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A. O. Barvinsky*
Theoretical Physics Institute, Department of Physics, Unioersity of Alberta, Edmonton, Canada T6'G 2J1
and Nuclear Safety Institute, Russian Academy of Sciences, Bolshaya Tulskaya M, Moscow 113191,Russia

A. Yu. KamenshchikI and I. P. Karmazin~
Nuclear Safety Institute, Russian Academy of Sciences, Bolshaya Tulskaya $9, Moscow 113191,Russia

(Received 8 February 1993; revised manuscript received 30 June 1993)

We develop a renormalization-group formalism for nonrenormalizable theories and apply it
to Einstein gravity theory coupled to a scalar field with the Lagrangian L = ~9[RU(p)—
—G(P)9""8„$8„$—V(P)], where U(P), G(P), and V(P) are arbitrary functions of the scalar
field. We calculate the one-loop counterterms of this theory and obtain a system of renormalization-
group equations in partial derivatives for the functions U, G, and V playing the role of generalized
charges which substitute for the usual charges in multicharge theories. In the limit of a large but
slowly varying scalar field and small spacetime curvature this system gives the asymptotic behavior
of the generalized charges compatible with the conventional choice of these functions in quantum
cosmological applications. It also demonstrates in the over-Planckian domain the existence of the
Weyl-invariant phase of gravity theory asymptotically free in gravitational and cosmological con-
stants.

PACS number(s): 04.60.+n, 98.80.Hw

I. INTRODUCTION

It is widely recognized that a consistent theory of quan-
tum gravity is a matter of crucial importance with regard
to the two main challenges of modern physics: the cre-
ation of a united theory of fundamental interactions and
construction of the theory of the quantum origin and evo-
lution of the Universe. The principles of the latter the-
ory, quantum cosmology, were founded many years ago
by Dirac, Wheeler, and DeWitt [1] and have been fur-
ther developed in recent years when the proposals for
the quantum state of the Universe were put forward [2—
4]. Among these proposals is the so-called no-boundary
prescription of Hartle and Hawking [2,3], which is sup-
posed to provide a smooth transition between the quan-
tum birth of the Universe and the inHationary stage of
its development. The latter property is very important,
because the theory of the inQationary expansion of the
very early Universe [5—12] has become an integral part of
modern cosmology.

To study the physical eÃects of the proposed wave func-
tion of the inHationary Universe at a deeper level, one has
to go beyond the tree-level approximation and, in the ab-
sence of full nonperturbative quantum field theory and
quantum gravity, to calculate, as a erst step, perturba-
tive quantum corrections. This inspired the series of pa-
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pers on the one-loop calculations in quantum cosmology
[13—24], which, in particular, have shown that the nor-
malizability property of the cosmological wave function
and the partition function of the inBationary universes
drastically change after the inclusion of loop corrections
[17].

However, when resorting to perturbative calculations
in quantum cosmology we should not forget about one of
the stumbling blocks on the road to a consistent theory
of quantum gravity —its nonrenormalizability [25,26). It
is well known that the origin of this fundamental problem
consists in the fact that the gravitational coupling con-
stant has a mass dimension —2 (5 = c = 1). Thus, the
Feynman diagrams, which contain a growing number of
graviton loops, lead formally to an infinite set of difFerent
counterterms to the gravitational Lagrangian, which can-
not be eliminated by a renormalization procedure of the
standard type, that is removed by the renormalization
of a finite number of parameters [27]. As regards pure
gravity theory, it was shown that at the one-loop level
on mass shell no physically relevant divergencies remain;
all of them can be absorbed into a field renormalizations
[28]. However, the pure gravity is two-loop nonrenormal-
izable, even on mass shell [29]. The situation gets worse
in the case of the interaction with matter, in particular,
with the scalar field. This theory is nonrenormalizable
[28] already in the one-loop approximation.

There are difFerent approaches to the problem of non-
renormalizability in quantum gravity. One can consider
Einstein gravity as a low-energy limit of a more general
theory such as supergravity [30] or superstring theory
[31,32]. Because of the presence of the additional sym-
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metry, one has a smaller number of types of divergen-
cies in quantum supergravity and can hope to find it
renormalizable. As concerns superstring theory, we can
look forward to building a finite "theory of everything"
from it. However, one should recognize that the questions
of the renormalizability in supergravity theories and the
finiteness of superstring ones still remain open.

Another approach to the question of renormalizability
in gravity theory is connected with the idea of adding
to the Lagrangian curvature-squared terms which allow
one to carry out a resummation of the perturbation se-
ries and obtain an effective renormalizable theory [33—
35]. However, pursuing this approach we stumble upon
the residues of incorrect signs at propagator poles, which
in turn imply the problem of the breakdown of unitarity
[26]

In any case, it makes sense to try to work with the
usual nonrenormalizable Einstein gravity by overcoming
our fear of the infinite number of counterterms arising in
the Lagrangian as a response to an infinite number of dif-
ferent types of ultraviolet divergencies. It is interesting
that working with nonrenormalizable theories we can ap-
ply such a useful mathematical tool as renormalization-
group equations. The idea of the possibility to apply
the renormalization-group equations in the theory with a
charge having a negative mass dimension was mentioned
in Ref. [36]. Weinberg in Ref. [26] applied the concept of
the asymptotic safety to the discussion of a renormaliza-
tion group in quantum gravity. A theory is considered to
be asymptotically safe if "essential" coupling parameters
approach a fixed point as the momentum scale of their
renormalization point goes to infinity. The condition of
the asymptotic safety could be treated as a generaliza-
tion of the notion of renormalizability, which fixes all but
a finite number of essential coupling parameters of a the-
ory.

