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We have measured some simple matrix elements for pseudoscalar and vector mesons made of Wilson
valance quarks and staggered sea quarks at f3= 5.6 at sea quark masses am~ =0.01 and 0.025. Our mea-
surements include the decay constants of pseudoscalars (including fv), the wave function at the origin
(or decay constant) of vector mesons, and the calculation of quark masses from current algebra. The
effects of sea quarks on the simulations are small. We make comparisons to quenched simulations at
similar values of the lattice spacing (1/a =2 GeV).
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I. INTRODUCTION

We have been engaged in an extended program of cal-
culation of the masses and other parameters of the light
hadrons in simulations which include the efTects of two
flavors of light dynamical quarks [1,2]. These quarks are
realized on the lattice as staggered fermions. We have
carried out simulations with lattice valence quarks in
both the staggered and Wilson formulations. In this pa-
per we compute simple matrix elements using valence
Wilson quarks. Most previous work with Wilson valence
quarks has been done in the quenched approximation.
The quenched approximation is uncontrolled, and one
would like to know the magnitude of the eAects of sea
quarks on matrix elements calculated in this approxima-
tion. We can do this since we have performed simula-
tions with two masses of sea quarks. We can also com-
pare our results to published results done in the quenched
approximation at equivalent values of the lattice spacing.
Including the e6'ects of staggered sea quarks is computa-
tionally less intense than using Wilson sea quarks, and we
consider that mixing the two realizations is not inap-
propriate for a first round of numerical simulations.

We have measured matrix elements of the form
(h

~ A„~O) and (h
~ V„~O), where A„ is an axial-vector

current and V„ is a vector current. Physically, these
quantities parametrize the decay constants of pseudosca-
lar and vector mesons. Valence quark masses range from
very light through the charmed quark mass. In particu-
lar, we will present a prediction for the decay constant of

pseudoscalars containing a charmed quark. As a by-
product of the axial-vector current measurement, we
measure a quantity which is proportional to the valence
quark mass rn . In addition, we determine the renormal-
ization factors (or ratios of renormalization factors) from
various definitions of vector and axial-vector currents,
which can then be compared to perturbation theory and
to other simulations.

The lattices we use are the ones we generated in our
most recent round of simulations [2] on 16 X 32 lattices
at a lattice coupling of P=5.6. The simulations include
two flavors of dynamical staggered fermions; the dynami-
cal fermion masses are am =0.01 and am =0.025.

We should warn the reader that these simulations are
performed at values of the lattice spacing which are quite
a bit greater than those used by present-day quenched
simulations. Depending on the particle whose mass is
used to set the lattice spacing, our lattice spacing a lies in
the range 1/a =1700—2100 MeV. Thus we expect con-
siderable contamination from lattice artifacts. Probably
the most reasonable quenched approximation data sets
with which to compare to are ones taken at P ~ 6.0, since
they are thought to have a similar lattice spacing. (For
example, the APE collaboration [3] has determined a lat-
tice spacing from quenched Wilson spectroscopy of
1/a =2132 MeV, by extrapolating the p mass to zero
valence quark mass or to the critical hopping parameter
Ic, .) At the parameter values of these simulations, spec-
troscopy is essentially identical to that from quenched
simulations.

OS 56-2821/93/48(1)/370(18)/$06. 00 370 1993 The American Physical Society



SIMPLE HADRONIC MATRIX ELEMENTS WITH WILSON. . . 371

We would now like to summarize our main results,
saving technical details for the main body of the paper.
We are primarily interested in seeing whether sea quarks
affect simple matrix elements. We do this by comparing
to results from quenched simulations at values of the lat-
tice spacing close to ones we use, as well as to experimen-
tal data. These comparisons are best done when the ma-
trix element is expressed in physical units (GeV) as a
function of physical units (particle masses or mass ratios).
However, converting a lattice number to a continuum
number is not straightforward. In addition to a multipli-
cation by some power of the lattice spacing (to set the di-
mension), lattice operators generally require a renormal-
ization to convert from lattice to continuum regulariza-
tion. We do this in two ways, using a "conventional"
perturbation theory and a "tadpole-improved" method
recently proposed by Lepage and Mackenzie [4]. We first
consider the wave function at the origin of vector
mesons, parametrized by

( Vi V„ iO) = m,'~„.= 1

We present our calculation of ft, using the lattice con-
served (Wilson) vector current in Fig. 1. We see that the
results show little dependence on the sea quark mass. In
Fig. 2 we compare the conserved current to results from
another lattice definition of the current, using the "con-
ventional" lattice-to-continuum renormalization. We
compare our results to those from quenched simulations
using the same definition and renormalization prescrip-
tion. We see that our results are quite similar to the
quenched ones. Variation in our results due to different
sea quark masses is small compared to the variation in
the predicted continuum result due to different lattice-
to-continuum conversions.

The second observable is the decay constant fp of a
pseudoscalar meson containing one light quark and one
heavy quark (such as the D or B meson). It has become
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conventional to display fJ,+Mt, as a function of the in-
verse pseudoscalar mass 1/Mz, since it is expected that
ft, scales as I/+Mt, for large Mt. We measured two
lattice operators corresponding to the continuum axial-
vector current and performed the lattice-to-continuum
transcription using both "conventional" and "tadpole-
improved" prescriptions. We show our results for each
of those prescriptions in Figs. 3 and 4. Here the lattice
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FIG. 2. Lattice 1/fv as a function of (m /m ), using con-

ventional field normalization and perturbative corrections. The
labeled points are physical particles. Results for the conserved
(Wilson) vector current from simulations with sea quark mass
am~ =0.01 are shown as squares and for sea quark mass
amq =0.025 as diamonds. Results for the local vector current,
scaled by a phenomenological Z&=0.57 from simulations with
sea quark mass am~ =0.01, are shown as fancy crosses and for
sea quark mass am, =0.025 as bursts. Quenched P=6.0 from
Daniels et al. [19]are crosses and APE results [3] are pluses.
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FIG. 1. Lattice I/fI, from the conserved (Wilson) vector

current, as a function of (m /mp), using tadpole-improved
perturbation theory. The labeled points are physical particles.
Results from simulations with sea quark mass am~=0. 01 are
shown as squares and for sea quark mass am =0.025 as dia-
monds.

FIG. 3. Quantity fp+Me as a function of the inverse pseu-
doscalar mass, with lattice data analyzed using tadpole-
improved perturbation theory. Data for static quarks are from
Ref. [26] (fancy cross); burst is Ref. [27]. The fancy squares are
the data of Bernard et al. [5], analyzed using "exp(ma)" field
normalization. The scale is set by f . Our data are local and
nonlocal currents at sea quark mass 0.025 (diamonds and octa-
gons) and local and nonlocal currents at sea quark mass 0.01
(squares and crosses). The curves are the quadratic fits de-
scribed in the text. The vertical lines identify the points corre-
sponding to fs and fD.
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FICi. 4. Quantity fe+Mp as a function of the inverse pseu-
doscalar mass, with lattice data analyzed using conventional
field normalization. Data for static quarks are from Ref. [26]
(fancy cross); squares are Ref. [27]. Other dynamic heavy quark
data are from the European Lattice Collaboration [23] (fancy
squares), Cxavela et al. [22] (plus signs), and DeGrand and Loft
[24] (fancy diamonds). The scale is set by f . Our data are lo-
cal and nonlocal currents at sea quark mass 0.025 (diamonds
and octagons) and local and nonlocal currents at sea quark mass
0.01 (squares and crosses). The curves are the quadratic fits de-
scribed in the text. The vertical lines identify the points corre-
sponding to fs and fD.

spacing has been chosen by fitting f to its real-world
value 132 MeV. Again, our results show little variation
with respect to sea quark mass. The predictions using
"conventional" renormalization are quite similar to
quenched results, while the "tadpole-improved" predic-
tions are quite a bit higher then both the "conventional"
normalization results and the quenched results of Ber-
nard et al. [5], from simulations performed at smaller lat-
tice spacing. Our message for the reader is that our re-
sults show little variation with sea quark mass and resem-
ble quenched results from simulations performed at a
similar value of the lattice spacing, while at this value of
the lattice spacing our results depend rather more strong-
ly on the prescription for converting lattice results to
continuum results than they do on sea quark properties.

The outline of the rest of the paper is as follows. In
Sec. II we describe the lattice simulations and the data
set. In Sec. III we describe the methodology for extract-
ing matrix elements from the data. In Sec. IV we de-
scribe the program for converting lattice numbers to con-
tinuum numbers and compare some results to perturba-
tion theory. Sections V, VI, and VII describe the vector
decay constant, quark masses, and the pseudoscalar de-
cay constant. A few conclusions are in Sec. VIII.

tions Research Institute at Florida State University.
We carried out simulations with two flavors of dynami-

cal staggered quarks using the hybrid molecular dynam-
ics (HMD) algorithm [6]. The lattice size is 16 X 32 sites
and the lattice coupling P=5.6. The dynamical quark
mass is am =0.01 and 0.025. The total simulation
length was 2000 simulation time units (with the normali-
zation of Ref. [1])at each quark mass value. We record-
ed lattices for the reconstruction of spectroscopy every 20
HMD time units, for a total of 100 lattices at each mass
value.

