upon
which we believe a phenomenological description of
black holes should be based. These postulates extrapolate
the validity of the empirically well-established principles
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This viewpoint has been recently also been put forward in the

work of Schoutens, Verlinde, and Verlinde, in the context of a
two-dimensional toy mode1 [4].

of quantum theory, general relativity, and statistical
mechanics to phenomena involving event horizons. %'e
argue that a phenomenological description of black holes,
based on the idea of a "stretched horizon" which can ab-
sorb, thermalize, and reemit information, is consistent
with these postulates.

The postulates are the following:
Postulate 1. The process of formation and evaporation

of a black hole, as viewed by a distant observer, can be
described entirely within the context of standard quan-
tum theory. In particular, there exists a unitary S-matrix
which describes the evolution from infalling matter to
outgoing Hawking-like radiation.

This postulate agrees with the S-matrix approach of
't Hooft [3]. Furthermore, we assume there exists a
Hamiltonian which generates the evolution for finite
times.

The second postulate states the validity of semiclassical
gravitation theory, including quantum corrections to the
classical equations of motion, in the region outside a mas-
sive black hole. The semiclassical equations should con-
tain enough quantum corrections to account for the out-
going Hawking Aux and the evaporation of the black
hole.

Postulate 2. Outside the stretched horizon of a massive
black hole, physics can be described to good approxima-
tion by a set of semiclassical Aeld equations.

No consistent formulation of such a set of equations
has been achieved in four-dimensional gravity. Further-
more, the concept of a dynamical stretched horizon is
quite complicated for arbitrary time-dependent black
holes in four dimensions. The situation is much simpler
in two-dimensional gravity and recent months have seen
significant progress in constructing a semiclassical
description appropriate for Postulate 2. The stretched
horizon is easily defined in this simplified context. For
these reasons we shall illustrate the stretched horizon

The definition of the stretched horizon will be given in Sec.
III.
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idea using a two-dimensional toy model. The semiclassi-
cal equations, whose nature is partly field theoretic and
partly thermodynamic, describe the average energy Aow
and evolution of the horizon.

The third postulate is concerned with the validity of
black hole thermodynamics and its connection with Pos-
tulate 1. Specifically, we assume that the origin of the
thermodynamic behavior of the black hole is the coarse
graining of a large, complex, ergodic, but conventionally
quantum-mechanical system.

Postulate 3. To a distant observer, a black hole ap-
pears to be a quantum system with discrete energy levels.
The dimension of the subspace of states describing a
black hole of mass M is the exponential of the Bekenstein
entropy S(M) [5].

In particular, we assume there is no infinite additive
constant in the entropy.

The above three postulates all refer to observations
performed from outside the black hole. Although we
shall not introduce specific postulates about observers
who fall through the global event horizon, there is a
widespread belief which we fully share. The belief is
based on the equivalence principle and the fact that the
global event horizon of a very massive black hole does
not have large curvature, energy density, pressure, or any
other invariant signal of its presence. For this reason, it
seems certain that a freely falling observer experiences
nothing out of the ordinary when crossing the horizon.
It is this assumption which, upon reAection, seems to be
sharply at odds with Postulate 1. Let us review the argu-
ment.

Consider a Penrose diagram for the formation and eva-
poration of a black hole, as in Fig. 1. Foliate the space-
time with a family of spacelike Cauchy surfaces, as
shown. Some of the Cauchy surfaces will lie partly
within the black hole. Consider the surface X~ which
contains the point P where the global event horizon inter-
sects the curvature singularity. P partitions X~ into two

FICx. 1. Penrose diagram for black hole evolution.

disjoint surfaces XzH and X,„,which lie inside and out-
side the black hole, respectively.

Now assume that there exists a linear Schrodinger
equation, derivable from a local quantum field theory,
which describes the evolution of state vectors from one
Cauchy surface to the next. An initial state ~%'(X) &

defined on some Cauchy surface X which does not inter-
sect the black hole can be evolved without encountering
any singularity until the surface X~ is reached. On X~
the Hilbert space of states & can be written as a tensor
product space &=&sH%, „,of functionals of the fields
on XBH and X,„„respectively.

Next, consider evolving the state further to some sur-
face X in the future, as indicated in Fig. 1. The resulting
state, ~~p(X') &, represents the observable world long after
the black hole has evaporated. According to Postulate 1,
~%'(X') & must be a pure state which is related to the origi-
nal incoming state ~%(X) & by a linear operator S, the S
matrix. By assumption, ~%(X') & has evolved by the
Schrodinger equation from some state ~y(X,„,) & defined
on X,„„whichmust then also be a pure state. This, in
turn, implies that ~%(X~ ) & must be a product state:

where ~4(XBH) & E&iiH and y(X,„,) & K&,„,. The prod-
uct state is obtained by linear Schrodinger evolution from
the initial state ~%(X) &, but as seen above, the external
factor ~y(X,„,) & alone depends linearly on ~'p(X) &, so we
arrive at the conclusion that the state inside the black
hole, ~4(XBH) &, must be independent of the initial state.
In other words, all distinctions between initial states of
infalling matter must be obliterated before the state
crosses the global event horizon. But this is an entirely
unreasonable violation of the equivalence principle.
Therefore, the argument goes, the outside observer can-
not see a pure state.

Although this conclusion seems to follow from fairly
general principles, we believe it is unwarranted. The as-
sumption of a state ~%(X~) & which simultaneously de-
scribes both the interior and the exterior of a black hole
seems suspiciously unphysical. Such a state can describe
correlations which have no operational meaning, since an
observer who passes behind the event horizon can never
communicate the result of any experiment performed in-
side the black hole to an observer outside the black hole.
The above description of the state lying in the tensor
product space &BH&, „,can only be made use of by a
"superobserver" outside our Universe. As long as we do
not postulate such observers, we see no logical contradic-
tion in assuming that a distant observer sees all infalling
information returned in Hawking-like radiation, and that
the infalling observer experiences nothing unusual before
or during horizon crossing. Only when we try to give a
combined description, with a standard quantum theory
valid for both observers, do we encounter trouble. Of
course, it may be argued that a quantum field theoretic
description of gravity dictates just such a description,
whether we like it or not. If this is the case, such a quan-
turn field theory is inconsistent with our postulates; there-
fore, one or the other is incorrect.
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Let us now consider the process of formation and eva-
poration of a black hole as seen by a distant observer. It
is well known that the physics of a classical, quasistation-
ary black hole can be described by outside observers in
terms of a "stretched horizon, " which behaves in all
respects like a physical membrane with certain mechani-
cal, electrical, and thermal properties [6—9]. The
description is coarse grained in character, by which we
mean that it has the typical time irreversibility and dissi-
pative properties of a system described by ordinary ther-
modynamics.

The membrane is very real to an outside observer. For
example, if such an observer is suspended just above the
stretched horizon, he or she will observe an intense flux
of energetic radiation apparently emanating from the
membrane. If provided with an electrical multimeter,
our observer will discover that the membrane has a sur-
face resistivity of 377 ohms. If disturbed, the stretched
horizon will respond like a viscous Quid, albeit with nega-
tive bulk viscosity. And finally, the observed entropy of
the massive black hole is proportional to the area of the
stretched horizon. If, on the other hand, the observer at-
tempts to determine if the membrane is real by letting go
of the suspension mechanism and falling freely past the
stretched horizon, the membrane will disappear. Howev-
er, there is no way to report the membrane's lack of sub-
stance to the outside world. In this sense, there is com-
plementarity between observations made by infalling ob-
servers who cross the event horizon and those made by
distant observers.

We believe that Postulates 1 —3 are most naturally im-
plemented by assuming that the coarse-grained thermo-
dynamic description of an appropriately defined stretched
horizon has an underlying microphysical basis. In other
words, from the point of view of an outside observer, the
stretched horizon is a boundary surface equipped with mi
crophysical degrees offreedom that appear in the quantum
Hamiltonian used to describe the observable world. These
degrees of freedom must be of sufficient complexity that
they behave ergodically and lead to a coarse-grained dis-
sipative description of the membrane.

Much of this paper is concerned with the illustration of
the concept of the stretched horizon in the context of
two-dimensional dilaton gravity, for which a semiclassi-
cal description has been formulated [11—26]. We review
this formalism in Sec. II. In Sec. III we define the
stretched horizon and study its behavior and kinematics.
The definition of the stretched horizon which we find
most useful differs somewhat from that used for classical
black holes in Ref. [9]. Our semiclassical stretched hor-
izon is minimally stretched, in that its area is only one
Planck unit larger than the area of the global event hor-
izon itself, whereas in Ref. [9] the areas of the two hor-
izons differ by a macroscopic amount. The evolution of
the stretched horizon can be followed throughout the en-

tire process of black hole formation and evaporation, ex-
cept for the final period when the black hole is of Planck-
ian size. In Sec. IV, we show that the stretched horizon
has statistical Auctuations which cause its area to under-
go Brownian motion, and to diffuse away from its classi-
cal evolution. The semiclassical theory does not provide
a microphysical description, but it helps in formulating a
kinematic framework for one. In Sec. V we examine
consequences of the postulates.