The most general scheme of obtaining the
renormalization-group equations in arbitrary nonrenor-
malizable theories was formulated recently by Kazakov
[37]. In spite of the absence of the multiplicative renor-
malizability, the method proposed in [37] allows one to
calculate all the higher singularities (the poles in the di-
mensional regularization scheme) from the generalized P
functions describing the ultraviolet divergencies without
subdividing them into those related to diferent param-
eters of the theory under consideration. However, al-
though this formalism has an undoubtful theoretical sig-
nificance, it can be hardly used in the concrete applica-
tions.

Here, we develop the renormalization-group formalism
adapted for the purposes of Einstein gravity interacting
with a scalar field. This model seems especially inter-
esting because it is the inQaton scalar fi.eld that pro-
vides the existence and subsequent termination of the
de Sitter stage in the evolution of the Universe, which
is widely recognized to be responsible for the formation
of the large-scale cosmological structure consistent with
the present-day observational data. The main idea of our
approach consists in such rearrangement of an infinite
set of counterterms in the Lagrangian that the groups
of these terms having an analogous nature are combined

together into certain functions which we shall call the
generalized charges (in contrast with the usual charges
in the traditional theory of the renormalization group
[38,39,27,40,41]). These generalized charges include im-
plicitly all the divergencies which can appear in the the-
ory.

We shall introduce the generalized charges as coeK-
cients in the expansion for the action in powers of the
curvature and in numbers of derivatives of the scalar
field i

S[g, g] = d xg ~ ( V(P)——-G(Q) g" 'V„PV„P

+R(g) U(P) +

Qur conventions are sgn g„„=+2, g=detg„, B
g""R ~ „=g~" (8 1 „— .), V„ is a covariant derivative
with respect to g„„,8/Bm = 8

where the ellipsis denotes all other possible terms con-
taining all higher powers of curvatures and these deriva-
tives. It is obvious that the action (1.1) contains
an infinite number of such structures. Assuming the
renormalization-point independence of the bare general-
ized charges (just like as in the usual approach to the
renormalization-group theory), we can obtain an infinite
system of generalized renormalization-group equations
for an infinite set of such charges. It is certainly im-
possible to work with this system in practice. Therefore
we shall have to restrict ourselves with a finite subsys-
tem of generalized charges, assuming that other struc-
tures present in the action (1.1) are comparatively small
in concrete physical applications. This can happen due to
two difFerent reasons. One situation allowing us to con-
sider only the first few generalized charges U(P), G(P),
and V(P) is when the rest of the terms in (1.1) are negli-
gible, because 0$ and the space-time curvature are small
enough to neglect the terms with their higher powers.
Another situation corresponds to the setting of the phys-
ical problem with such an energy scale that the running
coupling constants of the ( . ) structures in (1.1) are neg-
ligible at this scale the property called asymptotic free-
dom in corresponding coupling constants and justifying
the use of the perturbation theory.

The situation of the first type takes place in a wide
class of modern cosmological applications in the theory
of the early Universe driven by the large inHaton scalar
field, having at the inHationary stage suKciently small
(compared to the Planckian scale) curvature and space-
time gradients of the inHaton. As far as it concerns the
situation of the asymptotic freedom, it can only follow
from the properties of solutions of renormalization-group
equations and cannot be a priori used without their anal-
ysis. Anyway, in this paper we shall assume either of
these two possibilities as a justification for truncating
the set of generalized charges to those of Eq. (1.1) and
calculating the corresponding one-loop counterterms and
P functions. It will turn out that there exists a particular
solution of the renormalization-group equations demon-
strating the asymptotic freedom, which can be used as
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an a posteriori arguMent in favor of this approach (ir-
respective of the approximation of small curvatures and
field gradients) .

Thus, using the first terms in action (1.1), we can find
the one-loop counterterms in a rather general form for ar-
bitrary functions U(P), G(P), and V(P). They turn out to
be of a very complicated nonpolynomial structure even on
the mass shell [28,42]. Given these one-loop counterterms
we can construct the generalized P functions and study
a corresponding system of renormalization-group equa-
tions. In a certain sense this formalism occupies an inter-
mediate position between the standard renormalization-
group procedure [38,39,27,40,41] and that of Ref. [37].
The calculation of one-loop counterterms of theory (1.1)
is a rather nontrivial problem which can be solved by
the combination of the covariant Schwinger-DeWitt tech-
nique [43,44] and the background field method [45,46].
It is remarkable that gravitational theory coupled non-
minimally to a scalar field can be simplified by means
of the conformal transformation of the metric and scalar
field [42,47—48], so that the nonminimal coupling between
gravity and a scalar Beld disappears. Such a technique
has been used in [42] for obtaining the divergent part
of the one-loop effective action in Einstein gravity with
the cosmological term, nonminimally coupled to the self-
interacting scalar Geld

8 [g, P]=f d»g'~
(
—(R—2A) ——g»"V»PV P

——m P — (BQ ———
, P . (1.2)

1 2 2 1 2 A 4

2 2 4t

Theories (1.1) and (1.2) after the corresponding confor-
mal transformations have the same form:

R [g, p] = f d» g'~~ .—R(g) ——g» V»pV„p

(1.3)

where g and (p are the conformally transformed metric
and the scalar field, B(g) = B the scalar curvature with
respect to the metric g», CI = g~ V'~V, and V'~ the
covariant derivative with respect to g~ . Thus, having
one-loop divergencies for theory (1.3) expressed in terms
of new Geld variables, we at the same time have the so-
lution for theory (1.1). The inverse conformal transfor-
mation gives us the needed counterterms as functions of
original variables.

