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We investigate the phase structure of four-dimensional quantum gravity coupled to Ising spins or
Gaussian scalar fields by means of numerical simulations. The quantum gravity part is modeled by the
summation over random simplicial manifolds, and the matter fields are located in the center of the four-
simplices, which constitute the building blocks of the manifolds. We find that the coupling between spin
and geometry is weak away from the critical point of the Ising model. At the critical point there is clear
coupling, which qualitatively agrees with that of Gaussian fields coupled to gravity. In the case of pure
gravity a transition between a phase with highly connected geometry and a phase with very "dilute"
geometry has been observed earlier. The nature of this transition seems unaltered when matter fields are
included. It was the hope that continuum physics could be extracted at the transition between the two
types of geometries. The coupling to matter fields, at least in the form discussed in this paper, seems not
to improve the scaling of the curvature at the transition point.

PACS number(s): 04.60.+n, 03.70.+k, 04.50.+h, 05.50.+q

I. INTRODUCTION

Last year a new regularized model of quantum gravity
in four dimensions (4D) was introduced [1,2]. The path
integral is approximated by a summation over randomly
triangulated piecewise linear manifolds. ' This model is a
generalization of the one from two dimensions, which
was very successful [4—7]. In 4D simplicial quantum
gravity two different phases have been observed: one
with a highly connected geometry and a large Hausdorff
dimension and one with a low Hausdorff dimension.
Based on numerical simulations it was suggested in [2]
that the transition between the two types of geometries
was of second order and that an interesting continuum
limit might be extracted at the transition point. This ob-
servation has been further corroborated in a sequence of
papers [8-12].

One obstacle to the above-mentioned suggestion is that
the numerical simulations performed so far seem to indi-
cate that the average curvature, defined for a triangulated
manifold by Eq. (3), does not scale to zero at the transi-
tion point. The average curvature does decrease (albeit
slowly) with the volume of the simulated universes, and
since it has so far only been possible to consider universes
built out of less than 32000 four-dimensional simplices,
which corresponds to at most a 6 regular lattice, it is
possible that the curvature scales to zero in the infinite
volume limit. However, if this is not the case it prompts
at least a reinterpretation of the meaning of the scaling
limit, since naive scaling such as

(where a is the lattice spacing) cannot be maintained. Of

An older, related approach makes use of a fixed triangulation, but allows the variation of the length of the links. To the contrary,

in the present approach one keeps the length of the links fixed, but varies the connectivity. We refer to [3] for a recent lucid review of
the first approach, which we here will call "Regge gravity, "while we will use the term "simplicial gravity" for the present approach.

A similar transition has been observed in the computer simulations of 4D Regge gravity. The relation between the two approaches

is not clarified yet. We would like both regularizations to represent the same continuum theory. However, there are indications that

even in 2D gravity the theories might differ. According to [3] it seems as if the coupling of 2D Regge gravity to matter differs from

that of simplicial 2D gravity coupled to matter, which, on the other hand, agrees with analytic continuum calculations. This ob-
served difterence is based on numerical simulations and maybe more extensive simulations will change the situation. With the
present incomplete understanding of the relation between Regge gravity and simplicial gravity, it is clearly of importance to investi-
gate both regularizations of quantum gravity.
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course, nobody presently knows how a quantum theory
of Euclidean gravity will manifest itself and maybe a con-
ventional scaling such as Eq. (1) is misleading. This is
most likely the case if there exists a "topological" phase
where (g„)=0, as sometimes conjectured. At this point
we should mention a recent suggestion [13] of a different
identification of the lattice results with continuum theory
in which one considers the limit of the bare gravitational
coupling constant going to infinity. This limit might in
continuum language correspond to an infrared fixed point
dominated by the quantum fluctuations of the conformal
factor. The scaling relations derived in [13] agree at the
qualitative level quite well with the numerical results, but
they move the interesting region of continuum physics
away from the transition in geometry and to a region in
coupling constant space where (1) can be satisfied. We
consider this suggestion as most interesting.

In this work, we will explore whether coupling of
matter fields to gravity will change the phase structure of
the theory and maybe even cure the problem with the
scaling of the average curvature at the transition. In the
best of all worlds one could even hope that the quest for a
conventional scaling of gravity observables such as the
average curvature would uniquely determine the matter
content of the theory. It is, of course, also of interest in
itself to study matter fields coupled to dynamical random
geometries.