We computed spectroscopy with staggered sea quarks
at six values of the Wilson quark hopping parameter:
v=0. 1600, 0.1585, 0.1565, 0.1525, 0.1410, and 0.1320.
The first three values are rather light quarks (the pseudo-
scalar mass in lattice units ranges from about 0.25 to
0.45), and the other three values correspond to heavy
quarks (pseudoscalar masses of from 0.65 to 1.5). We
computed properties of mesons with all possible combina-
tions of quark and antiquark mass; this will allow us to
study matrix elements of strange and charm mesons. We
used periodic boundary conditions in all four directions
of the lattice. We fix gauge in each configuration in the
data set to lattice Coulomb gauge using an overrelaxation
algorithm [7]. Our inversion technique is conjugate gra-
dient with preconditioning via incomplete lower-upper
(ILU) decomposition by checkerboards [8]. We used a
fast matrix inverter written in CMIS (connection
machine instruction set) [9].

B. Interpolating fields

Matrix elements are determined from correlation func-
tions such as

C,, (k=O, t)=g(O, (x, t)O, (0, t =0)) . (2.1)

(2.2)

Here c, (y, t) are creation operators for the quark and an-
tiquark, I is the appropriate Dirac matrix, and we have
suppressed all color and spin indices. Since the operator
is separable, the individual P terms are sources for calcu-
lation of quark propagators. We take P(x) to be a Gauss-
ian centered around the origin:

Just as in the case of spectroscopy, a good interpolating
field is necessary so that the correlator is dominated by
the lightest state in its channel at small times separation.
We have chosen to use an interpolating field which is se-
parable in the quark coordinates and extended in the
coordinates of either quark:

Oi(x, t)= g Pi(yi —x)gz(yz —x)cz(yi, t) I c (y tz)

II. THE SIMULATIONS P(x)=exp[ —(~x~/ro)~] . (2.3)

A. Numerics

Our simulations were performed on the connection
machine CM-2 located at the Supercomputer Computa-

The parameter ro can be chosen to give an optimal over-
lap with the ground state.

We need zero-spatial-mornenturn correlation functions
with 0, also as the sink:
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C„(k=O, t) =g(O, (x, t)O, (0,0) )

=z( z ys(ys —«) ( s(ys—I x)i' G (y„s;r(„s=o)rG (y„r;r(s„r =o)l .

3') 3'2

Here

(2.4)

G, (y, t;P, t =0)=QG, (y, t;z, t =0)P(z)

is obtained as the inverse of the fermion matrix on a source P(z) on the time slice t =0. Going to Fourier transforms,
we can write this as

C„( k= Ot)=g(P, (p)P ( —p)I G ( p, t;—P„t =0)I G (p, t;P, t =0)), (2.5)

requiring, as for local sinks, only one sum over a time
slice, plus the cost of taking the Fourier transforms 6;
and P . The latter can be precomputed once for the
whole simulation. Using fast Fourier transforms (FFT's)
this computation becomes practical. For our six ~ values
combined, it took only about 25% longer than a compu-
tation using point or wall sources and sinks.

We performed a small test to determine reasonable
ro s: We took 24 lattices and calculated hadronic spec-
troscopy at two hopping parameter values ~=0.1410 and
0.1585, at sea quark mass 0.025, and three values of ro at
each a. We show effective-mass plots for hadrons made of
degenerate heavy quarks and degenerate light quarks in
Figs. 5 and 6. While the light quark spectroscopy was
not very sensitive to r0, the heavy quark spectroscopy
was: A larger ro was optimal. Following these tests, we
chose the following ro values for each ~ [shown as (I~, ro)]:
(0.1320,2.5), (0.1410,3.0), (0.1525,3.5), (0.1565,4.0),
(0.1585,4.5), and (0.1600,5.0). On the full data set we
checked all the hadronic spectroscopy and found agree-

I

ment between results using these sources with our earlier
work using a "wall" (uniform) source.

III. GENERAL FORMALISM
FOR LATTICE MATRIX ELEMENTS

All measurements of matrix elements involve determin-
ing ratios of correlation functions. We have two generic
classes of correlators: ones in which the two operators
are different (one of the operators is to be determined and
the other is not) [C,z of Eq. (2.1)] and a class where both
operators are identical to one of the operators in the
preceding equation [C»(t)]. For example, 0, could be a
Gaussian interpolating field and 02 could be a current.

Passing to momentum space and inserting a complete
set of relativistically normalized states, we have

CJ(t)=y (OIO;In (k =0)) (I n (k =0)IO~ IO)e
, 2pn

(3.1)
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FIG. 5. Effective masses for a=0. 1410 as a function of rp.
rp=1 (crosses), rp=2. 5 (octagons), and rp=4. 0 (diamonds).
Figures are (a) pion, (b) p, (c) nucleon, and (d) A.

FICx. 6. Effective masses for a.=0.1585 as a function of rp:
rp=3. 0 (crosses), rp=4. 0 (octagons), and rp=5. 0 {d1amonds).
Figures are (a) pion, (b) p, (c) nucleon, and (d) A.
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At large r only one state (of mass p) should dominate the
sum, and we expect to see

1.0 I I I I

I

I I I I

I

I I I I

I

I I I I

I

I I I I

and

C»(r)= ' e-&'&olo&lh &&hIO&l» (3.2)
0.8—

0
a5 0.6—
Q)

C40

C„(t)= e "'&0 O, lh)&h O, l0) .= 1

Of course, it is incorrect to compute &hlOzl0) by
directly taking ratios of C&2 to C». The correct way to
analyze the data, which produces a meaningful y, is to
do a three-parameter (p, , & Ol0, l

h ) ( & h
l Oz 0) simul-

taneous fit to both data sets which includes the full corre-
lation matrix. This is how we analyze all our data. This
fitting method also allows us to quote a meaningful
confidence level for a fit. Reference [10] discusses this
fitting procedure in detail. A typical set of correlators
and their fits are shown in Fig. 7.

One feature shown by all the operators we studied was
the very poor confidence level of fits to operators contain-
ing one (or two) heavy quarks, especially the a=0. 1320
quark. We saw this same behavior in our spectroscopy in
Ref. [2]. The culprit is the correlator with a local current
at one end. While the extended operator has reasonable
overlap on the ground state, the local current does not.
In other words, J(x, t) 0) creates excited-state mesons
much more readily than it creates ground states. Thus
we do not see a plateau in the effective mass of the state.
The operator itself drifts with fitting range, too. The
same problem has crippled other calculations of heavy-
light matrix elements [11]. An example of this behavior
is shown for the local axial-vector current matrix ele-
ment, in Fig. 8.

Since we have so many different operators and quark
masses, it is necessary to give some general rule for select-
ing the best-fit value to present in a figure or table. In
selecting the distance range to be used in the fitting, we
have tried to be systematic. We somewhat arbitrarily
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choose the best fitting range as the range which maxim-
izes the confidence level of the fit (to emphasize good fits)
times the number of degrees of freedom (to emphasize fits
over big distance ranges) divided by the statistical error
on the mass (to emphasize fits with small errors). We
typically restrict this selection to fits beginning no more
than 11 or 12 time slices from the origin. This was the
method we used to select the best mass in our earlier
work [1].

When we have to extrapolate a quantity (for example,
to zero quark mass), we combine correlated fits with jack-
knife averages. We perform a series of fits where ten suc-
cessive lattices are removed from the data set, select the
best-fit value of the matrix element using the procedure
described in the last paragraph, extrapolate the desired
quantity for the subset of data, and then perform a jack-
knife average of the extrapolated quantity.

FIG. 8. Results of fits to the lattice matrix element
(Olfyoy, glP) over the range t to t,„=15,from three parame-
ters fits to two propagators. The diamond, octagon, cross, and
square are for heavy-quark —light-quark pseudo scalars with
heavy v=0. 1320, 0.1410, 0.1525, and 0.1565, and the burst is for
a meson made of two light quarks. In all cases the light quark
hopping parameter is ~=0.1600.

10

GC — x GJ= o
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LL
fQ ~~l ' L
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FIG. 7. Data and results of a three-parameter correlated fit
to Gaussian source and sink (crosses) and to a Gaussian source
and local axial-vector current sink (gyoy~g) (octagons) for
amq =0.01 sea quark mass and ~=0. 1600 valence quarks. The
second correlator is antiperiodic, and its absolute value is
shown.