After obtaining all the counterterms we calculate the
corresponding P functions using our generalized formal-
ism. The construction of the renormalization-group
equations is carried out in analogy with the standard
method, but, in contrast with the usual multiple-charge
renormalization theory, this method results in the differ-
ential equations in partial derivatives with respect to the
renormalization mass parameter t and the scalar field-
the arguments of U(P, t), G(P, t), and V(P, t) In view o.f

the complexity of P functions, even the truncated set of
these equations for generalized charges turns out to be
very complicated. Moreover, these equations require set-
ting the Cauchy data, and at present we do not have ex-
haustive physical principles to fix it uniquely. Therefore,
instead of a complete rigorous setting of the boundary-
value problem, w'e shall study the admissible types of the
asymptotic behavior for the generalized charges and com-
pare them with the present-day phenomenological models
widely used in the early-Universe implications.

In this way we shall study two asymptotic forms of
U(P), G(P), and V(P). The first one has a power-
logarithmic dependence on the scalar Geld in the high-
energy limit of large values of P. In this limit we
find a two-parameter family of solutions for general-
ized charges U(P), G(P), and V(P). It is worth notic-
ing that the functions V(P) = A/4, G(P) = 1, and
U(P) = 1 —(P /2, usually used in phenomenological
models, satisfy the obtained restrictions and, hence, sus-
tain our renormalization-group analysis. At the same
time, the models without self-interaction of the scalar
field or with a minimal coupling to gravity are ruled
out by this analysis which, thus, can serve for select-
ing intrinsically consistent models. It is also interesting
to note that the motivation for considering the nonmin-
imally coupled scalar Beld with a self-interaction follows
also from the requirement of the normalizability of the
cosmological wave function and a reasonable probability
distribution of inHationary cosmologies [17]. Thus the
requirements of the high-energy (ultraviolet) quantum
consistency of the theory match with the requirements
of a reasonable dynamical scenario in the early Universe
and lead to certain selection rules for admissible phe-
nomenological Lagrangians. The second asymptotic form
of generalized charges which we consider here involves
an exponential dependence on the scalar field. These
models are of special interest in the theory of the early
Universe, because they imply a power-law inHation inten-
sively discussed in current literature [49—54). It turns out
that these models also satisfy the consistency conditions
within the renormalization-group approach, which im-
pose certain relations between the asymptotic expressions
for generalized charges and lead to their one-parameter
family.

A remarkable property of the obtained pure power in
P solution for the truncated set of U(P), G(P), and V(&P)
is that this solution turns out to be exact (valid for all
values of P) and describing in the ultraviolet limit the
Weyl-invariant theory of coupled metric and the dilaton
Beld, the latter being a purely gauge mode of the local
conformal group. This theory turns out to be asymp-
totically free in the effective renormalized gravitational
and cosmological constants, and, thus, seems to justify in
the high-energy domain the truncation of the above type
even irrespective of the inflationary context with small
curvatures and space-time field gradients. The structure
of the renormalized Lagrangian of the theory shows that
at intermediate energies the dynamically excited dilaton
mode, presumably, breaks in view of its ghost nature
the over-Planckian Weyl invariance and leads to the low-
energy theory. The latter must be described by the as
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yet unknown nontrivial solution of the full system of gen-
eralized renormalization-group equations, containing the
new dimensionful parameters reBecting the broken Weyl
and scale invariances of the theory. We discuss the possi-
ble structure of these solutions in connection with setting
the Cauchy problem for the generalized renormalization-
group equations and with the low-energy stability of the
theory.

It is worth pointing out here the relation of the above
technique to recent work on applications of the renormal-
ization group to quantum field theory on curved space-
time background (we cite here only several references [55—
63] in a very extensive bibliography on this subject). In
these papers the gravitational field was basically consid-
ered at the classical level and. the problem of its nonrenor-
malizability did not arise: the curvature-squared terms,
generated by the renormalization procedure for the mat-
ter fields, were usually interpreted as a polarization of
their vacuum, contributing to Einstein s equations, but
not as the first terms in an infinite series of cvocal inter-
actions. With regard to these papers, our work can be
considered as a means to justify the truncation of this se-
ries for physical problems with slowly varying fields and
simultaneously to find a correct (generally nonpolyno-
mial) structure of the first few interactions, encoded in
the generalized charges of the above type.

This paper is organized as follows. Section II con-
tains the calculation of one-loop divergencies for the
above models. In Sec. III we review the standard
renormalization-group method and Kazakov's formalism
and apply it to the calculation of the generalized P func-
tions and the corresponding renormalization-group equa-
tions. In Secs. IV and V we analyze the asymptotic prop-
erties of their solutions in the context of some cosmologi-
cal models, find the over-Planckian Weyl invariant phase
of gravity theory, and discuss the possible prospects for
the further developement of this approach and its physi-
cal implications.

Sl& ~1= d'Tg'~'l —,R(g) ——0"'tT~Pv y

—&(~) (2.2)

(2.3)

Then, under such a splitting, we introduce a background-
covariant gauge-breaking term in the total action and ex-
pand this action in powers of (h„„,f), so that the kernel
of the quadratic term in this expansion will give rise to
the inverse propagator 82S" [P]/8P hP+. In what fol-
lows we shall omit the superscript zero in the notation
of the background fields gi i and y~oi —the functional
arguments of the e8'ective action. In such notation the
gauge-breaking term can be written as

2k2
(2.4)

where the background-covariant gauge conditions, which
we choose here, are the following functions linear in quan-
tum disturbances:

by means of a conformal transformation of the metric and
the scalar field. So we shall carry out all the calculations
for action (2.2) and then use this transformation to the
initial field variables in order to get the divergent part of
the one-loop effective action for (1.1) and (1.2).