Our assumptions have as consequences certain broad
features of the way information is stored in the approxi-
mately thermal Hawking radiation. The information is
not returned slowly in far-infrared quanta long after most
of the infalling energy has been reradiated. Nor is it
stored in stable light remnants. It is instead found in
long-time nonthermal correlations between quanta emit-
ted at very different times, as advocated by Page [27].
The viewpoint of this paper is essentially that of 't Hooft
[3]. However, we believe that the stretched horizon is a
very complex and chaotic system. Even if the microscop-
ic laws were known, computing an S matrix [3,4] would,
according to this view, be as daunting as computing the
scattering of laser light from a chunk of black coal. The
validity of quantum field theory in this case is not assured
by exhibiting an S matrix, but by identifying the underly-
ing atomic structure and constructing a Schrodinger
equation for the many particles composing the coal and
the photon field to which it is coupled. Although the
equations cannot be solved, we nevertheless think we un-
derstand the route from quantum theory to apparently
thermal radiation via statistical mechanics. In the case of
the stretched horizon, the underlying microphysics is not
yet understood, but we hope that the semiclassical con-
siderations in this paper will help in identifying the ap-
propriate degrees of freedom.

II. TWO-DIMENSIONAL DILATON GRAVITY

It is very useful to have a simplified setting in which to
study black hole physics. Callan, Giddings, Harvey, and
Strominger (CGHS) suggested for this purpose two-
dimensional dilaton gravity coupled to conformal matter
[11]. Their model can be exactly solved at the classical
level and has solutions which are two-dimensional ana-
logs of black holes. Quantum corrections are much more
amenable to study in this theory than in four-dimensional
Einstein gravity. In this section we will review the classi-
cal theory and then show how quantum corrections can
be implemented via a set of semiclassical equations which
can be solved explicitly. This material is not new but it
serves to fix notation and makes our discussion for the
most part self-contained.

A. Classical theory

3A similar view has been expressed by 't Hooft [10].
The classical CGHS model of two-dimensional dilaton

gravity is defined by the action functional
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So[f, , g, g]= f d x& —g e ~[R+4(VQ) +4k, ]= 1 The vacuum solution is given by

=0,
N

——g (V'f;)'
2 (2.1)

—2P e
—2p y+ (2.13)

It can be viewed as an effective action for radial modes of
near-extreme magnetically charged black holes in four-
dimensional dilaton gravity [11—13]. The two-
dimensional length scale X is inversely related to the mag-
netic charge of the four-dimensional black hole. For con-
venience, we shall choose units in which A, = 1. In the re-
gion of the four-dimensional geometry where the two-
dimensional effective description applies, the physical ra-
dius of the local transverse two-sphere is governed by the

—(x' x")dilaton field, r(x, x')=e ~' '" '. The area calculated
from this radius is proportional to the Bekenstein entropy
of the four-dimensional black hole and accordingly we
will refer to the function

(2.2)

as the classical "area" function in the two-dimensional
effective theory. The classical equations of motion are

2V„V' P —2g„[VP
—(VP) +1]—e ~T„=O, (2.3)

—,'R +V P —(VP) + 1=0,
V f, =o,

(2.4)

(2.5)

where T„is the matter energy-momentum tensor, given
by

NT„=—g [Vg, V f, —
—,'g (Vf, )'] .

2
(2.6)

2d+Q 48+$8~ —e~T++ =—0,
4a, ya y

—2a a y+e"=0,
2a a p 4a, a y+4a,—ya y+e'~=0,
a a f,. =o,

(2.7)

(2.8)

(2.9)

(2.10)

and the nonvanishing components of the matter energy-
momentum tensor are given by

1 N

T++ =
2 g (~+f; )' .

i=1
(2.11)

The action (2.1) written in conformal gauge has a global
symmetry generated by the conserved current
j"=V"(p—P), and thus

a, a (p —y)=o. (2.12)

This equation allows one to fix the remaining subgroup of
conformal transformations by choosing coordinates in
which p=P. We will denote any set of light-cone coordi-
nates in which p =P as Kruskal coordinates

To solve the above equations we go to conformal gauge
and choose light-cone coordinates (x+,x ) in which the
line element is ds = —e Pdx+dx . The equations of
motion are then

If we define new coordinates u+— by the transformation

y =+e+—,we find that the spacetime can be identified
as two-dimensional Minkowski space, with line elements
ds = —do+do . In these coordinates, the dilaton field
is given by

tr = —
—,
'

( o + —o )
=——o, (2.14)

and thus this solution is called the linear dilaton vacuum.

B. Classical black holes

A black hole is defined as a region of spacetime which
does not lie in the causal past of future null infinity 2+,
i.e., light rays which have their origin inside the black
hole can never escape to 7+. The global event horizon,
denoted by KG, is the boundary of the black hole region.
It is a null surface representing the last light rays which
are trapped by the black hole. It is important to note
that the definitions of the black hole region and global
event horizon are not local. To define a black hole and
its global event horizon one must have knowledge of the
entire spacetime manifold —in particular, one must be
able to find the causal past of 2+. As a result, observers
will not be able to tell when they pass through the global
event horizon of a massive black hole.

The linear dilaton vacuum solution (2.13) can easily be
generalized to a one-parameter family of static black hole
solutions:

, =0,
e 2& =e 2P =M —y+y

(2.15)

where Mp&0 is proportional to the Arnowitt-Deser-
Misner (ADM) mass of the black hole. The scalar curva-
ture is given by

4MpR=
Mp —y+y

(2.16)

f;=f; (y'),
e ~=e t'=M(y+) —y+[y +P+(y+) P], —(2.17)

where M(y+ ) and P+ (y+ ) are the following functions of
the infalling matter:

which becomes infinite when Mp —y+y =0. Thus there
are two curvature singularities, which asymptotically ap-
proach the null curves y

—=0. The Penrose diagram for
this solution is displayed in Fig. 2. One of the curvature
singularities does not lie in the causal future of any point
of the spacetime and is the singularity of a white hole.
The other, of course, is the black hole singularity.

A more physically interesting set of solutions describes
black hole formation by incoming matter,
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singularity tities can be defined unambiguously. We define tortoise
coordinates (t, cr ) as

t =
—,
' ln( —y+ly ),

o =
—,
' ln( —y+y ) .

(2.20)

The line element of the gravitational collapse solution
(2.17) takes the form

ds =A(t, o )( dt—+do ), (2.21)

singularity

FIG. 2. Penrose diagram for the eternal black hole solution.

where

A(t, cr ) = [1+M(t,o )e ~ —[P+ (t, o ) P„]—e"
(2.22)

+
M(y+)= f du uT++(u),

+
P+(y+)= f du T++(u),

0

(2.18)

and P„=P+(y = ~ ). The scalar curvature is

4M(y )

[y +P+(y') —P. ]
(2.19)

The functions f;+ are taken to be nonvanishing only on
the interval [y &+,y2+ ]; i.e., the matter flux is switched on
for a finite time interval. For y+ (y&+, the solution
reduces to the linear dilaton vacuum (2.13) with y shift-
ed by P„and, for y+ &y2+, the solution is an eternal
black-hole solution described by (2.15) with Mo replaced
by M„=M(y+= ao ). The Penrose diagram is shown in
Fig. 3. The global event horizon HG is the curve y =0.

Kruskal coordinates are not convenient for the descrip-
tion of processes by an external observer. One would like
to find a coordinate system which covers only the region
exterior to the black hole, and reduces to Minkowski
coordinates far from the black hole so that physical quan-

The tortoise coordinates are asymptotically Aat, and the
line element is conformal to that of Minkowski space.
The global event horizon is at t = ~, o. = —~, and, for
the eternal black-hole solution, (BIBt) is a timelike Kil-
ling vector. The light-cone coordinates o.—= t+o. exactly
cover JR and J~, respectively, so we see that tortoise
coordinates are the coordinates appropriate for the
description of processes as seen by asymptotic inertial ob-
servers. They provide a time variable which covers the
entire region accessible to an outside observer and we as-
sume the existence of a Hamiltonian, which generates
translations of this time variable.