IV. FROM LATTICE TO CONTINUUM NUMBERS

+O(a)+O(g a)+ ] . (4.1)

(D is the engineering dimension of the matrix element. )

Next we must discuss how we convert lattice measure-
ments into predictions of continuum observables. There
are three complications: First, dimensionful observables
require a lattice spacing to set the scale. Since the simu-
lations do not show proper mass ratios for hadrons at
better than the fifteen percent level, we cannot claim to
know the lattice spacing better than this. Second, lattice
operators require perturbative renormalizations to con-
vert them to continuum ones. Third, there are additional
corrections [O(a) corrections] which arise because the
lattice operators themselves differ from the continuum
operators by terms proportional to the lattice spacing a.
Thus the continuum matrix element is related to the lat-
tice one by

& fl "0"'(p)li ) =a [Z(pa, g(a))& flO'"'(a))
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A symptom of the presence of 0 (a) contributions is an
apparent dependence of the Z parameter on initial and
final states. These corrections can be ameliorated by us-
ing "improved operators" [12,13]. This study used only
unimproved operators, however, and the O(a) correc-
tions remain an unknown systematic.

The Z factors are a product of two terms. The first is a
lattice to continuum regularization conversion factor
which in perturbation theory is a power series in a, . The
second term is an overall multiplication by a function of
the hopping parameter K which relates the field normali-
zation for Wilson fermions to the continuum fermion
normalization.

There are two ways to assign this normalization. The
first is to relate the action of Wilson fermions to the con-
tinuum action. This gives a multiplication factor of &2x.
as the conversion between Wilson and continuum fer-
mions.

The second way follows a recent paper by Lepage and
Mackenzie [4]. They suggest a program for calculation
of renormalization terms which has two parts: "tadpole-
improved" perturbation theory and a choice of a subtrac-
tion scheme for perturbative calculations which attempts
to minimize higher-order corrections.

Tadpole-improved perturbation theory for Wilson fer-
mions is based on the observation that ordinary perturba-
tion theory, based on the naive expansion

U„(x)=1+igaA„(x)+ (4.2)

is a misleading expansion in g. Higher-order terms in the
expansion of the exponential contain higher powers of
agA„and the ultraviolet divergences from contractions
of A's cancel the extra a' s, leaving these terms suppressed
not by powers of ga, but only by powers of g. These con-
tributions are the QCD tadpole corrections. Tadpoles re-
normalize the link operator (at least in smooth gauges),
and so Lepage and Mackenzie suggest writing

U„(x)=uo[1+igaA„(x)+ . . ], (4.3)

where uo is chosen nonperturbatively. This suggests re-
placing U in the action by the combination U„/up, so
that the tadpole-improved action for Wilson fermions is

U„(n)
S=giTt„g„—1~+ g„(1—r„) " g(n +p) +

n np up

(4.4)

Here K=Kup ~ At the tree level K= —,
' and one might expect

that K, =1/8up.
Now compute the field renormalization in the follow'-

ing way: Compute the quark two-point functions
Sz(ipo p=0). Near its pole

tion factor should be +I —3x/4', .
This is difFerent from the conventional i/2v field renor-

malization. For our data, where at sea quark mass
am =0.01, K, =0.1610, the square of the field renormal-
ization in this prescription varies from 0.385 to 0.255 as K

varies from 0.1320 to 0.1600, while the variation in the
naive prescription is only 21%, and the factors vary from
0.262 to 0.32.

To calculate tadpole-improved renormalizations of ma-
trix elements for massless quarks, Lepage and Mackenzie
give the following prescription: For local operators, re-
place the Q2v, field renormalization by the perturbative
expansion for ~, [14],

2~, =
—,'(1+1.364a, ), (4.6)

so that a bilinear 1Tjl p, with a perturbative Z factor of
(1+A a, )2~„becomes —,'[1+(A + 1.364)a, ] or at
v&Ir, [1+( A + l. 364)a, ](1—3w/4v, ). This lowers the
coefficient of a, if A is negative (which it is for all bilin-
ears we have seen). Operators already containing a link
(QI Ug) automatically include the uo factor and the only
change they require is to convert 2K, into —,'. Table I
shows the renormalization factors for all the operators
used in this study. They are given in Refs. [4,14,15].

Lepage and Mackenzie suggest picking
uo ( —,

' Tr Up ) '~ as a nonperturbative definition of uo in
terms of the measured plaquette. In our simulations we
found ( —,

' TrUp) =0.56500(2) and 0.56444(2) at
am =0.01 and 0.025 (note the tiny dependence on the
quark mass). This would give ~, =1/8uo =0. 1442 for
both am =0.01 and 0.025, to be compared with 0.1610
and 0.1613, respectively. The tadpole gives about half
the observed renormalization in K, .

We will present results from both normalization
schemes since most published calculations of matrix ele-
ments use the conventional normalization. This will also
give the reader a feel for the magnitude of systematics in
lattice calculations which are not due to the simulations
themselves.

Next one must define the coupling a, . Lepage and
Mackenzie argue that the lattice coupling a„«=6/4~/3 is
a poor expansion parameter since with it coefricients of
second-order corrections are large. They suggest using an
alternative coupling defined through the plaquette [16]
—1n( —,

' Tr Up ) =4. 188 79ui, (3.41/a)

X I 1 —(1.185+0.070nf )av+O(ai, )] .

(4.7)

TABLE I. Tadpole-improved renormalization factors for
operators used in this study.

1+yo
Sf (ipo) =

2
1 1

pp p 1 —6K
(4.5)

where the quark mass p solves 1 —6K =2R exp( —p ).
[This is the "exp(ma) factor" recently advocated by Ber-
nard, Labrenz, and Soni [5] in their analysis of pseudo-
scalar decay constants. ] This implies that

g,~„,=+1—
6RQ&,«or that the overall field renormaliza-

Operator

itr s4
Wr5r, f

@rsr, &„it
it r, it

gr„U„it
it(l+r„}U„Q+ .

Name

Zp

ZA
Zn1

Zv
znl

Zv

Z factor

(1—1 03v)
—„'(1—0.31'v)
41(1+0 91QV)

{1 —0.820.v )

(1—1.00m v)
1
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From the measured ( —,
' Tr Uz ) [0.565 00(2) and

0.56444(2)], we obtain ai, (3.41/a)=0. 1785 and 0.1790
for am =0.01 and 0.025. These numbers are probably
given with too much accuracy. With the coe%cient of
the 0 (ai ) correction in Eq. (4.7) assumed to be of order
1, this correction could easily change ai, (3.41/a) by
0.005 or so.

Lepage and Mackenzie give an 0 (a, ) tadpole-
improved perturbative prediction for K, which works
quite well for quenched simulations for p) 5.7:

1 =4( —,
' TrU+ ) '~ —1.268ai, (1.03/a) .

C

(4.8)

av(q) '=Poln + ln ln
1 g

0 Av
(4.9)

or

poa v

Pi/'2''
exp

2Poa v
(4.10)

The coupling is measured at lower q since the UV-
sensitive tadpoles have been removed. Using

2

of about 20 MeV in AM .
We now begin a series of specific calculations of matrix

elements. When we speak of "conventional" calculations
we mean that we use +2I~ field normalizations and do not
remove tadpole terms from the perturbative Z factors;
however, we use av for all coupling constants, but evalu-
ated at a UV-dominated scale ai (3.41/a)=0. 18. For
the tadpole-improved calculations, the coupling should
be taken at a lower scale. Lepage and Mackenzie have
not analyzed the optimal scale for each operator. How-
ever, it seems reasonable to take a scale similar to the one
used for the tadpole-improved perturbative estimation of

av(1.03/a)=0. 31. Since the perturbative predic-
tions for ~, are somewhat off, one might alternatively es-
timate this coupling from Eq. (4.7) using the measured
values for both plaquette and ~, . Using the values extra-
polated to zero mass for these quantities, we obtain
ai (1.03/a) =0.28. We see that there is about a 10% un-
certainty in the coupling constant needed for the pertur-
bative Z factors, which implies an uncertainty of up to
about 5% in the Z factors. In the following we will use
for the tadpole-improved analysis a coupling a v =0.3.

where

0

11——'nT f
4~

(4.11)

V. VECTOR MATRIX ELEMENTS

We have measured matrix elements of three vector
current operators, the "local" vector current

and

102——", nf
16m.

(4.12)

A-
MS =exp

Av

31%—10nf
66K —12nf

(4.13)

for an SU(N) gauge group with nf fiavors of fermions
that AMs =264(26) MeV, where MS denotes the modified
minimal subtraction scheme. This is a lattice prediction
which includes the effects of two light fermions. The er-
ror here comes only from the uncertainty in a '. The
uncertainty in az(3.41/a) translates into an uncertainty

are the first two coefficients of the p function, we run the
av 's down to the lower scale. We then find the pertur-
bative predictions of ~, =0. 1624 and 0.1626 for
am =0.01 and 0.025 with nf =2, to be contrasted with
the observed 0.1610 or 0.1613. Taking into account our
estimated uncertainty of av(3. 41/a) of about 0.005,
which translates into an uncertainty in v, of about 0.001,
this is quite good agreement and is somewhat better than
the prediction of 0.1636 which would obtain if nf =0.