The coupling of matter to two-dimensional gravity has
revealed a rich and beautiful structure as long as the cen-
tral charge of the field theory is less than or equal to one.
This is summarized in the Knizhnik-Polyakov-
Zamolodchikov (KPZ) formulas [14], but was first
discovered in the simplicial gravity approach. As an ex-
ample, when the Ising model is coupled to 2D simplicial
gravity its phase transition changes from being second or-
der to third order [15,16]. In addition the back reaction
of matter changes the critical exponent y of gravity at
the critical point of the Ising model. Away from the crit-
ical point this exponent is unchanged.

Unfortunately the analytical methods of 2D have not
yet been extended to higher dimensions. The coupling of
the Ising model to 3D gravity was investigated by numer-
ical simulations in [17—19]. The phase diagram was
determined in [19]and the conclusion was that, although
there was a clear coupling between gravity and the spins
at the critical point of the spin system, this inAuence was
not sufficiently strong to change the first order transition-
observed in three dimensions [20,21] between the two
phases of the geometrical system into a more interesting
(from the point of view of continuum physics) second-
order transition. In this respect the situation is better in
4D where the transition between the two phases of the
geometrical system may already be of second order, as
mentioned above.

The rest of this paper is organized as follows. In Sec.

But we will, of course, not seriously pretend that the present
stage of numerical simulations of quantum gravity is such that
one could really determine the matter content.

II, we define the model. In Sec. III, we discuss briefly the
numerical method, while Sec. IV contains our numerical
results. Finally, in Sec. V, we discuss the results ob-
tained.

II. THE MODEL

Simplicial quantum gravity in 4D is described by the
partition function (see, e.g. , [2,10])

TET
(2)

(R ) o- (c4N2/N4 —10), (3)

where the constant c4 is the number of four-simplices to
which each triangle should belong if the manifold were
flat. Furthermore one can by an appropriate interpreta-
tion of the Regge approach introduce the average of the
squared curvature per volume by

go(n2)[[c4 o( )n]2/—o(n )]2

(R')
10N4

(4)

where the sum is over triangles n2 and o (n2) is the order
of a given triangle, i.e., the number of four-simplices to
which this triangle belongs. The correlator ( R ) —(R )
will prove useful as an indicator of a change in geometry

One can now couple matter fields to simplicial quan-
turn gravity. In the case of Ising spins the partition func-
tion will look like

where the sum is over triangulations T in a suitable class
of triangulations V. The quantity N4 denotes the number
of four-simplices in the triangulation and Nz the number
of triangles. The coupling constant ~z is inversely pro-
portional to the bare gravitational coupling constant,
while ~4 is related to the bare cosmological constant. The
most important restriction to be imposed on V' is that of
a fixed topology. If we allow an unrestricted summation
over all topologies in (2) the partition function is diver-
gent [2]. In the following we will always restrict our-
selves to consider manifolds with the topology of S .

Z(~2, x4) is the grand canonical partition function. It is
defined in a region I~4 ~ 1~4(s2) in the (~2, ~4) coupling con-
stant plane. The only way in which we can hope to ob-
tain a continuum limit is by letting 1~4 approach a4(a, )

from above. This tentative continuum limit depends only
on one coupling constant ~2 and the transition between
the two phases of 4D gravity mentioned above takes
place at a critical value of sc2, ~z. It is often convenient to
think about the canonical partition function where N4 is
kept fixed. Then ~2 is the only coupling constant and the
aspects of gravity which do not involve the fluctuation of
the total volume of the Universe can be addressed in the
limit of large N4. For the geometrical system an observ-
able which has our interest is the average curvature per
volume, (R ). The average curvature can for a simplicial
manifold be defined by Regge calculus and in the case of
equilateral simplexes one simply has
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Z(P, ~zi~~)=pe ' ' g g e ' 'exp Pg&, &(5 —1)
X4 TEv(x, ) Io-I

(5)