C. Semiclassical theory

Our second postulate assumes that a semiclassical ap-
proximation to gravitation theory can be developed sys-
tematically. In the simplified world of two-dimensional
dilaton gravity this can be achieved by the addition of
certain quantum corrections to the classical equations of
motion, as first described in the ground-breaking work of
Callan et al. [11]. These corrections arise from the con-
formal anomaly of the matter fields in the theory, which
takes the form

&T ~&=
24

(2.23)

singularity The semiclassical CGHS model is obtained by adding to
the classical action (2.1) the associated Liouville term:

SL = — f d x+ —g(x) f d x'v' g(x')R (—x)96~

XG(x;x')R(x'), (2.24)

FIG. 3. Penrose diagram for the infall solution.

where G is a Green's function for the operator V . This
incorporates the leading-order quantum back reaction on
the geometry due to the matter fields. The original
CGHS equations have not been solved in closed form (see
Ref. [26] for results of numerical studies) but subsequent
work led to a set of semiclassical equations which can be
solved exactly [20—23]. In the following we will use the
model introduced by Russo, Susskind, and Thorlacius
(RST) and give a summary of the results of [23,24]. This
model is obtained by including in the effective action a lo-
cal covariant counterterm,
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Jd x&—g PR, (2.25)

S,s= —fd y e ~(2a+a p 4a+—Qa P+e ~)

in addition to the nonlocal Liouville term. This turns out
to simplify the analysis and physical interpretation of the
semiclassical solutions.

We work in conformal gauge and use light-cone coor-
dinates (y+,y ). The effective action becomes

role as the surface r =0 in the Schwarzschild solution of
four-dimensional Einstein gravity. Accordingly, we have
to impose a boundary condition on y„when it is time-
like. Following Ref. [24], the boundary condition we use
is to require the scalar curvature to be finite on y„.This
boundary condition implements a weak form of the cos-
mic censorship hypothesis, in that curvature singularities
on y„wi11necessarily be spacelike and cloaked by a glo-
bal event horizon, except possibly for isolated points.

We next define the fields

1 N
+—ya, ja j;2

—x(a+pa p+ pa+a p)

Q=e ~+ —P,2

y=e ~+~(p —
—,'P),

(2.26) for which the effective action takes the simple form

(2.31)

where le=A/12. The constraint equations, which follow
from varying g++, are

S =— d y —
(
—a+pa y+a+Qa fl)+e '~1 1

K

(e ~+a/4)(2a p —4a~a Q)

K[a+p (a+~) t+ ] T++ 0 (2.27)

N
+—g a+f;a f;—2

(2.32)

Here T++ is the physical, observable Aux of energy
momentum. There are subtleties involved in the regulari-
zation of the composite operator. We define T++ to be
normal ordered with respect to the asymptotically Min-
kowskian tortoise coordinates (2.20).

The functions t+(y )refiec—t both the nonlocal nature
of the anomaly and the choice of boundary conditions
satisfied by the Green's function G. They are fixed by
physical boundary conditions on the semiclassical solu-
tions.

If we define the two-component vector

(2.28)

then the kinetic terms in the action (2.26) may be written
(a+@)M(a 4), and one finds that

' —1/4
det(M )

4
K

4
(2.29)

plays the role of the gravitational coupling constant for
the f; fields. This coupling becomes infinite on a curve
y„onwhich the classical area function (2.2) takes on the
value

A„=i~/4 . (2.30)

The curve y„has been interpreted to be a boundary of
the semiclassical spacetime [17,24], which plays the same

We will not go into the technical issues involving reparame-
trization ghosts, etc., which are involved in the determination of
the value of K. Our goal here is limited to obtaining exactly
solvable equations, which incorporate the leading semiclassical
corrections and exhibit reasonable physical behavior, such as
having a rate of Hawking radiation proportional to the number
of matter fields.

The resulting equations of motion and constraint equa-
tions are

a+a y=~+a n= —e'[~-~]/. (2.33)

(2.35)

where

K K0 =Q(y )=— 1 —in-cr cr 4 4

With this definition the area vanishes at the boundary
curve.

The effective action (2.32) has a symmetry generated by
the same conserved current as we had in the classical
theory:

j"=V"(p—P)= —V"(y —fl) .=1
K

We can therefore again choose Kruskal coordinates, in
which y=Q, and the general solution of (2.33) takes the
form

x(y+ y

=~+(y+)+~ (y )
—y+(y —&„), (2.36)

5Note that the normalizations of the fields 0 and y defined
here ditfer by a factor of &a from those given in Refs. [23,24].

1—[(a n)' —(a q)']+a'g+T —vt =0. (2.34)
K

The field Q can be viewed as a quantum corrected area
function. At the horizon of a massive black hole it agrees
to leading order with the classical area function (2.2).
More specifically, we will define the semiclassical area
function as
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where the functions a+ satisfy

B+lx+ = T++ Kt+2 (2.37)

and in region II it is the vacuum solution given by

0= —y+y ——ln( —y+y ) .
4

(2.40)

D. Semiclassical solutions

It was observed in Ref. [23] that the global causal na-
ture of dynamical semiclassical geometries depends on
the incoming energy Aux. If the Aux remains below a cer-
tain critical value,

T++ (o+ ) (x./4, (2.38)

——ln[ —y+(y —&„)],
4

(2.39)

then no black hole is formed. We will describe such low-
energy solutions later on. Let us first focus on the case
when the incoming Aux is above the critical value for
some period of time, 0&o.+ &~. The boundary curve
then becomes spacelike and develops a curvature singu-
larity. A global event horizon HG separates the black
hole region from the outside world. The geometry
representing the black hole history in the semic1assical
approximation is shown in Fig. 4. The event horizon in-
tersects the spacelike singularity at the end point of the
evaporation process, (yE,yE ). The line segment

y =yE, y+ &yE+ is the global event horizon. The exten-
sion of this line to y+ & yE was called the thunderpop in
Ref. [23], and it divides the spacetime into two regions
called I and II as shown in Fig. 4. Region II represents
the spacetime after the last bit of Hawking radiation has
gone past and therefore it is vacuumlike. Region I cov-
ers the rest of the spacetime.

The solution in region I is

0= —y+[y +P+(y+) —&„]+M(y+)

Note that the global event horizon is not at y =0, as it
was in the classical case, but rather at

P
4M /g

e
(2.41)

For a large black hole mass, yE is exponentially close to
zero. The line y =0 still has special significance. First
of all it is the asymptotic limit of the boundary curve y„
as y+ —+ ~. Therefore, it defines the boundary of the re-
gion covered by the tortoise coordinates which are ap-
propriate for asymptotic observers. Furthermore, if it
were possible for signals to propagate through the singu-
larity along lines of constant y and reappear in the final
vacuumlike region, then y =0 would indeed be the glo-
bal horizon. We will call it the ultimate horizon. At any
rate, for massive black holes the values of y at the ulti-
mate and global horizons are extremely close.

If the incoming energy Aux remains below its critical
value at all times the boundary curve is everywhere time-
like. Semiclassical solutions will have singularities there
unless appropriate boundary conditions are imposed
[23,24]. The curvature will be finite at the timelike
boundary if and only if

~++~& &„=~+~& —n,„= (2.42)

These boundary conditions, along with the semiclassical
equations of motion, are sufhcient to uniquely determine
both the shape of the boundary curve and the values of
the semiclassical fields everywhere in spacetime, for a
given incoming energy Aux. We shall describe some of
these solutions in Sec. III C. Despite having some attrac-
tive features these semiclassical solutions have some un-
physical properties. This was part of our motivation to
develop a more physical picture in terms of a "stretched
horizon.

III. THE STRETCHED HORIZON

FIG. 4. Semiclassical black hole formation and evaporation
in Kruskal coordinates.

Our postulates require us to build a theory in which a
distant observer makes no reference to events inside a
black hole. For this purpose it is very useful to introduce
the idea of a stretched horizon Hz, which is a visible
timelike curve, in front of the global event horizon of the
black hole. Each point on Hz is identified with a point
on HG, so the stretched horizon can act as a "surrogate"
for the global horizon in a phenomenological description
of black hole evolution.

A. Definition and properties of the classical stretched horizon

The sharply defined end point of the Hawking emission is
presumably an artifact of the semiclassical approximation in

this model. A more physical behavior would be for the outgo-
ing Aux to die out gradually. We will return to this point in Sec.
III D.

We define the classical stretched horizon as follows.
Consider the classical area function (2.2) along the global
event horizon. For a black hole formed by gravitational
collapse, depicted in Fig. 3, this area increases with y+
until the black hole has settled to its final size. We define
the stretched horizon by mapping each point m on the
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event horizon back along a past-directed null line (away
from the event horizon itself) to a point p at which

A(p) =A(m)+6, (3.1)

The simplicity of the stretched horizon becomes even
more apparent in the tortoise coordinates (2.20). While
the event horizon lies at t = ~ and o. = —~, the
stretched horizon is at fixed spatial position

~s=-,' inn . (3.3)

Thus the stretched horizon can receive and emit signals.
Furthermore, to distant observers, clocks at the event
horizon appear infinitely slowed, while they appear to run
at a finite rate at the stretched horizon. For an eternal
black hole of mass Mo, proper time ~ along Hz is related
to coordinate time t by

1/2

dc= dt . (3.4)

where 5 is an arbitrary small constant. This results in a
timelike curve as indicated in Fig. 5.