For the calculation of the divergent part W „',
&

we

shall use the background field method [45,46] and the
Schwinger-DeWitt technique [43,44] applicable to a wide
class of differential operators, to which belong the in-
verse gauge propagator h S [P]//bP hP+ and ghost op-
erator Q& of Eq. (2.1). Obtaining these operators in the
background-field method looks as follows. We first split
g„and p into background fields (g„„,gaol) and quan-
tum disturbances (h~, f):

II. ONE-LOOP DIVERGENCIES IN THE
GENERALIZED MODEL OF COUPLED

GRAVITATIONAL AND SCALAR FIELDS with

(2.5)

A. Nonlinear minimally coupled scalar field
h = g""h„ (2.6)

The one-loop effective action for gauge theories has the
following form in the condensed notation of DeWitt [46]:

g2 Stot [y]
P (2.1)

where &p is the full set of fields, S [P ] = S[P]+Sz[g]
is the total action of the theory including the gauge-
breaking term Sx[P], Qg = V& (8y /hrp+) is the ghost
operator defined in terms of the generators of gauge
transformations of field variables V' and gauge condi-
tions yi entering Sx[$], and Tr is the functional trace.

As was mentioned in the Introduction, the first three
terms of action (1.1) and action (1.2) can be transformed
into the form

and covariant derivatives V'" = g~"V'„defined with re-
spect to metric g~„. As a result, the part of the total
action S [p] quadratic in quantum perturbations can
be represented in the form

Stat d4 gl/2yA P1
2 2

(2.7)

Here g+ = (h&, f ) and the matrix differential operator
F»(V') is given by

S»(V) = C»o+ 2r»V. + W»,
(2.8)

where the coefficient of the covariant g-metric
O'Alambertian is given by the matrix
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'c&" p 01
&~a =

I
!01)'

gpv, op (gpogvp + gppgvo gpvgp o)
1

(2.9)

(2.10)

tional determinants of the minimal operators F(17) (2.18)
and Q„(V) (2.20) can be performed by the following uni-

versal algorithm. Let F = FB be the second-order mini-
mal operator of the form (2.18),

To resort to the universal algorithms of the Schwinger-
DeWitt technique, we should transform the operator
(2.8) to the minimal form. For this purpose we, first, go
over to a unit matrix coefficient of the higher-derivative
term in (2.8) by multiplying it with the matrix C+ in-
verse to CDB.

E(V')" = C" I (V') = I+2I' 9' + W,

DB ~B'
(2.11)
(2.12)

Here and in what follows we shall use a caret to denote
the matrix acting in the space of fields @ and having
one contravariant and one covariant index: I = bB, I'
I'&B, TV = R'B . So the matrix unity and the matrix C
above look like

P

P = i+P — R(g-)I,
6

(2.2i)

(2.22)

Then the logarithmically divergent part of the one-loop
efFective action for the operator (2.21) reads [44]

acting on some set of fields p = p, Fp = FB+y, where

P = PB is an arbitrary matrix, I = bB, ——g~"V'~V' is

the 2~-dimensional D Alambertian and V'„ is the covari-
ant derivative with any torsion-&ee connection covari-
antly conserving the metric g„„.Let the commutator of
these covariant derivatives be given by the action of the
matrix 'R„„:

gA 1)'
QD!pro

0 lp'
p„=g „gp„+g gp —g pg

@gal (p, ~) )

(2.13)

(2.i4)

(2.is)

(2.i6)

—Tr in'! '"= d xg ~ tra2, (2.23)
2 32~~(2 —~)

where w —+ 2 is half the dimensionality of space-time
playing the role of the parmeter in the dimensional regu-
larization and the DeWitt coeKcient a2 is defined by the
expression

where the indices in brackets imply their symmetrization
with the factor 1/2. Note that this transformation does
not change the divergent part of the one-loop effective
action, because the matrix coefBcient C~B gives the con-
tribution to the efFective action proportional to b4(x, x)
and canceled by the local measure [43].

Then we introduce a new covariant derivative

Rp„g —R„„g + Rg

+—P + —'R + — P.
2 12 " 6

(2.24)

Therefore, the divergent part iVon loop of the one-loop
efFective action (2.1) has the form

(2.17)

which absorbs the part of (2.11) linear in derivatives. As

a result, the operator E(D) takes the minimal form

gJ 81V
one loop

1 d'x g'~'tr a,
32~2 (2 —~)

1 d4 g 1/2
16''(2 —~)

(2.2s)

E('D) = g" V„17 I+ P — RI, —
6

(2.i8)

h„m h„„+Afh„, A h„2&(„f„), —
x- ~ x-+ Q„(~)f" (2.i9)

where the scalar-curvature term —RI = — R(g)I h—as-
been extracted from the potential term of the operator
for reasons of convenience.

The ghost operator QP corresponding to the gauge-
breaking term (2.4) and (2.S) also has the form (2.18).
It is defined by the gauge transformation of the gauge
(2.S) under the transformations Efhp„of quantum dis-
turbances,

while its covariant derivatives 'V„and the potential term

P can be obtained from the matrix components of the
nonminimal operator I'~~(V) (2.8) which have the form

0 ~Pv, Ao+
I cr , A"a ~ —c p'- o

(2.28)

Here a2 and a2 are the DeWitt coefficients of the op-
erators P(17) and Q„(V') correspondingly. Let us first
calculate the first term of this equation.