In this formula T(X~) signifies the subclass of T with volume X~, g( )
the summation over all spin configurations,

while g(; .
) stands for the summation over all neighboring pairs of four-simplices. As a function of ig there might or

might not be a phase transition for the spin system, depending on the value of az [assuming that a~=a~(az, P), where Kg

now depends on both iiz and P].
The coupling of scalar fields to simplicial quantum gravity is also straightforward. Here we will ignore the self-

interaction of the scalar fields and direct coupling between the scalar fields and the curvature, and simply consider the
partition function

ll

Z(~, ~ )=X X e ' ' III II $ gp, . exp —
2 g (4',. —p. )

iv4 Tcv(N~) 'ia ,
2~ a=i i (ij},a,

Here i' labels the four-simplices, o. difFerent components
of the field P, and n is the total number of independent
Gaussian fields. There is no need for a coupling constant
in front of the Gaussian action since it can always be ab-
sorbed in ii4 by a rescaling of the P's. Of course, the
Gaussian action can, in principle, be integrated out ex-
plicitly, 1eaving us with an additional weight

(DetCT ) (7)

for each triangulation T, where CT is just the incidence
matrix for the y graph which is dual to the triangulation
T. In the case of Gaussian fields coupled to 2D gravity,
this fact was used to determine qualitatively the phase di-
agram of noncritical strings as a function of the number
of Gaussian systems, n [22—24]. In principle, one could
try to do the same here. However, the class of allowed y
graphs is not so easy to determine as in the case of 2D
gravity. In the following we will rely on numerical simu-
lations.

III. NUMERICAL METHODS

One annoying aspect of the above formalism is that we
are forced to perform a grand canonical simulation where
%4 is not fixed. The reason is that we have no ergodic
updating algorithm which preserves the volume X4. It
is, however, possible to perform a grand canonical updat-
ing without violating ergodicity and still stay in the
neighborhood of a prescribed value of N4, which we will
denote X~(fix). The procedure involves fine-tumng of ii4

to its critical value, a4(az, P). We refer to [10]for details.
In addition to the updating of the geometry, we also

have to update the Ising spin system and the Gaussian
systems. Let us first discuss the Ising spin system. In or-
der to avoid critical slowing down close to the phase
transition between the magnetized and the nonmagnet-
ized phase the spin updating is performed by the single
cluster variant of the Swendsen-%'ang algorithm

I

developed by Wolff [27]. The cluster updating algorithms
have been successfully applied to the Ising model coupled
to 2D gravity [28—31] and to the Ising model coupled to
3D gravity [19]. We update the spins once for every
sweep, i.e., after N4 (fix) accepted updatings of the
geometry.

In the simulations we have scanned the (az, P) coupling
constant plane by first fixing ~z and then varying P in the
search for a critical value P, (az) where the spin system
undergoes a transition. For values of ~2 where we are
well inside the phase with a highly connected geometry
and a large Hausdorff dimension, 5000 sweeps are
su%cient to achieve equilibrium for bulk quantities when
the number of simplexes does not exceed %4 =9000. This
is in agreement with the situation in pure gravity [2,10].
We have occasionally made longer runs in connection
with the measurement of Binders cumulant [50000
sweeps) and near critical points either in the spin or grav-
ity coupling constant. It seems as if the situation is in all
respects as in 2D and 3D gravity. In particular, the pres-
ence of the spins seems not to slow down the convergence
of bulk geometries observables (in 2D it is known that
spins speed it up). In this phase we have neither seen ex-
cessive signs of autocorrelations of spins (the longest of
the order of 500 sweeps at the spin transition). This is in

agreement with intuition since the connectivity of the
system is large and the maximal distance between spins
correspondingly small. The situation is somewhat
difFerent when we probe the phase where the geometry is
elongated and where internal distances can be quite large.
Without spin the convergence in geometry is slow in this
phase and it is true also after coupling to spins.

The Gaussian fields are updated by a heat bath algo-
rithm. There are two aspects of this updating. One type
of updating is performed with a fixed background
geometry and is standard. The other one is related to the
Metropolis updating of the geometrical structure. Since
there are slightly unconventional aspects connected with

4In 20 gravity we know how to perform a canonical updating,
but even there the grand canonical updating is occasionally con-
venient to use [25,22,23,26].