The perturbative formulas are actually valid for mass-
less quarks. Extrapolating ( —,

' Tr Up ) linearly in am to
zero quark mass, we then obtain ai, (3.41/a)=0. 1782
and v, =0.1623. Given the uncertainty of about 0.001 in
this quantity, it is again in quite good agreement with our
extrapolated (again linearly in amq) v, (am~ =0)
=0.1608(1). Along the way we find that aAi, =0.201 or
with a nominal lattice spacing I/a =2.0(2) CxeV from
our spectroscopy and the conversion of [17]

v„'=4y„4
the "nonlocal" current

V„"' = —,'(gy„U g+H. c.),
and the conserved Wilson current

(5.1)

(5.2)

v„=—,
'

I g[ U„(y„—1)+ U„(y„+1)]P] . (5.3)

We extract the current matrix element from correlated
fits to the three parameters of two propagators with the
appropriate operator as an interpolating field.

We choose to quote our vector current matrix elements
through the dimensionless parameter fi,:

Z, & V~ V„~o)= m,'e„.= 1

V

(5.4)

In terms of this definition, the width of a vector state
(whose quarks have a charge e& in units of the electron's
charge) to decay into an e e pair is

31 ( V —+e+e )

4~~ cpm v
3 2

(5.5)

This is the optimal definition for a lattice calculation
since there is no dependence on the lattice spacing. The
Wilson current is conserved, but the other currents are
multiplicatively renormalized. The renormalization fac-
tors for all three currents are shown in Table I.

How do the ratios of the Z factors measured experi-
mentally compare with the perturbative predictions? We
measure these factors by doing a correlated fit to the Wil-
son current and to one of the nonconserved currents.
This will extract the (1+A ai, ) part of Z. Our results are
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TABLE II. Fits to the ratio of conserved vector current to the local vector current R ' with Wilson
valence fermions and am~ =0.01 staggered sea quarks. In this and following tables, numbers in the
"kind" column for mesons refers to their quark content: 1 —6 refer to hopping parameters 0.1320,
0.1410, 0.1525, 0.1565, 0.1585, and 0.1600.

Kind

1 1

2 1

2 2
3 1

3 2
3 3
4 1

4 2
4 3
44
5 1

5 2
5 3
5 4
5 5
6 1

6 2
6 3
6 4
6 5
6 6

+ave

0.1320
0.1365
0.1410
0.1422
0.1467
0.1525
0.1442
0.1487
0.1545
0.1565
0.1452
0.1497
0.1555
0.1575
0.1585
0.1460
0.1505
0.1562
0.1583
0.1593
0.1600

Dmin

11
11
7

11
7
8

11
7
8

11
11
8

11
11
11
11

8
10
11
11

8

Dmax

16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16

Ratio

0.497(0)
0.508(0)
0.520(0)
0.513(0)
0.528(0)
0.536(0)
0.512(1)
0.530(0)
0.537(0)
0.541(1)
0.513(1)
0.531(1)
0.539(1)
0.542(1)
0.543(2)
0.516(2)
0.531(1)
0.538(1)
0.542(2)
0.543(4)
0.539(5)

x'/NDF

295.200/9
215.100/9

7.260/17
323.800/9

7.104/17
8.347/15

244.200/9
9.789/17

10.900/15
4.034/9

140.600/9
9.121/15
3.763/9
5.092/9
8.372/9

49.620/9
6.757/15
5.530/11
6.318/9

15.170/9
29.670/15

C.L.

0.000
0.000
0.950
0.000
0.955
0.820
0.000
0.833
0.619
0.776
0.000
0.764
0.807
0.649
0.301
0.000
0.914
0.786
0.503
0.034
0.005

shown in Fig. 9 and Tables II—V. We find first that the Z
factors show only a few percent variation with ~, justify-
ing the contention that the ~ dependence factorizes.
However, the perturbative formula predicts a ratio of

g nl, w =Z"'/Z =0.83,
&o~ J"'~ v)

~ =z'yz =o 86
(o/z'[ v&

quite a bit larger than our data. Our data resemble old
results from quenched simulations. For example, Maiani

TABLE III. Fits to the ratio of conserved vector current to the nonlocal vector current R"' with
Wilson valence fermions and am, =0.01 staggered sea quarks.

Kind

1 1

2 1

2 2
3 1

3 2
3 3
4 1

4 2
4 3
4 4
5 1

5 2
5 3
5 4
5 5
6 1

6 2
6 3
6 4
6 5
6 6

+ave

0.1320
0.1365
0.1410
0.1422
0.1467
0.1525
0.1442
0.1487
0.1545
0.1565
0.1452
0.1497
0.1555
0.1575
0.1585
0.1460
0.1505
0.1562
0.1583
0.1593
0.1600

Dmin

11
5
8

11
11
11

5
11
10
10
9

11
10
10
10
10
11
10
10

6

Dmax

16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16

Ratio

0.669(0)
0.667(0)
0.670(0)
0.661(0)
0.664(0)
0.659(0)
0.657(0)
0.661(0)
0.656(1)
0.653(1)
0.656(1)
0.659(1)
0.654(1)
0.651(1)
0.649(2)
0.657(1)
0.658(1)
0.652(1)
0.650(2)
0.646(2)
0.640(2)

X /NDF

282.200/7
229.400/19

16.090/13
282. 100/7

6.271/7
5.092/7

247.900/19
4.352/7
8.247/9
8.357/9

141.300/11
4.703/7

10.380/9
9.104/9
8.220/9

51.500/9
5.426/7

11.180/9
7.584/9

12.850/13
17.690/17

C.L.

0.000
0.000
0.244
0.000
0.508
0.649
0.000
0.738
0.509
0.499
0.000
0.696
0.321
0.428
0.512
0.000
0.608
0.264
0.577
0.459
0.409



378 KHALIL M. BITAR et al. 48

0.55
@III)e~

n)
0.45

0.13 0. 14 0.15 0. 16

0.70 ~~
)

o.eo
0. 13

Ib)

0. 14 0.15 0.16

FIG. 9. Ratios of renormalization factors for (a) local and (b)
nonlocal vector currents to the conserved current. Results from
simulations with sea quark mass am~ =0.01 are shown as
squares and for sea quark mass amq =0.025 as diamonds.

and Martinelli [18] measured R' =0.57(2) and
R"' =0.69(2) for these ratios in quenched f3=6.0 simu-
lations.

Results for the conserved current without any Z fac-
tors are shown in Tables VI and VII. Generically, all fits
to mesons containing at least one of the heaviest quarks
have low confidence levels.

Next, we wish to compare the measured fv to experi-
ment. We first choose to use the conserved Wilson
current in this comparison. Our results are shown as a
function of the dimensionless mass ratio m~/mz in Fig.
1. The data undershoot the lightest vector mesons by
about 25%, but appear to reproduce the experiment for

the g(3100). Some of these shifts are known to be due to
the use of "unimproved" operators. A calculation [13]at
P=6.0 shows that a conserved and improved (CI) vector
current would have a matrix element ratio
=«J"lV)i(01J.~V&=1.20. ItalsofindsR ' =0.62.

To compare with other simulations, we use a conven-
tional normalization for our data. We show in Fig. 2 the
conserved vector current and the local vector current.
We rescale the latter by the Maiani-Martinelli factor of
0.57. Quenched P=6.0 results from Daniels et al. [19]
and from the APE Collaboration [3] also use local
currents and the same Z factor and are also shown. (If
we assumed Z~ could be written as 1+A a, and just res-
caled by the naive ratio of couplings 5.6/6. 0, it would
change to 0.54, an invisible variation on the plot. ) Our
data are quite similar to the quenched results. Again,
dependence of the matrix element on the sea quark mass
is small.

Figures 1 and 2 show that the same lattice data can
give quite different results depending on how it is con-
verted to continuum numbers, even though the calculated
quantity is dimensionless. For the vector operators, the
discrepancy is largest for small quark mass.

VI. QUARK MASSES

The basic relation which gives us a quark mass is a
continuum current algebra relation

V„(p3 p(0)A 1'„$(x))=2m (fY p(0)A p(x)) .

(6.1)

If we convert to lattice operators, sum over spatial slices,
and measure distance in the t direction, this becomes

TABLE IV. Fits to the ratio of conserved vector current to the local vector current R ' with Wilson
valence fermions and amq =0.025 staggered sea quarks.

Kind

1 1

2 1

2 2
3 2
3.2
3 3
4 1

4 2
4 3
4 4
5 1

5 2
5 3
5 4
5 5
6 1

6 2
6 3
6 4
6 5
6 6

+ave

0.1320
0.1365
0.1410
0.1422
0.1467
0.1525
0.1442
0.1487
0.1545
0.1565
0.1452
0.1497
0.1555
0.1575
0.1585
0.1460
0.1505
0.1562
0.1583
0.1593
0.1600

Dmin

11
5

10
11
11
11
6

ll
11
10
6

11
11
10

8

6
11
11

8

8
6

Dmax

16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16

Ratio

0.492(0)
0.520(0)
0.514(0)
0.511(0)
o.522(o)
0.528(0)
o.s11(o)
o.s23(o)
0.529(1)
0.529(1)
0.512(0)
0.524(1)
0.529(1)
0.529(1)
0.529(1)
0.513(1)
0.524(1)
0.529(1)
0.528(1)
0.528{2)
o.s25(2)

X'/&DF

303.400/7
256.200/9

10.800/9
307.300/7

7.956/7
5.405/7

284.000/17
5.208/7
6.305/7

11.800/9
148.900/17

4.609/7
9.405/7

12.510/9
16.940/13
60.600/17
4.699/7
9.622/7

16.280/13
13.450/13
19.3 10/17

C.L.