Note that our definition differs from that given in Ref.
[9]. There the shift in the area between the global event
horizon and the stretched horizon scales like the horizon
area itself. For a massive black hole our stretched hor-
izon is thus much closer to the event horizon. Our
definition is better suited for the semiclassical theory of
two-dimensional gravity considered here, and may also be
appropriate for the quantum description of black holes in
four spacetime dimensions. For the classical black hole
solutions (2.17) one finds the remarkably simple result
that in Kruskal coordinates the stretched horizon curve
is independent of the incoming energy fiux, T++(y+),
and the curve is given by

(3.2)

which is independent of the mass. Since temperature has
units of energy, then in proper time units at the stretched
horizon the temperature is

1 dt
2' (3.5)

d'As
+ 2

= —T+~(y+) .
(dy+ )

(3.7)

Transforming to tortoise coordinates, one can param-
etrize H~ by the tortoise time t =lny+ —

—,
' ln5. Equation

(3.7) then becomes

s
dt2

dAs
dt

2

dt
T++(y+) = —T++(~+)

(3.8)

From (3.5) it appears that the local temperature at the
stretched horizon increases with Mo. This is a bit
misleading, because the analogue of the Planck length in
two-dimensional dilaton gravity depends on the local
value of the dilaton field, according to Ipl e~. At the
stretched horizon, the dilaton field satisfies e
=+MD+5, so (3.5) implies that, measured in Planck
units, the temperature at the stretched horizon is in-
dependent of the mass. This result also holds for four-
dimensional black holes as we will see in Sec. V A.

Let us continue examining the classical behavior of the
stretched horizon. Consider the evolution of the area A
on H&. Parametrizing H& by y+ and substituting the
definition (3.2) of Hs into the gravitational collapse solu-
tion (2.17) we find

Az(y+ ) =M(y+ )+5—y+ [P+ (y+ ) P„],—(3.6)

which, when differentiated twice, gives

Finally, one can consider the Hawking temperature of
a massive two-dimensional dilaton black hole, T=1/2~,

singularity

where the quantity T++(o ) is the incoming physical
Aux of energy as seen by a distant observer. There are
two interesting features of (3.8). The first has to do with
the nature of the boundary conditions on the solutions of
the equation. In general, the stretched horizon will begin
to grow even before any energy crosses it. From (3.8) we
see that before T++ becomes nonzero, A& has the solu-
tion

As(t) =Ce' . (3.9)

The choice of the constant C is dictated by anal condi-
tions. As t~ ~, a black hole is present with mass M„.
The area of the stretched horizon of such a black hole is

(3.10)

FIG. 5. Construction of the classical stretched horizon.

and thus (3.10) is the boundary condition one must im-
pose on the solution of (3.8). This means that the initial
state of the stretched horizon must be tuned in conjunc-
tion with the incoming matter distribution so that (3.10)
is satisfied. This strange feature has been referred to in
the membrane paradigm literature as the "teleological
boundary condition" [9]. We will show in Sec. III D how
the equations can, in fact, be given a more conventional
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E= —V,f, B=V f .

The equation of motion for the f field is

V f= —41TJ,

(3.1 1)

(3.12)

where we have introduced a source j. Writing this equa-
tion in terms of the fields E and B, we obtain an inhomo-
geneous "Maxwell" equation

and causal interpretation.
The second interesting feature of (3.8) is the dissipative

term dA. s/dt. It breaks time-reversal symmetry much
like a friction term in ordinary mechanics. The presence
of dissipative terms in mechanics is generally associated
with the production of heat and the increase of thermal
entropy. In the classical case, the temperature of the
black hole is zero, but in the semiclassical case the tem-
perature increases when the black hole is formed, and the
stretched horizon appears to radiate like a thermally ex-
cited blackbody.

In the limit of large black holes, we can also consider
the theory of a massless matter field f propagating in the
black hole background. We find that the equations
governing the matter fields interacting with the stretched
horizon also exhibit dissipation. In the case of a four-
dirnensional black hole interacting with electromagnetic
fields, the phenomenon of dissipation is described by at-
tributing an ohmic resistance to the membrane. A simi-
lar description can be given for two-dimensional dilaton
black holes. Indeed, the theory of a massless field f bears
a useful resemblance to ordinary classical electrodynam-
ics, with f playing the role of the vector potential. We
work in the tortoise coordinates (2.20) and define the
"electric" and "magnetic" fields E and B by

condition for points on the stretched horizon:

ln 1
4 P (3.15)

—y+y =K/4 . (3.16)

In tortoise coordinates, the stretched horizon is given by
the curve

1 K
& (t)= —ln — =oS 2 4 S (3.17)

Let us now consider the black hole evolution in tor-
toise coordinates as shown in Fig. 6. The incoming Aux is
assumed to be vanishing outside the interval 0&o.+ &~.
For y+ & 1, i.e., o.+ &0, we have the initial linear dilaton
vacuum and the boundary curve is given by

P e —2t

&„(t)=ln 1+ (3.18)p2

In the remote past, this curve tends to

where we have used the black-hole solution (2.39). If the
incoming energy is large, then y /P will be very small
on Hs, except in the extremely early stages of its evolu-
tion. Thus, we will drop the log term in the definition.
In the classical case, 6 is an arbitrary small number. In
the semiclassical theory, there is a natural choice,
5 =x j4, for which the area of the stretched horizon van-
ishes in the asymptotic past and future when there is no
black hole. This implies that the stretched horizon will
coincide with the boundary curve y„in these limits.
Thus, we define the stretched horizon to be the set of
points satisfying the condition

V,E+V B=—4mJ . (3.13)

We can also obtain the homogeneous "Maxwell" equa-
tion V E+V,B=O.

Now we consider the interaction of the f field with the
stretched horizon, which, from the point of view of an
external observer, is a boundary absorbing all incoming
waves. This behavior can be modeled by attributing a
resistance to the stretched horizon:

P
a „(t)~crs— —e' .

K
(3.19)

V,E+V B=—4m.ps '5(o —os)E . (3.14)

An incoming f wave will be completely absorbed if and
only if p=4m. This is the analogue of the surface electri-
cal resistivity of a four-dimensional black hole. The
power absorbed by the stretched horizon is ps '(d,f ),
which can be thought of as ohmic heating. When quan-
tum corrections are included, the heat is radiated back as
Hawking radiation.

B. The semiclassical stretched horizon

In defining the stretched horizon of a semiclassical
black hole, we find it more convenient to refer to the ulti-
mate horizon at y =0 than the event horizon (2.41).
For a large black hole, the difference is negligible. We
also replace the classical area function (2.2) by its semi-
classical counterpart (2.35). This leads to the following

a=as

FIG. 6. Black hole evolution in tortoise coordinates.
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We see that the boundary begins to separate from the
stretched horizon at a time

As(y+ ) =M(y +
) —y+ [P~ (y+ ) P—„]

t*=—lnP + —,
' ln~ . (3.20) +— 1 —ln —+y PK K

4 4
(3.25)

The incoming matter arrives at the stretched horizon at
time to= —O.s. Consequently, we see a period of time
-lnP during which the boundary moves in anticipation
of the infalling matter. It continues to move toward
cr = —ao with a velocity which approaches that of light.

A second boundary curve passes through the naked
singularity at the end point of the black-hole evaporation.
Behind the stretched horizon the second boundary curve
is spacelike and coincides with the curvature singularity.
This is shown in Fig. 6. The semiclassical viewpoint is
that the infalling matter becomes trapped between these
boundary lines and disappears into a spatially disconnect-
ed region. However, our postulates do not require us to
pay any attention to this region, as it lies behind the
stretched horizon.

Now let us turn to the outgoing Hawking radiation.
Using the ( ——) constraint, Eq. (2.34), one finds the out-
going Hawking Aux

K 1T (t, a )=—1 — 6(t t +cr —o—) .
4 (1 P (t —cr))2

(3.21)

where

tF =ln(e " —1)—ln(P„)+crs
=4M /l~ —ln(P )+o.s .

The outgoing Aux has its leading, albeit somewhat fuz-

zy, edge along the null curve

o. t =ln(P„). — (3.22)

Tracing this line back to the stretched horizon we find
that it intersects the stretched horizon at the time

t*= to —lnP (3.23)

If we interpret the outgoing thermal radiation as origi-
nating on the stretched horizon, it begins at a time well
before the incoming matter arrives. For early times, the
semiclassical area of the stretched horizon is approxi-
mately

] p2 2ts-2 (3.24)

The radiation begins just as the area of the stretched hor
izon begins to increase. The radiation has turned on by
the time the area (and entropy) of the stretched horizon
have increased to their values at t*, given by A* =~/8.

The correspondence between the onset of Hawking ra-
diation and the excitation of the stretched horizon is
unexpected. From a strictly local point of view, nothing
special is happening at this point.