~In order that the reader could appreciate the amount of work

going into this please note that we have to fine tune ~4 for each
value of a2 and P.
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the change of the fields, when the geometry is changed,
let us make a few comments. We will not go into details
(which are trivial, but clumsy to write down explicitly),
but rather sketch the main point: Consider a change in
geometry where we take a four-simplex, remove the "in-
terior, " insert a vertex in the "empty" interior, and con-
nect this vertex to the five vertices of the former four-
simplex. With a proper identification of subsimplices we
have by this procedure removed one four-simplex and
created five new ones. This inverse "move" is one where
we remove a vertex of order 5 and the associated five
four-simplices and replace them by a single four-simplex.
We must be careful to treat the Gaussian fields correctly
in such moves. In the case where we insert a vertex we
wiH have to introduce five new fields qv;, i =1, . . . , 5.
They will interact quadratically with each other, and
each of them will interact with one field associated with a
neighboring four-simplex untouched by the move. Let us
denote these five fields P;, i =1, . . . , 5. In addition we
have removed a field associated with the original four-
simplex. We denote it by yo. It interacted with the five

P, s. The correct probability distribution of the new five

%i Sis
5

dP„, (y;)=C„, (P, ) g dy, e

where the additional part of the action S„, coming from
added fields y, determined from (6) is

The factor C(P;) is a normalization factor, which con-
tains the exponential of a quadratic form in the P s and
its all-over scale is fixed by the requirement that
JdP„, (&p; ) =1. In a similar way the field yo which was
removed had a Gaussian probability distribution
dP, u(yo), just with another action

is "self-dual:" three four-simplices sharing a triangle (a
two-simplex) are replaced by three others, sharing a
different triangle. In all cases one can easily write down
dP and dP &g as above and incorporate these probabili-
ties in the requirement of detailed balance needed for per-
forming the purely geometrical move.

The total updating is now organized in the following
way. A sweep over the lattice with an updating of
geometry and the above-described updating of field con-
tent is followed by a number of sweeps with the geometry
fixed and ordinary heat bath updating of the Gaussian
fields. The actual number of such heat bath updatings for
each geometrical updating is chosen so that the fastest
convergence to equilibrium is achieved. For one Gauss-
ian field two heat bath updatings for each geometrical up-
dating is usually sufficient as long as the geometry is
highly connected. In the elongated phase up to 15
Gaussian updatings were needed. The number of neces-
sary updatings per sweep increases with the number of
Gaussian fields. For four Gaussian fields three updatings
per sweep were needed in the highly connected phase of
gravity.

IV. NUMERICAL RESULTS

A. Ising spins coupled to gravity

Pure 4D gravity has two phases and this fact is not
changed by the coupling to a single Ising spin. In the
phase where the geometry is highly connected the spin
system has a phase transition. In Fig. 1, we show the ab-
solute value of the magnetization:

4

iY4

and an appropriate normalization factor C,&~(p; ), which
again contains the exponential of a Gaussian form in P; s.
Assuming that the fields yo, , y~ are selected according
to P„,„and P,&z it is easy to enlarge the condition for de-
tailed balance for the change in geometry to include the
additional change in field content.

The geometrical moves fall in three classes (see, e.g.,
[2] for details) of which we have described one above. A
second class is one where two neighboring four-simplices
are removed and replaced by three new ones having in
common a link (a one-simplex), or the inverse move,
where three four-simplices sharing a link are removed
and replaced by two four-simplices being neighbors (i.e.,
sharing a three-simplex). Finally the third class of moves 0.0 1.0

The same aspect is already present in the grand canonical al-
gorithms used in 2D gravity, see, e.g. , [2S].

FIG. 1. The absolute value of the magnetization, as defined

by (11), as a function of P for F2=0.9, i.e., in the phase with a
highly connected geometry. The circles correspond to a volume

N4 =4000, the triangles to 1V4 =9000.
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very slowly when the size of the system is increased. The
lines of the phase transition (treating the shaded area as a
"line, " which we expect it will be in the infinite volume
limit) divide the coupling constant p1ane into three re-
gions: The one to the right is characterized by no magne-
tization and elongated geometry, the lower left region is
characterized by no magnetization and highly connected
geometry, while the upper left corresponds to a magnet-
ized phase and highly connected geometry. It is dificult
to determine the exact position of the bifurcation point
since we have here both a fluctuating geometry and large
spin fluctuations. It is easy to understand that the transi-
tion line separating different geometries will approach the
value of az for pure gravity when P~ oo and P~O. In
these limits the spin fluctuations decouple from gravity
and the locations of the transition must agree with the
one of pure 4D simplicial gravity.