0.000
0.000
0.290
0.000
0.336
0.611
0.000
0.635
0.505
0.225
0.000
0.708
0.225
0.186
0.202
0.000
0.697
0.211
0.234
0.414
0.311
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TABLE V. Fits to the ratio of conserved vector current vector current R ' with Wilson valence fer-
mions and amq =0.025 staggered sea quarks.

Kind

1 1

2 1

2 2
3 1

3 2
3 3
4 1

4 2
4 3
4 4
5 1

5 2
5 3
5 4
5 5
6 1

6 2
6 3
6 4
6 5
6 6

+ave

0.1320
0.1365
0.1410
0.1422
0.1467
0.1525
0.1442
0.1487
0.1545
0.1565
0.1452
0.1497
0.1555
0.1575
0.1585
0.1460
0.1505
0.1562
0.1583
0.1593
0.1600

Dmin

11
11
7

11
7
8

11
7
8
8

11
8

8
11
11
11

8

8
10

8
8

Dmax

16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16

Ratio

0.675(0)
0.673(0)
0.675(0)
0.664(0)
0.670(0)
0.666(0)
0.657(1)
0.667(0)
0.664(0)
0.663(1)
0.655(1)
0.665(1)
0.663{1)
0.663(2)
0.662(2)
0.655(3)
0.664(1)
0.662(1)
0.660(3)
0.657(3)
0.656(6)

X /&OF

273.400/9
193.900/9

8.975/17
302.400/9

6.298/17
8.032/15

233.300/9
8.239/17

10.480/15
15.910/5

140.100/9
7.415/15

13.730/15
8.265/9

11.480/9
47.740/9

5.736/15
11.280/15
11.440/11
28.220/15
31.820/15

C.L.

0.000
0.000
0.879
0.000
0.974
0.842
0.000
0.914
0.654
0.254
0.000
0.880
0.393
0.310
0.119
0.000
0.955
0.587
0.247
0.008
0.003

=2am Zt, g ( Py ~g(0)gy ~P(x ) ) .
x,y, z

(6.2)

since 2 (z) =sinh[m (t —N, /2)],

a~(t) =m cosh[m „(t N, /2) ] . —
at

(6.3)

There are many possibilities for defining an axial-vector
current and for defining the derivative operator [18,20].
The most stable one we have found [21] is to say that,

Then we extract the quark mass by fitting

I' (t) =Z [exp( —m t)+ exp[ —m (N, —t) ]] (6.4)

TABLE VI. Fits to fv for the conserved current with Wilson valence fermions and am~ =0.01 stag-
gered sea quarks.

Kind

1 1

2 1

2 2
3 1

3 2
3 3
4 1

4 2
4 3
44
5 1

5 2
5 3
5 4
5 5
6 1

6 2
6 3
6 4
6 5
6 6

Kave

0.1320
0.1365
0.1410
0.1422
0.1467
0.1525
0.1442
0.1487
0.1545
0.1565
0.1452
0.1497
0.1555
0.1575
0.1585
0.1460
0.1505
0.1562
0.1583
0.1593
0.1600

Dmin

11
11
7

11
7
7

11
7
8
8

11
7
8
8
8
7
7
8
8

8

Dmax

16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16

fv
0.328(3)
0.358(3)
0.382(3)
0.395{5)
0.441(3)
0.586(4)
0.385(6)
0.441(3)
0.619(7)
0.693(8)
0.363(7)
0.429(4)
0.626(7)
0.719(9)
0.759(10)
0.320(4)
0.413(5)
0.615{9)
0.723(11)
0.774(13)
0.795(17)

X'/&DF

180.100/7
117.900/7

13.930/15
198.900/7

8.662/15
12.960/15

162.100/7
7.704/15
7.502/13
9.074/13

95.980/7
8.382/15
8.065/13

11.320/13
14.450/13
50.520/15
10.290/15
8.379/13

14.060/13
20.420/13
27.450/13

C.L.

0.000
0.000
0.672
0.000
0.950
0.739
0.000
0.972
0.942
0.874
0.000
0.958
0.921
0.730
0.492
0.000
0.891
0.908
0.521
0.156
0.025
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TABLE VII. Fits to f~ for the conserved
amq =0.025 staggered sea quarks.

vector current with Wilson valence fermions and

Kind

1 1

2 1

2 2
3 1

3 2
3 3
4 1

4 2
4 3
4 4
5 1

5 2
5 3
5 4
5 5

6 1

6 2
6 3
6 4
6 5

6 6

+ave

0.1320
0.1365
0.1410
0.1422
0.1467
0.1525
0.1442
0.1487
0.1545
0.1565
0.1452
0.1497
0.1555
0.1575
0.1585
0.1460
0.1505
0.1562
0.1583
0.1593
0.1600

Dmin

11
11
10
11
11
11
11
11
11
11
11
11
11
11

8

4
11
11

8

10
10

Dmax

16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16

fv
0.316(3)
0.343(3)
0.372(3)
0.370(4)
0.421(5)
0.547(8)
0.357(5)
0.421(6)
0.586(10)
0.651(14)
0.339(6)
0.411{7)
0.595(12)
0.674(19}
0.741(11)
0.341(2)
0.394(10)
0.593(17)
0.716(11)
0.729(21)
0.732(28)

X /&DF

160.400/7
110.300/7

9.104/9
147.800/7

6.977/7
9.368/7

101.400/7
6.547/7

11.230/7
14.560/7
62.480/7

8.366/7
15.330/7
16.550/7
26.590/13
51.810/21
12.590/7
16.650/7
24.740/13
11~ 660/9
8.907/9

C.L.

0.000
0.000
0.612
0.000
0.640
0.404
0.000
0.684
0.260
0.104
0.000
0.498
0.082
0.056
0.032
0.001
0.182
0.054
0.054
0.390
0.630

and

Zp 2mq
A (t)= ZIexp( —m t) —exp[ —m (X,—t)]] .

(6.5)

We determine quark masses from both local and nonlo-
cal axial-vector currents. Our results are shown in Tables
VIII —XI. The reader should note that the best fits for
mesons containing one or two of the heaviest quarks
(I~ =0.1320) are unacceptably poor. From the table
readers can convince themselves that the average quark
mass interpolates quite well among the different
values —that is, m (al+az) = —,'[m~(I~I)+m~(a2)]. As an

alternate display, we show in Fig. 10 quark masses for all
combinations of quarks as a function of I/I~, „,—I/a„
where I/I~, „,=0.5(1/a, + I/I~&). The data are remark-
ably linear.

We can compare our results to very simple theory. In
the free-field limit, the relation between the quark mass
and the hopping parameter for small quark mass is

1 1 1
am (6.6)

2

(with ir, =
—,'). From the discussion of Sec. III, we have

1.0—
I

~

I I I I

0.0—
0.0 0.5 1.0

I/tt.-, —1/tc,

1.0— (b)

~„especially for the quark mass extracted from the local
axial-vector current.

One should be able to measure K, from the point where
the quark mass vanishes. This should serve as a reason-
ably independent check of the calculation of ~, from the
vanishing of the pion mass. (It is not completely indepen-
dent, since the same lattices and some of the same opera-
tors are used in both extrapolations. ) We previously re-
ported i~, =0.1610(1) for am& =0.01 and
am~=0. 1613(1) for am =0.025. The latter value was
different from that found from simulations on 12 lat-
tices, and it is important that it be rechecked. We do this

1 —6k
am =ln

q
(6.7)

0.0
0.0 0.5 1.0

1/L, , — j. /tc,

with k=~/8K, . We can take ~, from our extrapolation of
the pion mass and plot Eqs. (6.6) and (6.7) in Fig. 10.
Both curves provide a good representation of the data.
Note that this implies that the renormalization of the
prefactor —,

' is much smaller than the renormalization of

FIG. 10. Quark mass in lattice units as a function of
1/~, „,—1/sc, . Results for the local axial-vector current are
shown as squares and for the nonlocal axial-vector current as di-

amonds. The lines show predictions of Eqs. {6.6) and (6.7). (a)
Sea quark mass am~ =0.01, (b) sea quark mass am~ =0.025.
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TABLE VIII. Fits to the quark mass from the local axial-vector current with Wilson valence fer-
mions and am~ =0.01 staggered sea quarks. All Z factors are set to unity.