It is straightforward to generalize the equation (3.8)
governing the evolution of the area of the stretched hor-
izon. Using (2.39) and (3.16) and parametrizing Hs by
y+, we find

Differentiating twice with respect to y
+ and transforming

to tortoise coordinates gives

d'A,
dt

dAs
dt

= —T++ (thos)

K 1+-
[ I+(l~/4P )exp[ —(os —t )]]2

(3.26)

Once the stretched horizon area is significantly greater
than li/4, the second term on the right-hand side can be
simplified to ~/4, giving

dAs
dt

dAs = —T++(& ~s)+ —.
dt ' 4

(3.27)

dAs/d (3.28)

The area, entropy, and mass of the black hole tend linear-
ly to zero. The entire process from to to the end point at
which A s returns to its initial value takes a time
t =4M/~, during which a constant Aux of Hawking radi-

The second term on the right-hand side of (3.27)
represents the effects of the outgoing Hawking radiation
on the evolution of As. For example, we see that a sta-
tionary solution is possible if T +(+t, o. )=~/4. In this
case, the incident energy Aux is just sufhcient to balance
the outgoing thermal radiation. In Sec. IV, we will see
that things are somewhat more complicated, and that A s
has a Brownian motion superimposed on its average
motion.

Let us now review the process of formation and eva-
poration as seen by a distant observer using tortoise coor-
dinates. The infalling matter is scheduled to begin pass-
ing the stretched horizon at time to. However, well be-
fore this, at time to —lnP, the stretched horizon begins
to separate from the boundary, and its area increases by
an amount of order x/8. Assuming the standard connec-
tion between entropy and area, this is the point at which
the stretched horizon becomes thermally excited. The
distant observer sees the onset of Hawking radiation orig-
inating from this point. At the time to, the infalling
matter is swallowed behind the stretched horizon, which
continues to radiate. If we assume that there are micro-
physical degrees of freedom which underlie the thermo-
dynamic description, to is the first opportunity for them
to feel the infalling matter. Therefore, at least for the ini-
tial time of order lnP, no information can be stored in
the Hawking radiation [4].

After the infalling matter is absorbed, the area begins
to decrease. The acceleration term in (3.27) goes to zero,
and As satisfies
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We now consider the case in which the incident energy
fiux remains below the critical value «./4 for all time.
The resulting geometry and outgoing Aux of radiation
was obtained in Ref. [24]. Here we will transcribe some
of those results into tortoise coordinates. Assume that
the incoming energy fiux T++(o+) vanishes outside the
interval 0&a+ &~. The timelike boundary curve y„is
obtained by solving the equations of motion (2.33) subject
to the RST boundary conditions (2.42). In tortoise coor-
dinates, y„satisfies the equation

&,( t) ~ —o,(t)
e " ——e " = — ds e 'T++(t+s) .

&,( t)
(3.29)

As in the black-hole case, in the remote past the bound-
ary curve tends to a fixed spatial position,

1o. =—lns 2 4
(3.30)

which we will continue to call the location of the
stretched horizon, even though no black hole is formed.
The boundary begins to move exponentially in anticipa-
tion of the incoming matter, as it did in the black-hole
case, but this time y„remains timelike throughout the
evolution, and eventually returns to the stretched horizon
at the time tI =~—o.s. This is shown in Fig. 7.

The outgoing Aux is obtained by applying the reAection
conditions [24]

ation is emitted by the stretched horizon. As we shall see
in Sec. IV, the entire semiclassical evolution is accom-
panied by random Brownian Auctuations, which intro-
duce an uncertainty of order v'M to the lifetime of the
process.

C. Incident Aux below the black hole threshold

P
&„(t)=crs — e' .

«
(3.32)

The boundary curve continues to recede from the
stretched horizon until the incoming Aux intersects y„,
as shown in Fig. 7. If T is much smaller than ~/4, the
boundary curve never moves appreciably away from the
stretched horizon, but if T is close to «/4, y„moves deep
into the region of negative o.. The maximum coordinate
distance between y„andHs is

1 K
o =—ln ——T(1—e ')

mRx 2 4
(3.33)

which occurs at time t,„=—o. ,„.After that the
boundary curve begins to return to the stretched horizon.
How fast it returns depends on the parameters T and ~.
In the limit of very long duration of the incoming energy
Aux, ~&&1, the boundary remains practically stationary
for a long time at its maximum distance, but eventually it
returns and arrives back at the stretched horizon at time
t&=~—o.s. If, on the other hand, the duration of the in-
coming energy Aux is relatively short the boundary curve
rapidly returns and approaches Hs with a velocity

T
«/2 —T

(3.34)

where &„(o ) denotes the boundary curve y„+

parametrized by o. . Note that this prescription for
reAecting energy Aux does not involve boundary condi-
tions imposed directly on the matter fields.

It is instructive to consider a constant incoming energy
fiux, T++ (o +

) = T, of duration r. The early time
behavior of the boundary curve is given by

G=CZg

FICz. 7. Subcritical Aux of incident matter.

(3.31)
When the incoming energy Aux goes to the critical value
«/4 this velocity approaches the speed of light.

In Ref. [24], it was speculated that the critical bound-
ary might behave like a moving mirror refiecting the f;
fields. We can now see that this can only be consistent in
the limit of small incoming energy fiux, T ((«./4. For if
T =«/4, the incoming radiation would be met by a very
relativistic mirror, which would greatly blueshift the
re Aected radiation. In addition, accelerated mirrors
create incoherent quantum radiation of net positive ener-
gy. The result would be far more energy output than the
total incoming energy. It is therefore clear that only a
tiny fraction of the incident energy can be coherently
refiected by the boundary when T =«/4.

The outgoing flux of energy can be calculated from
(3.31) and one finds that almost all of the energy is radiat-
ed back before the incoming signal could have been
reAected from the boundary curve y„.The following
odd rule gives a better account of the energy output as
determined by the RST boundary conditions in the case
T=«/4: assume that at time t"= —ln(P /v «), when
the boundary curve y„separates from Hs, the stretched
horizon becomes thermally excited to a temperature
T=1/2m. Assume that the hot horizon emits thermal
radiation at a fixed rate until time t&. The total radiated
energy will be
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(3 35) and the field 0 is given by

which accounts for about the right amount of energy out-
put. We will provide further motivation for this alterna-
tive viewpoint in the following subsection.

Another interesting point concerns the fate of the con-
served charges associated with the global O(N) symmetry
of the matter fields. Only when the energy Aux T is much
less than rc/4 can the boundary curve consistently behave
like a mirror, rejecting both the energy and the con-
served charges. When T=~/4, almost all the energy is
radiated before the charges have an opportunity to
refiect. If a large total charge of order (t& t*) cam—e in
and was rejected, it would have to be carried by a small
energy, of order ~. In other words, it would have to be
carried out in the form of quanta with energy of order
rcl(t~ —t*) which would take a very long time. It is easy
to see, however, that as T approaches rc/4, the refiected
region does not spread out as it would have to if it were
composed of quanta of ever lower energy. Therefore,
only a small amount of conserved charge can be rejected.
In addition to thermalizing the incident energy, the pro-
cess must also destroy the conservation of quantum nurn-
bers.

Another failure of the boundary to behave like a mir-
ror can be illustrated by considering an interruption in an
otherwise uniform incoming Aux —a glitch. If the
boundary behaved like a mirror, a brief sharp interrup-
tion would be expected in T where the glitch reAects
ofF the boundary, but an explicit calculation shows that
this is not the case.

D. A causal description of the stretched horizon

Our aim is a self-contained description of black hole
evolution as seen by a distant observer in which no refer-
ence need be made to events behind the stretched hor-
izon. It will also become clear that such a formulation
has significant advantages in the low-energy sector, com-
pared to a semiclassical description which focuses on
boundary conditions imposed at the boundary curve y„.
In particular, the stretched horizon o6'ers a unified view,
in which it is no longer necessary to treat the cases of
large and small incident energy Aux separately.

We saw earlier that the stretched horizon begins to ex-
pand in what appears to be a teleological manner before
the incoming matter arrives. One might be concerned
that this would preclude a conventional causal Hamil-
tonian description of the quantum stretched horizon. We
do not believe this to be the case. From a formal point of
view, the cause of the horizon expansion is a gravitational
dressing which is attached to the incoming energy Aux.

Consider the initial state description in tortoise coordi-
nates. Suppose an incoming Aux of energy is described by
T++ (cr+ ). The functions P+ and M are given in tortoise
coordinates by

Q=e +[P„P—+(o+)]e +M(o+)

——[o++ln(P„+e )] .
4

(3.37)

Let us subtract from 0 the functional form 0 which it
would have, in the absence of any incoming matter,

Q=e ——o. .K

2
We obtain

co=A —A=co;„(cr+)+co,„,(o ),
where

(3.38)

(3.39)

co;„(cr+)=[P„P+(o—.+)]e +M(o+),

co,„,(cr ) = ——ln(1+P„e ) .
(3.40)

We see that the free field cu consists of an incoming part
and an outgoing part. We can use the outgoing co field to
determine the outgoing energy-momentum Aux.