In Fig. 5 we have shown the behavior of the average
curvature of our manifolds when we fix ~2 inside the
highly connected phase fix and move vertically in the
coupling constant plane varying P. The value of az is the
same as in Figs. 1 and 2. The position of the peak in the
average curvature exactly coincides with the value of P,
determined from the magnetization curve and the plot of
Binders cumulant. This observation allows an easy and
not so time-consuming determination of P, (icz). The
transition line P=P, (a2) was determined using this idea.
We note that this line shows little dependence on ~2. The
dependence of 1~@(P) is more pronounced. The value of ~z
is smaller for the coupled system than for pure gravity.
The shift in icz is largest when P=P, showing that the
coupling between geometry and spins is indeed largest

when the spin system is critical. This is in agreement
with the intuition we have from the exactly solvable 2D
Ising-gravity system. The transition line a2=a2(P) shows
that effectively the spin system pushes geometry towards
larger az values. The effect is strongest when P is close to
P (K2). On the other hand, we know that for large-Kp
values the geometry is such that the system cannot be
critical. This apparent contradiction seems to be generic
for the interaction between gravity and matter of the
kind considered here. This is highlighted in a recent pa-
per on multiple spin systems coupled to 2D gravity [32].
In 2D the back reaction of the spin system on gravity is
also largest close to criticality, but is such that it coun-
ter acts its own criticality by trying to deform the
geometry into generic shapes where it cannot be critical
(polymerlike geometries). It seems that we are observing
a similar phenomenon here in 4D.

It is, of course, an interesting question whether the
coupling between the spins and gravity changes the criti-
cal exponent of either of the systems as is the case in two
dimensions. However, since the critical exponents of the
pure 4D gravity system are yet not known and since it
has proven quite difficult to extract by numerical
methods the critical exponents of the Ising spins coupled
to 2D gravity, we have chosen here the more modest ap-
proach to look at the inAuence of the spin system on bulk
geometric quantities like the average curvature. As ex-
plained in the Introduction, this has special interest in re-
lation to the scaling of gravity observables at the transi-
tion between geometries. We will return to this aspect
after we have discussed briefly 4D gravity coupled to
Gaussian fields.

B. Gaussian fields coupled to gravity

V
I

A
V

In the case of Gaussian fields we have, as explained
above, no coupling constant to adjust. The fields will au-
tomatically be critical in the infinite volume limit. We
have considered up to four Gaussian fields coupled simul-
taneously to gravity and for these systems we can make a
statement similar to the one made for the Ising model:
The two phases of geometry seem to survive the coupling
to Gaussian matter. In Fig. 6, we have shown the expec-
tation value (P ) of a single component of the Gaussian
field as a function of az. We see a change in (P ) linked
to the change in geometry. The value of (P ) increases
when we enter into the elongated phase. In fact, (P )
also has quite large Auctuations in this phase.

C)
C)

0.2 'I.0

FICx. 5. The efFect on the curvature (R ) —(R )0 [where (R )
is defined by (3)] when we are in the phase with a large Haus-
dortf dimension and change P. The value of F2=0.9 and the cir-
cles correspond to %4=4000 while the triangles correspond to
%4=9000. (R )o denotes the average curvature in the case of
pure gravity (it difFers slightly for N4=4000 and 9000 due to
6nite-size efFects).

C. Behavior of gravity observables coupled to matter

In the computer simulations we can clearly see the
back reaction of matter on the geometry for a given
choice of coupling constants. It is less obvious, however,
that this back reaction of matter leads to anything but
trivial changes. Both for the coupling of Ising spins and
Gaussian fields we still have two phases of the geometry:
the highly connected one and the very elongated one. As
mentioned in the Introduction, one could hope that the
inclusion of matter would improve the scaling of the cur-
vature at the transition. We have investigated this in the
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FIG. 6. The change in (P2) (a single component field) as a
function of z2 for X4 =4000.

following way: As remarked above there are several indi-
cators of the change in geometry. They result in slightly
different values of ~z. We have chosen to use the peak of
( R ) —( R ) as an indicator of the transition, mainly be-
cause it is easier to identify than the change in Hausdorff
dimension. The value of ~z depends on the matter con-
tent, as can be seen from Fig. 7. In Fig. 8, we have plot-
ted the average curvature as a function of the distance
krc2 from scz. It is seen that there is no improvement in
the scaling behavior of (R )(az) as a function of the
matter content when we compare with the situation in