Kind

1 1

2 1

2 2
3 1

3 2
3 3
4 1

4 2
4 3
4 4
5 1

5 2
5 3
5 4
5 5

6 1

6 2
6 3
6 4
6 5
6 6

+ave

0.1320
0.1365
0.1410
0.1422
0.1467
0.1525
0.1442
0.1487
0.1545
0.1565
0.1452
0.1497
0.1555
0.1575
0.1585
0.1460
0.1505
0.1562
0.1583
0.1593
0.1600

Dmin

11
11

8
11
9
9

11
9
9

11
11
9

11
11
11
11
9
9

11
11

8

Dmax

16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16

0.4997(3)
0.4186(3)
0.3308(2)
0.3204(3)
0.2300(2)
0.1307(2)
0.2870(4)
0.1963(2)
0.0980(2)
0.0656(3)
0.2772(11)
0.1800(2)
0.0820(3)
0.0502(3)
0.0351(4)
0.2545(7)
0.1680(3)
0.0708(3)
0.0391(4)
0.0242(4)
0.0133(3)

X /&DF

309.300/7
480.300/7

6.212/13
1037.000/7

3.365/11
7.943/11

1016.000/7
11.340/11
10.400/11
3.258/7

985.600/7
15.920/11
2.810/7
2.111/7
1.361/7

257.300/7
12.320/11
7.980/11
1.445/7
1.205/7
6.659/13

C.L.

0.000
0.000
0.859
0.000
0.948
0.540
0.000
0.253
0.319
0.660
0.000
0.069
0.729
0.834
0.929
0.000
0.196
0.536
0.919
0.944
0.826

as follows: We take only the six lightest (K„K2) combina-
tions (all combinations of the three lightest ~ values). We
take

am~ = A (1/x —1/~, ) (6.8)

as a model for the dependence of the quark mass on a.
All the data come from the same set of lattices and so are

strongly correlated. In order to assign an uncertainty to
the fit parameters, we perform a jackknife fit, dropping
10 successive lattices from each of 10 subsets (containing
90 lattices) from the data, fitting each subset, extracting a
v„and averaging. We set all Z factors to unity; we are
extrapolating the quark mass in lattice units with a lattice
cutoff to zero. We report the results of these fits in Table

TABLE IX. Fits to the quark mass from the nonlocal axial-vector current with Wilson valence fer-
mions and am~ =0.01 staggered sea quarks. All Z factors are set to unity.

Kind

1 1

2 1

2 2
3 1

3 2
3 3
4 1

4 2
4 3
44
5 1

5 2
5 3
5 4
5 5
6 1

6 2
6 3
6 4
6 5
6 6

&ave

0.1320
0.1365
0.1410
0.1422
0.1467
0.1525
0.1442
0.1487
0.1545
0.1565
0.1452
0.1497
0.1555
0.1575
0.1585
0.1460
0.1505
0.1562
0.1583
0.1593
0.1600

Dmin

10
10

8
11
8
7

11
7
7
7

11
7
7

11
7

11
10
7
9
7
6

Dmax

16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16

0.6153(54)
0.4879(37)
0.3753(21)
0.3382(24)
0.2480(11)
0.1345(4)
0.2965(20)
0.2088(8)
0.0997(3)
0.0665(3)
0.2800(21)
0.1900(7)
0.0833(3)
0.0509(3)
0.0356(3)
0.2678(29)
0.1774(12)
0.0715(3)
0.0399(3)
0.0245(3)
0.0132(3)

X /&DF

185.200/9
200.800/9

15.270/13
483.400/7

12.100/13
22.330/15

412.500/7
13.290/15
21.590/15
23.060/15

295.500/7
14.750/15
21.360/15
7.486/7

21.070/15
135.300/7

5.410/9
20.130/15
13.690/11
17.200/15
12.630/17

C.L.

0.000
0.000
0.170
0.000
0.356
0.050
0.000
0.426
0.062
0.041
0.000
0.323
0.066
0.187
0.072
0.000
0.610
0.092
0.134
0.190
0.631
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TABLE X. Fits to the quark mass from the local axial-vector current with Wilson valence fermions
and amq =0.025 staggered sea quarks. All Z factors are set to unity.

Kind

1 1

2 1

2 2
3 1

3 2
3 3
4 1

4 2
4 3
4 4
5 1

5 2
5 3
5 4
5 5

6 1

6 2
6 3
6 4
6 5
6 6

+ave

0.1320
0.1365
0.1410
0.1422
0.1467
0.1525
0.1442
0.1487
0.1545
0.1565
0.1452
0.1497
0.1555
0.1575
0.1585
0.1460
0.1505
0.1562
0.1583
0.1593
0.1600

Dmin

4
11

8

11
8
8

11
8
8

8
11
7
8

8

8

11
8

8

8

7
7

Dmax

16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16

QP2q

0.5005(2)
0.4202(3)
0.3333(2)
0.3233(4)
0.2328(2)
0.1339(2)
0.2910(4)
0.1995(2)
0.1016(2)
0.0699(2)
0.2741(5)
0.1835(2)
0.0860(2)
0.0547(2)
0.0398(2)
0.2599(6)
0.1718(3)
0.0747(2)
0.0437(2)
0.0291(2)
0.0184(3)

X /NDF

249.500/21
365.600/7

16.740/13
792.400/7

15.030/13
25.070/13

769.100/7
17.890/13
21.520/13
17.080/13

611.500/7
24.890/15
18.960/13
14.820/13
13.520/13

381.600/7
25.160/13
17.310/13
13.730/13
16.060/15
13.910/15

C.L.

0.000
0.000
0.116
0.000
0.181
0.009
0.000
0.084
0.028
0.106
0.000
0.024
0.062
0.191
0.261
0.000
0.009
0.099
0.248
0.246
0.380

XII. The critical hopping parameter determined from
the quark mass appears to be consistent with the value
determined from the vanishing of the pion mass.

Finally, we can compare these Wilson quark masses to
the quark masses of the staggered sea quarks. One way
to do this is to match pion masses. The am =0.025 stag-
gered pion has a mass in lattice units of about 0.42, and
the am =0.01 staggered pion has a mass of about 0.26.

The former is about halfway between the masses of pseu-
doscalars with valence Wilson quarks of ~=0.1565 and
0.1585, 0.47 and 0.36 (at sea quark mass am =0.025).
The quark mass at those hopping parameters is 0.08 and
0.05. The am =0.01 pion lies between the ~=0. 1600
and 0.1585 pions (0.21 and 0.33). However, the quark
masses at those hopping parameters are 0.04—0.02. Thus
the quark mass determined with the method of this sec-

TABLE XI. Fits to the quark mass from the nonlocal axial-vector current with Wilson valence fer-
mions and amq =0.025 staggered sea quarks. All Z factors are set to unity.

Kind

1 1

2 1

2 2
3 1

3 2
3 3
4 1

4 2
4 3
4 4
5 1

5 2
5 3
5 4
5 5

6 1

6 2
6 3
6 4
6 5
6 6

+ave

0.1320
0.1365
0.1410
0.1422
0.1467
0.1525
0.1442
0.1487
0.1545
0.1565
0.1452
0.1497
0.1555
0.1575
0.1585
0.1460
0.1505
0.1562
0.1583
0.1593
0.1600

Dmin

6
6
9

11
8

9
11
7
9
9

11
7
9
9
9
9
7

9
9
9

Dmax

16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16

Qmq

0.6457(44)
0.5109(32)
0.3872(26)
0.3591(30)
0.2560(13)
0.1400(5)
0.3148(25)
0.2163(9)
0.1046(4)
0.0709(3)
0.2941(24)
0.1973(8)
0.0880(3)
0.0553(3)
0.0401(3)
0.2820(22)
0.1837(8)
0.0765(3)
0.0442(3)
0.0293(3)
0.0184(3)

X'/&DF

171.900/17
189.200/17
11.390/11

362.600/7
11.360/13
20.970/11

364.500/7
13.000/15
18.760/11
13.150/11

306.300/7
12.790/15
16.630/11
10.260/11
8.020/11

195.000/11
17.910/15
18.200/13
9.140/11
7.500/11
7.346/11

C.L.

0.000
0.000
0.250
0.000
0.414
0.013
0.000
0.448
0.027
0.156
0.000
0.464
0.055
0.330
0.532
0.000
0.161
0.077
0.424
0.585
0.601
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Mass

0.01
0.01
0.025
0.025

Kind

local
nonlocal

local
nonlocal

0.16091(2)
0.16090(2)
0.161 28(3)
0.161 27(4)

0.431(2)
0.528(4)
0.422(2)
0.518(4)

tion is much greater than the staggered quark mass at
similar values of the pion mass.

VII. AXIAL-VECTOR MATRIX ELEMENTS

We measured matrix elements of two axial-vector
current operators, the local current

~'o" =Vyoy A'

and the nonlocal operator

(7.1)

TABLE XII. Fits to ~, from quark masses calculated from
axial-vector current matrix elements, using pseudoscalar mesons
with all combinations of light valence quarks.