Since the incoming part is completely determined by
the incoming energy Aux, we will consider it to be a
"dressing" of the incoming matter. It can be written

co;„(o+ ) = f du T++ (u ) W(o + —u ), (3.41)

where

W(o+ —u)=8(u —o+)e' "'+6(o+—u) . (3.42)

By time reversal we obtain a relation between co,„,and
T

(3.44)

This can be written as a condition at the stretched hor-
izon:

In other words, a bit of energy MII arriving along the
curve o.+=u must be accompanied by an cu dressing
which has the value W(o+ —u )5M. The co dressing pre-
cedes the incoming f, fiux and is the . first thing that
strikes the stretched horizon. By time-reversal symme-
try, a bit of outgoing energy 5M departing along the
curve o. = U also has an cu dressing given by
W( v —o. )6M.

In a complete quantum theory, the outgoing state
would be described by a vector in the physical state space
of f; particles, from which it would be possible to com-
pute the expectation value of T . This would not be
feasible, however, even if we knew the exact nature of the
microstructure of the stretched horizon. As we shall now
see, thermodynamic arguments can give information
about cu,„„whichis sufficient to compute T

The co dressing of the incoming matter satisfies

(3.43)

+
P+(o+)= f du e "T++(u),

+
M(cr+ ) = f du T++ (u),

(3.6)
(3.45)

The outgoing thermal Aux T is assumed to originate
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at the thermally excited stretched horizon. The entropy
of the stretched horizon is given by co=co;„+co,„„sinceat
the stretched horizon, co=A. .

In thermal equilibrium, T should be a well-defined
function of the thermodynamic state of the stretched hor-
izon, and thus of the entropy co&. More generally, for
nonequilibrium processes such as the onset and end of
Hawking evaporation, the Aux may depend on the de-
tailed time history. Nevertheless, we will consider a
simplified model in which T depends only on the in-
stantaneous value of co+ and the sign of its time deriva-
tive. In other words, we shall allow for the possibility
that T (co) has different functional forms at the begin-
ning and end of the evaporation. Thus, we assume the ra-
diated Aux is a function of m,

T =T (co)=T (co;„+co,„,) .

Substituting this into (3.45) gives

(3.46)

(3.47)

Since co;„(t)is known in terms of T++, we have obtained
a differential equation for co,„,.

To obtain agreement with the semiclassical theory for
large black holes, we assume that T (co) approaches
the value a/4 for co»~. Of course, T (co) should be
zero for co=0, which is the ground state of the stretched
horizon. Furthermore, if one requires that the onset of
the Hawking radiation, for a massive black hole, agrees
with the semiclassical result (3.21), then one is led to a
specific form for T (co) during the heating phase at
early times. This can be constructed as follows. Define a
function z(co) by

co=z(co) ——ln 1+—z(co)
K 4
4 K

(3.48)

then choose

K 1T (co)= —1—
4 [1+(4/a. )z(co) ]

(3.49)

For massive black holes, it can be shown that co( t) as
given by (3.39) solves (3.47) until near the end of the eva-
poration.

We can now see an important advantage of the
stretched horizon formulation, concerning the endpoint
of Hawking evaporation. In the semiclassical RST model
[23], overall energy conservation could only be achieved
by having a negative energy "thunderpop" at the end of
the evaporation process. The negative energy was bound-
ed and small, but nevertheless an embarrassment [25]. In
contrast, consider the sum of (3.43) and (3.44), evaluated
at the stretched horizon,

as long as co begins and ends at zero. This is assured in
the remote past, when the stretched horizon coincides
with the boundary curve. For the late time evolution of
co, we return to (3.47). From (3.40) we see that the late
value of co;„is the total infalling mass, so co;„~M . In-
serting this into (3.47) leads to the following differential
equation for co,„,at late time:

6,„,+6,„,+ T (co,„,+M„)=0 . (3.52)

IV. BROWNIAN MOTION OF THE HORIZON

Lagrangian mechanics and thermodynamics are quite
different descriptions of a system. According to the usual
principles of Lagrangian mechanics, the motion of any
system is reversible and the concepts of heat and entropy
have no place. Thermodynamics, on the other hand, is
the theory of the irreversible dissipation of organized en-
ergy into heat. The thermodynamic description arises
from the coarse graining of the mechanical description,
in which configurations which are macroscopically simi-
lar are considered identical.

The equations of semiclassical gravity are peculiarly
thermodynamic near the stretched horizon. In this sec-
tion, we will see that they include another effect that gen-
erally occurs in thermodynamic systems, namely, random
fluctuation and diffusion. That such an effect should
occur was pointed out to us by Seiberg and Shenker [29].
Specifically, we shall see that the area of a two-
dimensional dilaton black hole undergoes Brownian
motion and diffuses away from its semiclassical value.
This phenomenon can be independently understood from
thermodynamics and quantum field theory.

We begin by recalling the Einstein relation between
specific heat and energy fluctuations. The average energy
and squared energy of a system in thermal equilibrium
with a heat bath are

&E&=——1 az
zap'

1 '8 Z
Qp2

(4.1)

(4.2)

where Z is the partition function and p is the inverse tem-
perature. From (4.1) and (4.2) it follows that

=[&E &'-&E'&]=-Var(E), (4.3)

This is the equation for the damped motion of a particle
subject to a restoring force, with equilibrium position at
cu,„,+M =0. Provided the motion is overdamped, we
find that co, and therefore T, tend smoothly to zero at
late times. This places a condition on T (co), namely
that it goes to zero no slower than co/4. Comparing with
(3.48) and (3.49) we see that T must depend differently
on co during the cooling and heating phases.

COIQ COIQ +Q)QU$ +COQQ,
—T+ + —T (3.50)

Integrating both sides of (3.50) over time reveals that en-
ergy is conserved, i.e.,

f dt T++ = Jdt T (3.51)
7The material in this section is based on work done in colla-

boration with Seiberg, Shenker, and Tuttle [28].
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where

Var(X)= &(X—&X&)'&

T C=Var(E) . (4.5)

In particular, since the variance of any quantity is posi-
tive definite, the specific heat is also positive definite.
When applied to a four-dimensional Schwarzschild black
hole, (4.4) gives nonsense because the specific heat is neg-
ative. This is a sign of instability.

In Sec. III B, we obtained a dynamical equation (3.27)
for the time dependence of the horizon area A. In
thermal equilibrium, the incoming and outgoing average
energy fiuxes are both equal to ~/4. In this case (3.27)
has a static solution for each value of the average area.
Since the Hawking temperature of two-dimensional black
holes is independent of the mass in the semiclassical ap-
proximation, the specific heat of a black hole is infinite.
By (4.5), the root-incan-square fiuctuations of the mass,
and therefore the area, are also infinite. This means that
the thermal fluctuations will so smear the horizon that
the different mass static black hole solutions would be re-
placed by a single ensemble for all masses and areas.

More generally, a time-dependent semiclassical black
hole will have a Brownian motion superimposed on the
semiclassical solution. Among other effects, this will
cause a statistical Auctuation in the elapsed time before
the black hole ceases to radiate. The fluctuation will be
of order O'M, where M is the initial black hole mass.

Physically, we can understand this as follows: Auctua-
tions in the thermal Aux of energy at the horizon cause
the black hole mass to randomly increase and decrease
with time. For an ordinary system, with positive specific
heat, such fluctuations are self-regulating. A momentary
increase (decrease) in the energy of the system causes an
increase (decrease) in its temperature, which in turn
causes heat to fiow back to (from) the reservoir, thus re-
storing equilibrium. In the present case, the temperature
does not respond to the energy Auctuation. Therefore,
there is no tendency to return to the original energy bal-
ance. The mass and area just random walk away from
their original values.

If a black hole of area A o is created at time t =0 and is
subsequently illuminated with thermal radiation at the
Hawking temperature T=l/2~, then at time t) 0 the
mass of the black hole will have random walked:

&[A(t) —Ao] ) ~t . (4.6)

The exact coefficient in (4.6) can be computed from a
knowledge of fluctuations in the thermal energy of the
matter fields in the surrounding bath. For the case of N
massless fields, the result is

& [A(t) —A, ]')=
24m

(4.7)

denotes the variance of the quantity X. This can be ex-
pressed in terms of the specific heat C, defined by

a&E& 1 a&E)
BT T2 BP

so that

A rough translation of this result into Kruskal coordi-
nates can be made by observing that y

—are exponentials
of tortoise coordinates. Equation (4.7) suggests that in
terms of an infrared cutoff in Kruskal coordinates
lnR ~ t, the fIuctuations in the horizon area satisfy

Var(A ) = 2
inR .