C4
R,

V
I

A

V

0.0 1.0 2.0

FIG. 7. (R ) —(R ) for a different matter field as a function
of blr2. Pure gravity (V), gravity + Ising at P, (+), gravity +
one Gaussian field ( 0 ), and gravity + four Gaussian fields (0).
[The observables (R ) and (R ) are defined in (3) and (4), re-
spectively. ]

FIG. 8. (R ) as a function of b,~2 for different matter con-
tent. Pure gravity ('7), gravity + Ising at P„(+), gravity +
one Gaussian field (0 ), and gravity + four Gaussian fields ( ).

hS =Kg%4 K2Xp+ 2 g o (n2)
n2

2
c~ —o(n2)

o(n2)
(13)

pure gravity. In fact, the curves look remarkably insensi-
tive to the inclusion of matter and one could at this point
wonder whether the back reaction of matter has any
effect on the geometry except to introduce an effective ~2
which differs from the bare parameter. This is, of course,
enough to explain the peak in the average curvature ob-
served in Fig. 5 and it also provides us with an explana-
tion why the peak is more narrow for a 9K system than
for a 4K system. This is due to the fact that the change
in average curvature across the phase transition is more
sudden for the larger system. In Fig. 7, we have shown
(R ) —(R ) for various matter fields coupled to gravity.
%'e see that the peak grows with the number of Gaussian
fields, indicating at least somewhat increased back reac-
tion with the number of fields. Furthermore, we note
that the larger the number of Gaussian fields is, the more
~z is shifted towards smaller values. Hence systems with
a large number of Gaussian fields favor elongated
geometries. The same phenomenon is known from two
dimensions where analytic considerations show that the
path integral is dominated by elongated geometries when
n is large. However, there is no indication that the pres-
ence of matter fields changes the nature of the phase tran-
sition of the geometrical system.

Let us comment here on a somewhat surprising feature
of 4D simplicial gravity. As mentioned earlier the
method of grand canonical simulation requires a fine-

tuning of ~4 to its critical value, ~4. It appears that x~ de-
pends on ~2 in a universal way. In Fig. 9, we have shown
Ir4(lr2) for pure gravity, gravity coupled to Ising spins at
P=P„and gravity coupled to one and four Gaussian
fields, respectively. In Ref. [10], 4D simplicial gravity
was simulated using the action
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X0

I

0.0 2.0

This corresponds to adding to the Einstein Hilbert action
a typical higher derivative term [cf. Eq. (4)]. We have
shown also tc4(tc2) for this model when h =10 and 20.
For all the systems studied tc~(tcz) is a linear function with
a slope of approximately 2.5.

FIG. 9. ~4 as a function of ~& for different systems. Pure grav-
ity ( X ), gravity + Ising at P=f), (o ), gravity + one Gaussian
field (0), gravity + four Gaussian fields (4), gravity with a
higher derivative term for h = 10 (0), and gravity with a higher
derivative term for h =20 (+).

are not under control and it would be most desirable to
be able to simulate larger systems. In principle, it is pos-
sible and it mill be possible in the future. The size of ran-
dom lattices considered here, consisting of 9000 four-
simplices, corresponds to a 4 —5 regular lattice. But
even on the small lattices used here one might reveal in-
teresting aspects of the interaction between gravity and
matter. Until now we have only considered the simplest
matter systems, spins and Gaussian fields, but nothing
prevents us from considering the coupling to, for in-
stance, non-Abelian gauge fields. It is also, in principle,
possible to define nonlocal observables such as spin-spin
correlation functions as functions of geodesic distance
(see, i.e., [19] for a discussion in the case of 3D gravity)
and explore their quantum averages. In this paper we
have not tried to extract any critical exponents of such
observables since the experience from 3D is that it is not
easy, and we decided in this first investigation to concen-
trate on bulk quantities.

The main result of the simulations is that coupling of
matter to discretized gravity seems not to inAuence the
geometry in a profound way. Of course, it is possible that
critical indices change (as in the case of 2D gravity). Our
measurements are still too poor to measure such sublead-
ing effects. As mentioned above, an interesting effect
would be an improved scaling of the average curvature in
the region where there is a transition in geometry. We
have not seen any such effect. The tentative conclusion
from these first numerized experiments is that matter
fields (at least of the kind we have considered here) will
not add very much to our attempts to understand the
basic structure of four-dimensional quantum gravity.
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