The metric g„and the curvatures of the algorithm
(2.24) corresponding to the operator (2.18) are given by

gp = gp, g„„=g„„=(g& )-', (2.26)

R p „(g) = R p, Rp (g) = R„, R(g) = R, (2.27)

(where f" is an arbitrary vector function) and reads

(2.2o)

The calculation of one-loop divergences for the func-

~I v, A~ P~P
Acr

~np, Ao ~ ~ p i gnp &&

1gpv BV
2 8~

8 V

(2.29)
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p-p = —2a - p+ 2a(- ap) —S-p a1
(A- cr) . (P ~) Acr

—g~-& ~ —g ~%.+ —g~. p ~sl
+-~,.~,-g ~..-»(~~-) ~' +V4.np (~,p} a p

+ gArr P' P' + g P,A P,a.
P, I .op (2.30)

They give rise to matrices of the operator (2.11)

-= (

—2k2'(d'( V'
) y+ k g

g (p 2

PPv
PT

i gpv BV

(2.31)

(2.32)

(2.33)

(2.34)
I

leading to the following expression for the potential term
P in the minimal form of the operator (2.18):

P =W —(V. i ) —g„.l~r + Ri-
6

E P D+sR) '

A-p k2 p-p+ 1k b(- y.) p p) 'k'g-pl, „ppv g~ (p ~) 4

BV
Op

1 pBV
2 t9(p

'(7(~ Qp) (p + gop ~~
1- --p 1

2 4

(2.36)

0
(2.38)

where 'R
p satisfies the commutation relation (2.22) with

the derivatives replaced by V', the square brackets imply
the antisymmetrization in indices with the factor 1/2 and
the blocks of the resulting matrix read
X""

p
——2b("R")

p
—2k g (

gp)„C""'" b'"V'gy'(7, &p,

(2.39)
(2.40)Yp p = 2k h" g

( V'p)Vpp,
Z"" = 2( ""'" g (7 V' (2.41)

Using the abave expressions in algorithm (2.24), we
obtain the contribution of the first term in Eq. (2.25):

16 VD= —— +k g~ p (p
2 B(p

(2.37)

and the corresponding commutator of covariant deriva-
tives (17 2' —2' 27 ) g = R pg:

R.p ——R'.p+ 2 V[- rpl + 2r[. rpl

+p~ ~p +p~ ~p

dlv
—Tr ln P('D)
2

(2.43)

4 i(2 191 -2 551 2 119
32m2(2 —~) 180 P" 180 P 72

+—k (g p, (pp) +k g y pp~ ——R+k V —2
5 4 p 2 2 p f 1 —

2 — BV)
4 ' ' ' ' ( 3 Oy2)

For the ghost operator (2.20) we have the following quantities participating in the algorithm (2.24) for the trace af
the vector-field DeWitt coefficient a2~.P'

P = B"+ —d" B1
ck 6 cl!

'R
p = ('R p)"„~ = —2b((„R„)) p.

Therefore, the ghost contribution to (2.25) equals

167T' 2 —Cd

(2.45)

(2.46)

~ derv
1

on& &ooP 32~2(2 ~)
d'~ g'~' —R.' + —R'+ k'(g pv, -~,p)'-

60 p 40 4

c)2V) ( 13, 18'Vl
+k'g-p & ~

R+k'V 2--~+RI ——-k V--
P ( 3 c)~2) ( 3 6 c)rp2)

(2.47)

and the total divergent part of the one-loop efFective action for the theory with minimally coupled nonlinear scalar
field (2.2) reads

We used the fact that jd4z gi (R2& „—4R~& + R ) is the topological invariant which can be reduced to the surface
integral.
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B. Reduction method of conformal transformations

g„=O g„„, 0 = 1+b(b, b= ——k (,
1 2

R = R+ 60 0 —12g""0„0, , R = R(g),

(2.48)

(2.49)

the action (1.2), S[g, P], takes in terms of the new metric
g& the following form free from the nonminimal inter-
action between the scalar and gravitational fields:

The method reducing the calculations in theories (1.1)
and (1.2) to those of (2.2) consists in the following sim-
ple observation which we shall first demonstrate on the
example of theory (1.2). It is a well-known fact [47,48]
that under the conformal transformation

Relation (2.52) obviously holds if p = y(P) satisfies
the equation

(2.53)

which has a solution

arcsin (vtaP) —~
z&

ln i+',

~ = &V'-( +b)/(1 a4'-), «« —.',

arcsinh(g~ a ]P) —~z& ln i+;,

S[g, g] = d'~ g'/' R—
k2

-1 4——0 (1 —ap ) g""1tl „p„

z = lt Q(~ a
~

—b)/(1 —
~

a
~

p ), ( ( 0 and ( ) s,
(2.54)

—W(P) (2.50)

(2.51)

0 (1 —aP') g""P„P„=c g" p „y, , (2.52)

where n = sgn[O (1 —aP )]. Later on we shall con-
fine ourselves with o. = +1, because the negative sign
corresponds to the ghost nature of a scalar field.

where a—:2k ((1 —6(). However, the kinetic term of
the Lagrangian in (2.50) contains an essential nonlinear-
ity in (b. To eliminate it we introduce the new scalar
field p related to the old one by means of the differential
equation

V(&) = IV(&) 14=p( )
. (2.55)

Now the calculation of one-loop divergences in theory
(1.2) reduces to using the result (2.47) for a simplified
model of minimal nonlinear scalar field (2.2) with the
metric g&„and the field p reparametrized back to the
original field variables. This reparametrization can be
done by using the relations

where the constant of integration is defined by the con-
dition p(P) ~y o——0. From this solution it is obvious
that the inverse expression P = P(p) cannot be obtained
analytically. This fact does not, however, present any
difFiculty because for the calculation of one-loop diver-
gencies of theory (1.2) [as well as for (1.1)) we shall not
need an explicit expression for the potential V(p), which
can be written formally as

R = n-' R —6 &-' b P,.P" —6 & ' b P (2.56)

6o -~ 4o
4 i 2 43 2 1 2 19 4

d g'/ —R + —R ——b0 RP (Pp
6o

19
6

——bO 'RP -P+ & 'b (0 4 )
2

19 4+1911 O' P 11 1I 11 11+ —11 6* 1I' (I-111)'), (2.57)

d x ' '0 (1 —aP') (P P' )', (2.58)

d4 gi/2Rg P y d4T '/2 (1 —a/2) (0 Rp, p'

—6f), b(sP P )' —60 'bP, P (2.59)

and also expression (2.55) for the scalar potential V in the old variables, which allows one to calculate in the same

variables the derivatives
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BV BV (BW(P) ) f'By )
By By ~=~ (y) ( B4' )

(4 6 A/k2) + m2 + (A/6) P —m2 6 P2

/1 —a y'
(2.60)

B V B V (B~W(P) By
By2 By2 ( BP2 BP

v=v (4)

BW(g) B y) &By)
B&') &B&)~

0 86A 2 2
/'2462 A 1+m+P ! + —A —6m 6!