0.5
~ 0.4:—

0.3:—
O

0.2:—
0.1:—
0.0

(a)

~kg
0.13 0. 14 0.15 0.16

ave

0.5
~ 0.4:—

0.3:—
V

0.2:—
0
0.0

(b)

sjsl4
0. 13 0, 14 0.15 0.16

ave

FIG. 11. Lattice fl from axial-vector currents (including all
Z factors from a tadpole-improved analysis) as a function of the
average hopping parameter 1/2(~&+~2). Data are labeled with
crosses for the local current and a y5 source, octagons for the
local current and a yoy& source, and squares for the nonlocal
current. (a) amq =0.01, (b) amq =0.025.

~ o~ = (WU—oyoyse+H c ). . (7.2)

Z, &alveola&= fpmp . (7.3)

Our values for fP are given in Tables XIII and XIV
and shown in Fig. 11 for local and nonlocal operators.
The figure includes all Z factors from a tadpole-improved

We used two source spinor combinations for the local
operator: an interpolating field Pysg and gyoysP. Only
the first source was used with the nonlocal operator.
This gives us a check of possible sensitivity to the source
of our measurements. We quote answers in terms of the
lattice pseudoscalar decay constant

calculation and lacks only a lattice spacing to show con-
tinuum numbers. The tables include no Z factors, to fa-
cilitate comparisons with other simulations (they are
fP/Z„). Note from the figure that there is essentially no
dependence on the source for the local operator.

We compare the ratio of Z factors from nonlocal
axial-vector to local axial-vector currents. This ratio is
shown in Fig. 12 and Tables XV and XVI. The expecta-
tion of perturbation theory is that this ratio is 1.23, in-
dependent of ~. The observed & dependence is larger
than for the vector currents, but still only about 20%.

TABLE XIII. Fits to pseudoscalar decay constant from local axial-vector currents, with Wilson
valence fermions and amq =0.01 staggered sea quarks. All Z factors are set to unity.

Kind

1 1

2 1

2 2
3 1

3 2
3 3

4 1

4 2
4 3
4 4
5 1

5 2
5 3
5 4
5 5

6 1

6 2
6 3
6 4
6 5
6 6

+ave

0.1320
0.1365
0.1410
0.1422
0.1467
0.1525
0.1442
0.1487
0.1545
0.1565
0.1452
0.1497
0.1555
0.1575
0.1585
0.1460
0.1505
0.1562
0.1583
0.1593
0.1600

Dmin

5

9
7

11
7
7

11
7
7
7

11
7
7
7
7

11
7

6
6
5

Dmax

16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16

0.729(4)
0.690(5)
0.623(4)
0.622(7)
0.538(4)
0.476(4)
0.564(7)
0.478(4)
0.427(4)
0.384(3)
0.516(9)
0.437(4)
0.392(3)
0.353(3)
0.325(4)
0.472(13)
0.402(5)
0.363(4)
0.328(3)
0.298(4)
0.268(5)

X'/&DF

95.440/19
51.340/11

8.756/15
80.430/7
5.709/15
7.733/15

74.330/7
6.101/15
9.271/15

11.060/15
60.020/7

7.849/15
9.891/15

11.060/15
10.950/15
39.700/7
13.560/15
12.100/15
12.090/17
11.330/17
17.670/19

C.L.

0.000
0.000
0.890
0.000
0.984
0.934
0.000
0.978
0.863
0.748
0.000
0.930
0.827
0.748
0.756
0.000
0.559
0.671
0.795
0.839
0.545
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Q 9
0. i3 0.14 0. i 5 0.16

FIG. 12. Ratios of renormalization factors of nonlocal to lo-
cal axial-vector currents. Results from simulations with sea
quark mass am~ =0.01 are shown as squares and for sea quark
mass amq =0.025 as diamonds.

Our data are similar to the quenched P=6 results of Ref.
[18],about 1.25 for the ratio. Note that the perturbative
prediction and the operators themselves are not "im-
proved. "

Next we wish to compare to experiment. There are
two interesting quantities: f itself and the decay con-
stants of heavy pseudoscalar mesons (such as the D
meson). We calculate f by extrapolating our data for
mesons made of degenerate quarks to ~„using the three
lightest a values. To present a number for fD, we extra-
polate light-quark —heavy-quark decay constants first to
zero light quark mass; then we will interpolate in the
heavy quark mass. The extrapolations are done using

jackknifes. We do the extrapolations using both tadpole-
improved and conventional renormalizations.

We find four values for f, corresponding to local and
nonlocal operators with sea quark mass am =0.01 and

q
0.025. In lattice units they are (with a tadpole-improved
analysis) and, in order, local am =0.01, nonlocal
am =0.01, local am =0.025, nonlocal am =0.025:
0.053(1), 0.074(1), 0.055(1), and 0.076(1). With a nominal
lattice spacing of I/a =2 GeV, these numbers are 106(3),
148(3), 110(2), and 153(2) MeV. The numbers from a
conventional analysis are 0.054(1), 0.089(2), 0.056(1), and
0.092(1) or 107(3), 179(3), 112(2), and 185(3) MeV. With
our normalization, the experimental number is 132 MeV.
The uncertainties are entirely from the extrapolation.
The lattice spacing is uncertain to 10—15%, this uncer-
tainty dominates a final answer. We see little variation
with sea quark mass; the variation with operator choice is
much greater.

It has become customary to present heavy-light results
as a graph of fJ,+Mp versus the inverse pseudoscalar
mass 1/M~. To do this, we need a lattice spacing. We
can use either some hadron mass or the measured f it-
self to set the scale. Using f divides out lattice-to-
continuum renormalization factors (at zero quark mass).
Note with the tadpole-improved field renormalization the
factor +I —6a. or 2a exp(ma) is present in the field nor-
malization. We carry out this extrapolation for each
operator at each sea quark mass. The results of the ex-
trapolations are shown in Tables XVII and XVIII and
Figs. 3 and 4. The derived lattice spacings for the nonlo-
cal operators (with conventional field normalization) are
much larger than the nominal 1/a =2 GeV from spec-
troscopy [2], while the lattice spacings for the conven-
tionally normalized local operator and for the tadpole

TABLE XIV. Fits to pseudoscalar decay constant from local axial-vector currents, with %'ilson
valence fermions and am~ =0.025 staggered sea quarks. All Z factors are set to unity.

Kind

1 1

2 1

2 2
3 1

3 2
3 3
4 1

4 2
4 3
4 4
5 1

5 2
5 3
5 4
5 5
6 1

6 2
6 3
6 4
6 5
6 6

K'ave

0.1320
0.1365
0.1410
0.1422
0.1467
0.1525
0.1442
0.1487
0.1545
0.1565
0.14S2
0.1497
0.1555
0.1575
0.1585
0.1460
0.1505
0.1562
0.1583
0.1593
0.].600

Dmin

10
10
11
10
11
11
7

11
11

8
8

11
11

8
8
8

11
8
8
8
8

Dmax

16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16

0.743(7)
0.692(6)
0.624(6)
0.603(6)
0.538(6)
0.475(6)
0.530(5)
0.480(6)
0.428(7)
0.399(4)
0.488(5)
0.442(7)
0.396(7)
0.370(4)
0.341(4)
0.456(6)
0.407(9)
0.384(4)
0.344(4)
0.315(4)
0.284(5)

91.510/9
61.730/9

1 ~ 845/7
106.300/9

3.518/7
5.414/7

112.700/15
5.282/7
6.533/7

18.180/13
78.900/13

5.954/7
7.100/7

16.790/13
15.110/13
47.400/13
6.791/7

17.670/13
15.250/13
13.000/13
10.140/13

C.L.

0.000
0.000
0.968
0.000
0.833
0.610
0.000
0.626
0.479
0.151
0.000
0.545
0.419
0.209
0.301
0.000
0.451
0.170
0.292
0.448
0.682
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TABLE XV. Fits to ratio of local to nonlocal axial-vector currents, with Wilson valence fermions
and amq =0.01 staggered sea quarks.

Kind

1 1

2 1

2 2
3 1

3 2
3 3
4 1

4 2
4 3
4 4
5 1

5 2
5 3
5 4
5 5
6 1

6 2
6 3
6 4
6 5
6 6

+ave

0.1320
0.1365
0.1410
0.1422
0.1467
0.1525
0.1442
0.1487
0.1545
0.1565
0.1452
0.1497
0.1555
0.1575
0.1585
0.1460
0.1505
0.1562
0.1583
0.1593
0.1600

Dmin

7
7
8

11
7
7

11
7
7
7

11
7
7
7
7

10
7
7

10
10
6

Dmax

16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16

Ratio

1.235(8)
1.184(7)
1.136(6)
1.131(9)
1.084(4)
1.030(3)
1.118(9)
1.071(4)
1.017(3)
1.005(2)
1.110(9)
1.066(4)
1.013(3)
1.002(3)
1.000(3)
1.109(11)
1.065(5)
1.012(4)
1.008(4)
1.011(5)
1.016(4)

X /&DF

87.330/15
56.780/1 S

14.490/13
69.180/7
17.830/15
13.250/15
61.910/7
15.610/15
12.340/15
13.560/15
44.840/7
14.060/15
12.830/15
15.070/15
16.880/15
30.560/9
13.920/15
15.050/15
6.295/9
7.229/9

19.990/17

C.L.