N

24m
(4.8)

Now let us consider the semiclassical field equations
(2.33). In particular, the scalar field 0 satisfies an inho-
mogeneous free field equation in Kruskal coordinates
given by

ann= —l. (4.9)

The static black hole solutions to (4.9) have the form

QM =M —y+y (4.10)

and the semiclassical area of the event horizon of a mas-
sive black hole is given by

A=A~(0)=M . (4.1 1)

The area of the stretched horizon is a bit larger but this
difference will not be important in this section.

Now let us consider the quantum fIuctuations about
(4.10). Define b, =A —QM. The fiuctuation b, satisfies a
free wave equation,

a a a=o. (4.12)

This suggests that 6 is a canonical massless free field. As
such, it has fluctuations which are logarithmically in-
frared divergent:

& a'(0)) = lnR,
2~2

(4.13)

where R is the Kruskal coordinate infrared cutoff. This
estimate of the fILuctuations in the horizon area precisely
agrees with the thermodynamic result (4.7). It should be
pointed out that there are technical subtleties involved in
the quantization of this model, and the above result has
not been rigorously established. However, the agreement
with thermodynamics strongly suggests that 6 behaves
like a canonical field [28].

V. CONSEQUENCES OF THE POSTULATES

A. Microstructure of the stretched horizon

Consider a quantum field theory in a two-dimensional
spacetime with a strictly timelike boundary. Suppose the
boundary is stationary at o. =0, except for a brief time in-
terval [t„tb],during which it moves toward negative o
(left) and then returns. The fields are defined to the right
of the boundary. The boundary may have additional de-
grees of freedom.

Without loss of generality we can pretend that the
boundary is permanently at o. =0 by assigning it extra de-
grees of freedom during the interval [t„tb]. During this
period the system has field degrees of freedom on the neg-
ative o axis. Nothing prevents us from formally consid-
ering these degrees of freedom to belong to the boundary
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Mp

dt M
(5.1)

where Mz is the Planck mass and M is the mass of the
black hole. The local proper temperature at the stretched
horizon, Ts, is related to the asymptotically measured
Hawking temperature TH by

M
Ts TII

Mp
(5.2)

Using the standard Hawking temperature T~-Mz/M
gives the universal value

Ts M (5.3)

The total energy of the black hole, measured in proper
units at the stretched horizon, is

dt M
dw Mp

(5.4)

Dividing this by the area of the stretched horizon we find
the surface energy density to be

at 0 =0.
In the case of subcritical Aux, where the boundary is al-

ways timelike and in causal contact with distant ob-
servers, we can perform a similar forrnal trick, regardless
of the nature of the boundary degrees of freedom. They,
as well as the fields behind the stretched horizon, can be
formally assigned to the stretched horizon. We gain
nothing from this except the assurance that a set of
stretched horizon degrees of freedom can be defined.
Note that this procedure in no way influences the experi-
ences of an observer crossing the stretched horizon.

Up to now we have assumed nothing radical. The fact
that outside observers see an apparently real stretched
horizon is surprising but derivable from conventional
semiclassical assumptions. At this point we will make a
radical departure from traditional thought about black
holes, which is required by our three postulates. We pro-
pose that, for the purposes of a distant observer, a con-
sistent set of quantum mechanical degrees offreedom con-
tinue to describe the stretched horizon even when the criti-
cal flux is exceeded.

We postulate no details about these degrees of freedom,
but some general properties are required by Postulate 3.
According to standard thermodynamic reasoning, the en-
tropy of a large system is the logarithm of the density of
states. For both two- and four-dimensional black holes,
the entropy is proportional to the area. We therefore re-
quire that the dimension of the Hilbert space of a
stretched horizon with area A is of order exp(A ). For a
four-dimensional black hole, this suggests that the num-
ber of degrees of freedom per unit area is a universal in-
tensive property independent of the total mass of the
black hole.

This universality of stretched horizon properties is gen-
eral. Define the stretched horizon of a four-dimensional
Schwarzschild black hole to have an area one Planck unit
greater than the global event horizon. The local rate of
clocks at the stretched horizon is easy to compute. The
analogue of (3.4) has the form

p(E)-exp(2vrE) as E +oo—
The partition function

Z(P)= y e-t'E
states

(5.6)

(5.7)

converges for all P) 2m. For large P, Z can be approxi-
mated by the first few terms:

—PE)Z=1+e '+ . (5.&)

and the average energy is given by

( )
B ln(Z) PF-, —

cl
(5.9)

As the (E ) tends to infinity, the temperature tends to
the value T=1/2~ in agreement with the semiclassical
limit. As the energy tends to zero, the temperature
T = 1IP also tends to zero.

In the semiclassical approximation, the black hole radi-
ates a bit more energy than the system originally had
[23]. This was compensated by a final "thunderpop" of
negative energy. From the present point of view, a more
plausible behavior is that as the black hole nears the end
point of the evaporation process, its temperature and
luminosity tend to zero and do not overshoot. Note that
this is precisely the behavior exhibited by solutions of
(3.52).

Another unphysical consequence of the semiclassical
theory concerns static solutions, corresponding to a uni-
form subcritical energy Aux, as the limit of critical Aux is
approached. According to the semi-classical theory a
static solution exists for every value of the energy Aux,
T++ = T = T (~I4. The semiclassical area (2.35),
evaluated at the stretched horizon (3.16), is given by

K K KA = T+ ——T ln ——T —ln—S 4 4 4
(5.10)

As T goes to K/4 the area approaches A. =K/4. On the
other hand, the statistical theory of the previous section
requires the mean-square value of the area to diverge in
this limit. The model in Sec. III D, based on the thermo-
dynamics of the stretched horizon, does exhibit that
behavior. In general, thermodynamic boundary condi-
tions at the stretched horizon, as in Sec. IIID, yield a
more consistent physical description than semiclassical
boundary conditions imposed at the critical curve, y„.

The large horizon fluctuations as the temperature ap-

(5.5)

In the semiclassical theory defined in Sec. III, the tem-
perature of a black hole is completely independent of its
mass. Thus, as a black hole evaporates, its energy Aux is
exactly constant, until the instant it disappears. An im-
mediate consequence of Postulate 3 is that the tempera-
ture of a two-dimensional dilaton black hole cannot be
strictly constant when the mass tends to zero. However,
there can be a maximum temperature, which is quickly
saturated as energy increases. Suppose there are discrete
energy levels with a density p(E) which behaves asymp-
totically as
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proaches T=1/2~ are reminiscent of critical behavior.
As the critical temperature is approached the area of the
stretched horizon fluctuates more and more, until the
horizon swallows up all of space. In the case of a
second-order phase transition, correlated domains Auctu-
ate and grow until one domain swallows up the whole
sample. The failure of semiclassical theory to correctly
account for the horizon Auctuations is analogous to the
failure of mean-field theory in critical phenomena.

B. Thermal entropy vs entropy of entanglement

~g)=gP(a, b) a)g ~b) .
a, b

(5.11)

The density matrix of the subsystem A, in the basis

I ~a)], is

p„(a,a')=g P(a, b)g*(a', b),
b

and that of B is

(5.12)

pE(b, b')=g P(a, b)g*(a, b') . (5.13)

Note that the composite system A UB is in a pure state.
The entropies of entanglement of subsystems 2 and B

are defined by

Given our assumptions about the microstructure of the
stretched horizon, it is evident that no real loss of infor-
mation takes place during black hole evaporation. Nev-
ertheless, it is far from clear how the large amount of ini-
tial data is stored in outgoing thermalized radiation. Our
discussion of this subject will follow the very illuminating
study by Page [27].

Let us begin by distinguishing two kinds of entropy.
The first, which is of purely quantum origin, we call en-
tvopy of entanglement Consid. er a quantum system com-
posed of two parts, 3 and B. In what follows, B will
refer to the stretched horizon and 3 to the radiation field
outside the stretched horizon. Assume that the Hilbert
space of state vectors & is a tensor product space:
&=&„&E. If I ~a ) ] is an orthonormal basis for &„
and [ ~

b ) ] is an orthonormal basis for &E, then a general
ket

~ f) in W may be written

SE(B),„=—In(D& ) . (5.15)

pMB
=Z 'exp( 13H ), —

and define the thermal entropy by

ST= —Tr[pMBln(pMB)] .

(5.16)

(5.17)

Now let us consider the evolution of both kinds of en-
tropy during the formation and evaporation of a two-
dimensional black hole. Let us begin with the thermal
entropy of the stretched horizon, which we assume is
equal to its area. As we have seen, the area begins to in-
crease exponentially with t before the infalling matter ar-
rives, reaching its maximum at the arrival time. The area
then decreases linearly with t until the black hole disap-
pears. This is illustrated in Fig. 8. The thermal entropy
of the outgoing radiation begins to increase due to the
emission from the excited stretched horizon. Shortly
after the radiation begins, the temperature approaches
T= I /2m. , so that the rate of change of the thermal entro-
py of the radiation is constant throughout most of the
process. This is also shown in Fig. 8.