4 ( 32ab2A 1 1
+P —

2
——Ab ——Aa+m 6 +6abm

[ + P (s abA —2ab m ) (2.61)

Finally, the one-loop divergencies of theory (1.2) take the form

mdiv
32

—6 + —k (1 —aP)19, 54 2 2

2 4

+ 196 +2k 6(1 —aQ )

—6+ —k' (1 —a/')
6 3

O'V)
+6 !

26k W+
l By2 )

60 ~ 40

+ 2k 6(1 —agP) 0 (P P )

p+ —0 6 gP( p) ——60 Bp19 4 2 2 2 19

0 RP

Q+ k 0 W k (1 —aP ) +266] g/g

+0 —2k (1 —aP )+6

1 B2V

6By ) &By) 2 &By )
(2.62)

From these formulas it is clear that the one-loop divergencies have a very complicated structure (the counter-
terms are nonpolynomial in the scalar field P). Consequently, the theory with the Lagrangian (1.2), as well as other
theories which include gravity interacting with matter fields, is nonrenormalizable not only due to the counterterms
quadratic in curvature, but also because of these nonpolynomial structures.

Let us consider one limiting case for the theory (1.2) when A = A = m = ( = 0. We have then a = 6 = 0, 02 = 1.
Hence, the new Beld variables coincide with old ones:

Action (2.2) takes the form

~pg = Qpv~ y = W.

g[g, g[= g'T g'~'
(—,R ——g" 4,„pl ),

(2.63)

(2.64)

and the divergent part of the one-loop efFective action is de6ned by the expression

mdiv
one loop 32vr2(2 —u) 60 ~ 40 4 ' ' 3

g x g'~' —gg, + —R' + —g [g gg& Pg)' ——g g gtt, P,gR), (2.65)

which, on mass shell, i.e. , taking into account the equations of motion

QQ=O, R= —k g~Q Qp, (2.66)

coincides with the well-known result of 't Hooft and Veltman [28]. Just as has been expected, expression (2.62)
obtained is conformally invariant for the case of k ~ oo, m = 0, and ( = 1/6:
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1 43 ( 2 1 2l 79 ( 1 2l 91~.".". i...f» &l =
32vr2(2 —u) 60 q

~ 3 ) 6 ) 6 p 72

(2.67)

For the generalized theory of nonminimal nonlinear scalar field (1.1) the analogue of the reparametrization (2.48)
and (2.53) looks like

u~ = ~ '&p- 4 = 0(v)
n' = O((t),

2 2

= U '(&) O(&)G(&)+3 I d

V(&) = U '(&) V(&) ~ ~(,).

(2.68)

(2.69)

(2.70)

(2.71)

It also reduces the theory to a simplified model (2.2) and allows us to write one of the main results of the present
paper —the following answer for one-loop divergences in theory (1.1):

~CilV'

one loop 2 ( Bp) 2 ()9@2)
(25 1, d'l c)V

~

—O '(U')'+—U 'G
~

V —13U 'U'V' —
~

U '(U')'+2G+ —U'—
2 dP j Byz

13 —1 1 8 V 43 2 1 2 43 2 I 2 ~p 19—U 'V+ —U R+ —R' + —R'+ —U '(U')'R ~P P,&
——U 'O'R Elf

3 6 0(p2 60 ~ 40 60 ' ' 12

—
~

—U-'(U')'+ —U-'U" + —O-'G
I R4,„0'"

12 12

f] 2 —2 I III

20 12
U '(U')'+ —U '(U')'U" — U '(U")' — U 'O'U"'+13U '(U')'G

120 60

—2U 'U" G —3U 'U'G'+ —U 'G' (P„P")'

5
—U O'U" + U (U') +6U O'G P Q pP' ~

20

+ —~ 'l ')*In&:-~)'+ ~ '(~')'(&4)') (2.72)

Here primes are used to denote the derivatives of the generalized charges with respect to p,

U' = dU/dQ, U" = d U/dQ, U'" = d U/dQ, G' = dG/dP, V' = dV/dQ,

etc. , and the derivatives of the potential V with respect to a new scalar field p are given by

BV —2U 2U' V+ U V'

~v P G+3(O')'l' '

02 V (, 12 U (U') V —9U (U') V'

(2.73)

+3 (O')' V" —3 U' U" V' + 5 U ' (U')' G V —2 U" G V

+UGV" ——U'GV'+ O'G'V ——UG'V'
2 2

(2.74)
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lt js the expression (2.72) which will be applied within the
generalized renormalization-group approach to quantum
gravity interacting with the scalar field.

III. RENORMALIZATION-GROUP EQUATIONS
IN NONRENORMALIZABLE THEORIES

partial summation of the perturbation series.
To begin with, we shall write down the

renormalization-group equation for a usual renormaliz-
able theory with one charge (coupling constant) in the
minimal subtraction scheme of the dimensional regular-
ization. In this theory a bare charge gp can be expressed
through a renormalized one g as

A. Renormalization group in multicharge theories » = (~')' ~+): (3.1)

The idea of the renormalization-group theory can be
expressed in terms of bare quantities (coupling constants,
masses, fields) and counterterms to Lagrangians. A ba-
sic property of these bare quantities consists in the fact
that being infinite they, after being substituted into cor-
responding Feynman diagrams, provide the cancellation
of all ultraviolet divergences and give us finite values
for all observable physical quantities, such as cross sec-
tions for scattering processes, physical masses, and so on.
These finite charges and masses are called the renormal-
ized ones, and the procedure of eliminating the ultraviolet
divergences is called the renormalization.