0.000
0.000
0.207
0.000
0.164
0.429
0.000
0.271
0.500
0.406
0.000
0.370
0.461
0.303
0.205
0.000
0.380
0.304
0.506
0.405
0.172

operators are much closer to this number. This is a
reflection of the large f results for this operator and
normalization choice reported above. In the figures we
show other recent calculations [5,22 —24] of heavy-light
decay constants which as far as we can tell were analyzed
similarly to our tadpole-improved or conventional ap-
proaches. It is clear from the figures that our data is
rather similar to the results of quenched simulations,

when the analyses are performed in the same way. It is
also clear that the choice of field normalization has a
drastic effect on the final answer. Note from Tables XIII
and XIV that while we have carried out extrapolations
for mesons containing a ~=0. 1320 quark, the fits of these
quantities before extrapolation have unacceptably poor
confidence levels.

Now we attempt to predict fD. We fit various com-

TABLE XVI. Fits to ratio of local to nonlocal axial-vector currents, with Wilson valence fermions
and am~ =0.025 staggered sea quarks.

Kind

1 1

2 1

2 2
3 1

3 2
3 3
4 1

4 2
4 3
44
5 1

5 2
5 3
5 4
5 5
6 1

6 2
6 3
6 4
6 5
66

+ave

0.1320
0.1365
0.1410
0.1422
0.1467
0.1525
0.1442
0.1487
0.1545
0.1565
0.1452
0.1497
0.1555
0.1575
0.1585
0.1460
0.1505
0.1562
0.1583
0.1593
0.1600

Dmin

6
4
9

11
8

7
11
7
7
7
7
7
7
7
7

7
7
7
7
4

Dmax

16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16

Ratio

1.291(9)
1.211(5)
1.162(8)
1.149(9)
1.098(S)
1.044(3)
1.128(8)
1.085(4)
1.030(2)
1.017(2)
1.133(6)
1.079(4)
1.025(2)
1.013(2)
1.009(2)
1.133(4)
1.075(4)
1.023(2)
1.011(2)
1.009(2)
1.013(2)

X'/&DF

91.110/17
67.170/21
10.670/11
69.450/7
16.010/13
18.140/15
62.960/7
20.200/15
16.240/15
13.140/15
67.940/15
20.050/15
14.480/15
11.300/15
9.734/15

50.410/21
20.680/15
12.970/15
9.669/15
8.447/15

19.330/21

C.L.

0.000
0.000
0.299
0.000
0.141
0.152
0.000
0.090
0.236
0.437
0.000
0.094
0.341
0.586
0.716
0.000
0.080
0.450
0.721
0.813
0.436
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TABLE XVII. Lattice spacing and table of masses and

fp+M~ from axial-vector current matrix elements, from jack-
knife extrapolations to zero light quark mass, using tadpole-
improved perturbation theory.

am~ Kind 1/a (GeV) Mass (GeV) fpQmp (GeV' )

0.01 local

nonlocal

0.025 local

nonlocal

2.51

1.80

2.41

1.74

2.42
1.84
1.12
0.81
1.72
1.32
0.80
0.58
2.31
1.79
1.11
0.83
1.65
1.30
0.81
0.60

0.509(18)
0.349(8)
0.225(3)
0.166(2)
0.449(1)
0.314(4)
0.182(2)
0.141(2)
0.458(22)
0.334(12)
0.221(7)
0.168(4)
0.417(7)
0.319(7)
0.198(2)
0.145(2)

binations of our data points to the form

Bfp+Mp= A +
P

(7.4)

or

f~+Mp= A + + (7.5)

We discard the heaviest mass points since their
confidence level is poor. A linear extrapolation
represents the data poorly. (None of our heavy quarks
are really heavy. ) Quadratic interpolations through all
the matrix elements of local operators or of all the nonlo-

am~ Kind 1/a (GeV) Mass (GeV) fp+mp (GeV'~ )

0.01 local

nonlocal

0.025 local

nonlocal

2.48

1.49

2.38

1.43

2.39
1.81
1.10
0.80
1.42
1.09
0.66
0.48
2.28
1.76
1.09
0.81
1.34
1.03
0.65
0.48

0.361(12)
0.271(6)
0.196(2)
0.153(1)
0.292(8)
0.224(2)
0.155(2)
0.118(2)
0.326(16)
0.260(9)
0.195(6)
0.154(3)
0.266(16)
0.219(2)
0.156(1)
0.119(1)

TABLE XVIII. Lattice spacing and table of masses and

fp+M& from axial-vector current matrix elements, from jack-
knife extrapolations to zero light quark mass, using convention-
al Z factors.

cal operators (of both sea quark masses) are shown in
Figs. 3 and 4 (with recent data from Refs. [22—24,5]).
The data of Ref. [5] are converted from their figure to a
measurement of f~+MI, by us [25]. The conventional
analysis undershoots and the tadpole-improved analysis
overshoots the static quark data of Refs. [26,27], which
were not included in the fits.

With the fit, we can then interpolate to the D and B
meson mass. With a tadpole-improved analysis find

fD =256(5) MeV and fr=232(9) MeV from the local
axial-vector current, and fD =287(4) MeV and

fs =235(5) MeV from the nonlocal axial-vector current.
The uncertainty is completely in the extrapolation. Inter-
polating the conventionally normalized lattice data gives
fD=200(4) MeV and fs =160(7) MeV from the local
axial-vector current and fD =208(4) MeV and

fs =152(4) MeV from the nonlocal axial-vector current.
We think it is reasonable to include a 10% overall uncer-
tainty just from the lattice spacing in addition to a sys-
tematic uncertainty from the choice of operator. This is
about a 20 MeV plus 10—20 MeV effect. The uncertainty
due to the choice of o,, is quite small since it tends to can-
cel in taking a ratio to f; for example, in the local axial-
vector current with conventional normalization the varia-
tion is 4 MeV when a, changes from 0.17 to 0.18.

Note that the tadpole-improved data also overshoot
the data of Ref. [5]. These data are from a lattice cou-
pling 13=6.3 or a lattice spacing 1/a =3.2 GeV as com-
pared to our 1/a=2 GeV. Thus the values of the D
meson masses (in lattice units) difFer by about 30%%uo.

More importantly, in our simulations the D meson has a
mass in lattice units of about 0.93, which is very heavy.
Only for the lighter masses do our data and that of Ref.
[5] agree; only for lighter masses do the pseudoscalar
masses become small compared to an inverse lattice spac-
ing.

Recent lattice predictions for fl, (see [5,23,22,28]) lie
near about 200 MeV. Without more theoretical input we
do not know whether the difference in our predictions
with tadpole improvement or with the conventional nor-
malization is due to a large lattice spacing, represents a
lattice-to-continuum systematic which should be included
in the overall uncertainty of the lattice prediction, or
whether one method of analysis is to be favored over the
other for theoretical reasons. Certainly, the effects of sea
quarks are small compared to other uncertainties.

Finally, we can obtain fD . The number has recently
S

been determined by experiment [29] to be 232+45
+20+48 MeV, and so the tadpole-improved numbers are
already in conAict with experiment. We use the
~=0. 1585 quark as the strange quark, since the mass of
its vector meson is about 1 GeV (the P mass) with an in-
verse lattice spacing of 2 GeV [2]. Using the convention-
al normalization and a lattice spacing determined by f,
we find fD =220 MeV from the local operator at either
sea quark mass. We estimate the uncertainty on this
number to be at least 20 MeV from the lattice spacing
and 5 MeV in the intrinsic uncertainty of the lattice mea-
surement. Decay constants measured with tadpole im-
provement are much larger (as they are for fD): For ex-
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ample, the local operator would give 298 or 264 MeV at
am =0.01 or 0.025; both nonlocal axial-vector current
operators are also quite large, about 320 MeV. This is in
convict with experiment. Again, we remind the reader
that the masses of these states are about 1.0 (in lattice
units). This is uncomfortably large.

numbers, but the conversion of lattice numbers into con-
tinuum numbers. The only way a pure numerical simula-
tion can reduce those systematics is by reducing the lat-
tice spacing to such a point that the coupling constant is
small, independent of whether or not sea quarks are
present.

VIII. CONCLUSIONS ACKNOWLEDGMENTS

The data we have presented look rather similar to
quenched simulations at a lattice spacing of I/a =2 GeV.
The effects of different mass sea quarks are small. We see
few percent effects on the vector decay constant, but any
effects of sea quarks in the axial-vector current matrix
elements are masked by uncertainties in the lattice spac-
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quarks is in the semiperturbative calculation of ~, . There,
a better prediction of ~, needs a coupling constant which
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quarks. But for experimental observables the effects of
dynamical fermions seem to be subsumed into renormal-
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