Now consider the entropy of entanglement. Initially,
the stretched horizon is in its ground state, with minimal
area, and the radiation field is described by a pure state.
The entropy of entanglement starts at zero. As soon as
the stretched horizon area beings to increase, f quanta
are emitted. Typically, the state of the f quanta will be
correlated to the state of the stretched horizon, so that

We have assumed in (5.15) that DE ~D„.
The second kind of entropy is entropy of ignorance

Sometimes we assign a density matrix to a system, not be-
cause it is quantum entangled with a second system, but
because we are ignorant about its state, and we assign a
probability to each state. For example, if we know noth-
ing about a system, we assign it a density matrix propor-
tional to the unit matrix. If we know only its energy, we
assign a density matrix which is vanishing everywhere ex-
cept the allowed energy eigenspace. Thermal entropy is
of this type: it arises because of practical inability to fol-
low the fine-grained details of a system. For a system in
thermal equilibrium with a reservoir, we assign a
Maxwell-Boltzmann density matrix

SE( A ) = —Tr[p„ln(p „)],
SE(B)= —Tr[pEln(pE )] .

(5.14)

It is easy to prove that SE(A )=SE(B) if the composite
system is in a pure state. The entropy of entanglement of
a subsystem is only zero if ~g) is an uncorrelated product
state. The entropy of entanglement is not the entropy
with which the second law of thermodynamics is con-
cerned; Sz can increase or decrease with time. A final
point is that if the dimension of &E is DE, then the max-
imum value of SE(B ) [and, therefore, of SE( A )] is

radiation

8Laughlin has also suggested similarities between black-hole
behavior and phase transitions [30].

FIG. 8. Thermal entropy of stretched horizon and radiation
field as a function of time.
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Sz will start to increase. However, Sz will generally be
bounded by the logarithm of the dimension of the Hilbert
space describing the stretched horizon, which we have as-
sumed is proportional to the area. In other words, at any
time,

in the semiclassical dynamics should be thermal. The
long-time correlations which restore the entropy to zero
are not important to average coarse-grained behavior,
and are just the features which are not found unless a
suitable microphysical description is provided for the
stretched horizon.

S~(Hs) ~ST(Hs)=A(t) . (5.18)

C. Discussion

Thus, the entropy of entanglement is bounded and must
return to zero as the area of the stretched horizon returns
to its vacuum value. Page has argued that in the begin-
ning the entropy of entanglement is likely to approxi-
mately follow the thermal entropy of the radiation field,
so that the history of SE should look like Fig. 9.

Evidently, as time elapses, subtle differences develop
between the coarse-grained thermal density matrix of the
radiation and the exact description. Postulates 1 and 3
dictate that the entropy of entanglement return to zero in
a more or less definite way as the black hole evaporates.
In particular, there is no room for a stable or very long-
lived remnant storing the incident information.

To understand the difference between the thermal and
exact density matrices of the final outgoing radiation,
consider a time about half-way through the evaporation
process, when the thermal entropy and the entropy of en-
tanglement are still not too different. The total fine-
grained entropy of the combined system of stretched hor-
izon and radiation is zero, but the radiation is correlated
to the degrees of freedom of the stretched horizon. More
time elapses, and the stretched horizon emits more quan-
ta. The previous correlations between the stretched hor-
izon and the radiation field are now replaced by correla-
tions between the early part of the radiation and the new-
ly emitted quanta. In other words, the features of the ex-
act radiation state that allow SE to return to zero are
long-time correlations spread over the entire time occupied
by the outgoing fi'ux of energy. The local properties of the
radiation are expected to be thermal. For example, the
average energy density, short-time radiation field correla-
tions, and similar quantities that play an important role

I
I

I

I

We will conclude with some speculation about the na-
ture of the stretched horizon microstructure for four-
dimensional black holes. If we consider nearly spherical
black holes, a stretched horizon can be defined as follows.
Consider a radial incoming null geodesic which crosses
the global horizon where its area is M. Proceed back-
ward along such geodesics until the surface with area one
Planck unit larger is encountered. By using such ingoing
geodesics, we can map every point of the global horizon
to a point on the stretched horizon.

The global horizon is composed of a bundle of light
rays that can be thought of as a two-dimensional Quid on
the global horizon [9]. The points of this fluid can be
mapped to the stretched horizon, thereby defining a Quid
Qow on that surface. Classically, the Quid behaves as a
continuous, viscous Quid with conventional shear viscosi-
ty and negative bulk viscosity. A natural candidate for
the microphysics of the stretched horizon is to replace
the continuous classical Quid with a Quid of discrete
"atoms. "

As we have seen, the intensive thermodynamic vari-
ables of the stretched horizon are universal and do not
depend on the size or mass of the black hole. This
demands that the surface density of atoms also is in-
dependent of the area. When incoming energy Qux or
outgoing Hawking radiation causes the area of a patch of
the stretched horizon to change, points of the Quid will
pop into and out of existence in order to keep the density
constant.

Finally we would like to point to a feature of (3+1)-
dimensional black holes which is not shared by the
(1+1)-dimensional theory. This feature adds plausibility
to the claim that the stretched horizon is in thermal equi-
librium during most of the evaporation. Consider an ob-
server at the stretched horizon who counts the number of
particles emitted per unit proper time. Since the
stretched horizon is always at the Planck temperature the
number of particles emitted per unit area per unit proper
time is of order one in Planck units. If all these particles
made it out to infinity, then a distant observer would esti-
mate a number of particles emitted per unit time, which
is obtained by multiplying by the black hole area and the
time dilation factor:

dS ~2 d~
dt dt

(5.19)

FICx. 9. Entanglement entropy of radiation and stretched
horizon. The dashed curves indicate the thermal entropies of
Fig. 8.

On the other hand, the number per unit time of particles
that actually emerge to infinity is obtained by multiplying
the black-hole luminosity 1.=1/M by the inverse ener-
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gy of a typical thermal particle at the Hawking tempera-
ture. The result is

dN 1

dt M
(5.20)

Therefore, it seems that most of the particles emitted
from the stretched horizon do not get to infinity. In fact,
only those particles which are emitted with essentially
zero angular momentum can overcome the gravitational
attraction of the black hole, and the rest fall back [9].
This gives rise to a thermal atmosphere above the
stretched horizon which only slowly evaporates and
whose repeated interaction with the stretched horizon in-
sures thermal equilibrium. Such a thermal atmosphere
can be obtained in two dimensions by including massive
degrees of freedom, and this may indeed be necessary for
a fully consistent description of two-dimensional black
hole evaporation.

If the considerations of this paper are correct then
black holes catalyze a very different phenomenon than
that envisioned by Hawking [16]. To begin with, an in-
coming pure state of matter composed of low-energy par-
ticles falls into its own gravitational well. The matter is
blueshifted relative to stationary observers so that when
it arrives at the stretched horizon it has Planckian wave-
lengths. Thereupon it interacts with the "atoms" of the
stretched horizon leading to an approximately thermal
state. The subsequent evaporation yields approximately
thermal radiation but with nonthermal long-time correla-
tions. These nonthermal effects depend not only on the
incoming pure state but also on the precise nature of the
Planck-scale "atoms" and their interaction with the blue-
shifted matter. The evaporation products then climb out
of the gravitational well and are redshifted to low energy.
The result is remarkable. The very low-energy Hawking
radiation from a massive black hole has nonthermal
correlations, which contain detailed information about
Planck-scale physics [3,4]. The phenomenon is reminis-
cent of the imprinting of Planckian Auctuations onto the
microwave background radiation by inflation.

The view of black holes that we have presented is, of
course, incomplete. As we have emphasized, the reality

of the membrane cannot be an invariant which all ob-
serves agree upon. Furthermore, although conventional
quantum field theory in an evaporating black hole back-
ground seems to lead to a description in which a single-
state vector describes the interior and exterior of the
black hole, this description must be wrong if our postu-
lates are correct. Precisely what is wrong is not clear to
us, but we wish to emphasize that the event space for an
experiment should only contain physically measurable re-
sults.

In many respects, the situation seems comparable to
that of the early part of the century. The contradictions
between the wave and particle theories of light seemed ir-
reconcilable, but careful thought could not reveal any
logical contradiction. Experiments of one kind or the
other revealed either particle or wave behavior, but not
both. We suspect that the present situation is similar.
An experiment of one kind will detect a quantum mem-
brane, while an experiment of another kind will not.
However, no possibility exists for any observer to know
the results of both. Information involving the results of
these two kinds of experiments should be viewed as conz-
plementavy in the sense of Bohr.
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