The renormalization procedure requires at the inter-
mediate stages some regularization which allows one to
avoid ill-defined quantities during the elimination of di-
vergences [27]. At the final stage of calculations one re-
moves the regularization and obtains finite results. How-
ever, as a remnant of all these operations with infinities,
one gets a certain ambiguity in the final results, which
can be parametrized by a mass-dimensional parameter p, .
The origin of this parameter is different in various regu-
larization schemes. In the minimal subtraction scheme of
dimensional regularization [64,65], which we shall use in
this paper, p appears as a dimension-correcting parame-
ter.

Now, we can go to the definition of the renormalizabil-
ity of quantum field-theoretical models. A quantum Geld
model is called renormalizable if ultraviolet divergences
in all orders of the perturbation theory can be canceled
by inserting into the Lagrangian of the theory a Gnite
number of bare charges. In other words, there are only
a finite number of field structures for which we obtain
divergent coeKcients. All these divergences can be can-
celed by adding to the initial "naive" classical Lagrangian
a finite number of counterterms. In the opposite case,
when there is an infinite number of divergent structures,
the theory is called nonrenormalizable.

We have already mentioned that the renormalization-
procedure ambiguity should not affect the values of phys-
ically observable quantities. This requirement, at least in
the case of renormalizable theories, can be rewritten as
a requirement of the independence of bare quantities on
the renormalization mass parameter p, (see [41]). This
condition implies certain equations regulating the depen-
dence of renormalized charges (or other quantities) on the
renormalization mass parameter. These equations are
usually called renormalization-group equations, because
different reparametrizations of the procedure of eliminat-
ing the ultraviolet divergences constitutes a group. Solv-
ing these renormalization-group equations in some per-
turbative approximation gives an opportunity to make a

where c = 4 —2~ is a parameter of dimensional regu-
larization. Introducing the notion of a P function as the
following derivative of the renormalized charge at fixed
value of the bare charge,

and differentiating (3.1) with respect to p, we make the
bare charge gp independent of p, by imposing the equa-
tion

o= ~ g+)
n=1

OO

+ [-s~+ P(~)1 1+).
Then, equating the coeKcients of equal powers of c, we
find

and

P (~) =
I ~ ——1

I
~i(~)( 0

Og )
(3.4)

( & l 0
I ~——1

l
u-(~) = p (~) —n.-i(a) (3 5)

~g p Bg

Thus, we see that knowing the coefficient ai(g) at the
pole —,we can determine the coeKcients at higher poles
by Eq. (3.5). In addition, we see that the P function
defined by (3.2) is determined by the coefficient of the
ffrst-order pole in s. The knowledge of the P function,
on the other hand, gives, because of the equation

(3.6)

the dependence of g on p, which can be transformed
into the dependence of g and relevant Green's functions
on the energy scale factor.

The generalization of this method to multicharge the-
ories is straightforward [66—68]. Let us suppose that we
have the set of charges g; where i = 1, . . . , ¹ Then Eqs.
(3.1) and (3.2) turn into the sets of equations

(ai aiv)gs'= p J g&+ (3.7)

(3.8)

After differentiating Eq. (3.7) with respect to p and
substituting into the corresponding expression definition
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(3.8), we compare the coefficients of equal powers of s
and get the following expressions for P functions:

Thus, instead of one renormalization-group equation
(3.6), we get the whole system of coupled equations:

(3.iO)

B. Functional charges and renormalization-group
equations in partial derivatives

gb ( 2)e g ) (3.11)

where the counterterms A g are functionals of the renor-
malized Lagrangian. Introducing the following definition
of the P function,

Although all this concerns renormalizable models, it
was shown [37] that the renormalization-group equations
could be generalized to theories with Lagrangians of arbi-
trary form, including nonrenormalizable ones. The main
idea consists in the assumption that the bare Lagrangian,
which can include an infinite number of counterterrns,
does not depend on the renormalization mass parameter
p . This Lagrangian can be represented in the form

formalism of [37] one does not subdivide the Lagrangian
into some simpler structures. Our formalism occupies
the intermediate position between the two approaches
mentioned above. Instead of the usual numerical charges
related to fixed field structures, we introduce the general-
ized functional charges —generally arbitrary functions of
the scalar field, which appear in the Lagrangian as coef-
ficients of certain powers of space-time derivatives of the
scalar field, powers of space-time curvature, and covari-
ant derivatives of the curvature. Thus, in the generalized
model (1.1) we consider as such charges the functions
U(P), G(P), and V(P) which do not contain the depen-
dence on B~P. They enter the Lagrangian in the combi-
nations BU(P), G($)0~$0 Pg", and V(P) which con-
tain no more than second derivatives of field variables.
It is obvious that we must includ. e into the Lagrangian
also terms which are quadratic in curvatures and have a
fourth power in derivatives of a scalar field, and, gen-
erally, also an infinite number of different generalized
charges which correspond to terms with a growing nurn-
ber of derivatives in the bare Lagrangian. As a result we
would have an infinite system of renormalization-group
equations with an inGnite number of unknown functional
variables. However we shall restrict ourselves only to
these three terms and justify it by considering only those
physical problems which can be characterized by inten-
sive but slowly varying fields and small curvatures. As is
discussed in the next section, this approximation makes
sense at certain stages of the early inflationary Universe.

Thus, giving up all higher-derivative terms, we trun-
cate our system of renormalization-group equations and
reduce it to three equations with three unknown func-
tions. Let us deduce them. In analogy with the usual
formalism, we introduce the bare quantities

and difFerentiating (3.11) with respect to p, we have the
relations

Ug=(y, )' U+)

pg ——
~

L —1
~

Aii„
Gg = (p')' G+ ) (3.12)

Thus, the generalized P function of the Lagrangian is
determined by the coefFicient of the first-order pole in
(3.11). The recurrent relations give the higher-order
poles, so that the only independent function is the co-
efFicient of the first-order pole.

In spite of the theoretical significance of this formal-
ism, it can hardly be used in the concrete theories, such
as quantum gravity. Therefore our purpose is to develop
a formalism, which is less abstract than the formalism
proposed in [37], but at the same time is convenient for
treating concrete models, in particular, Einstein grav-
ity theory interacting with a scalar field. In the usual
renormalization-group formalism we deal with charges,
masses, and renormalization-field. constants which are all
simple functions of p the coeKcients of some special
field structures [for example, in the rp4 model A(p2) is a
coefFicient of &p, m is a coefficient of &p, etc.]. In the

Vg=(p )' V+)

where A U, A ~, and A ~ are the counterterms which
correspond to structures U, G, and V, respectively. We
should also define the generalized P functions

2 BUPU=p +sU,
Bp

2 BG
PG = p +sG~

19p
(3.14)

(3.i5)

Now difFerentiating Eqs. (3.12) with respect to p2 and
assuming the independence of the bare quantities on p,
we have the equation
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2 OUb0=@
p

n=1 n=1

1 bAnU OG . 2 1 bAnU BU
P b ~ 2 bU g 2 ( )

n=l n=1
(3.16)

bA1U bA1U bA1U
P~ = —Ai~+ U+ G+ V, (3.17)

bA1 G bA1 G bA1 G
PG = —A, G+ U+ G+ V, (3.18)

Pv = —Ai v + U+ G+ V. (319)bA1 V bA1 V bA1 V

bU

It should be emphasized that in contrast to usual mul-
ticharge theories the counterterm coefBcients A U G v are
not simply functions of the generalized charges, but their
local one-point functionals (in the sense of parametric de-
pendence on one point P of the configuration space of a
scalar field) A~~ G v = A~~ G v (P) [ U(P ), G (P'), V(P ) ],
and therefore the multiplication of functional derivatives
with the corresponding charges in the above equations
has a functional nature which should read as

and corresponding equations for Gb and Ub. Substitut-
ing into these equations the proposed definitions (3.13)—
(3.15) for P~, PG, and Pv and also equating the coeffi-
cients of equal powers of s, one can obtain (from terms
of zeroth power in s)

»(&) U(~i)
hU bU($')

(similar equations hold for the derivatives with respect to
the other charges). However, as is easily seen from Eq.
(2.72), A U G v are local functionals on the configura-
tion space of a scalar field, and, therefore, the functional
derivatives of the above type represent the difFerential
operators with respect to P:

= I" (~/~&) ~ (& —&')

etc. That is why we shall keep the condensed notation
of Eqs. (3.16)—(3.19) bearing in mind this differential-
operator structure of functional derivative coefficients. In
this way Eqs. (3.17)—(3.19) generalize relations (3.9) for
the usual P functions in multicharge models.

Now, to calculate the generalized P functions, we read
from W „', i (2.72), which was found in the preceding
section, the counterterms renormalizing the initial struc-
tures V, G, and U in the Lagrangian [the negatives of the
coefficients of the corresponding structures in (2.72)]:

1A1V-
327r2

1
A1G ——

327r2

1
A1U =

327r2

, favl 1, (0'vl
—U V —2U

i
+ —U

4 ~~')
(25 , d l &O'Vl

45U —'(U')' +2U —'G V —26U 'U'V' —
i

U '(U')'+4G+ U'

—U-'V+-U
~

13 i 1 (0 V)
3 6 (By2)

(3.2O)

(3.21)

(3.22)

and substitute these expressions into (3.17)—(3.19).
Then, taking into account Eqs. (2.73) and (2.74) f«
Bv/Oy and 02V/Bp2, one can obtain the needed P
functions in an explicit form. The calculation of the
functional-derivative terms in (3.17)—(3.19) can be es-

sentially simplified due to the observation that these
terms actually represent the homogeneous transforma-
tion of all three functional arguments of A1v, A1G, and
A1U. Prom the above expressions it follows, however,
that A1v, A1G, and A1U are homogeneous functionals
of zeroth order in these arguments, and, therefore, these
terms do not contribute to P functions. Thus, in our
model (and in our approximation) the P functions reduce
to the counterterms themselves,

= P (U, U', U", V, V', V", G, G'),

= P (U, U', U", U'", V, V', V", V"', G, G', G"),

(3.24)

(3.25)

PV = Ai v 1 PG = —Ai G, PU = —Ai P, (3.23)
which we present, in view of their complexity, in the Ap-
pendix as explicit functions of the generalized charges
and their derivatives with respect to P.

Thus the truncated system of renormalization-group
equations has the form where we explicitly show the de-
pendence of P functions on generalized charges and their
derivatives:



48 RENORMALIZATION GROUP FOR NONRENORMALIZABLE. . . 3689

P (U U/ UII V VI VII G Gi) (3.26)

In contrast with the usual renormalization-group equa-
tions, we work with functions which depend not only on
parameter t, but also have a nontrivial and unknown alge-
braic dependence on the field variables. It makes this sys-
tem of equations much more complicated than the usual
one and much more rich: instead of ordinary differen-
tial equations they represent the differential equations in
partial derivatives. One can say that due to the intro-
duction of these generalized functional charges we rear-
ranged our bare Lagrangian and could take into account
an inGnite number of elementary terms which arise in
the process of renormalization. However, if in the usual
renormalization-group equations, we investigate the de-
pendence of effective charges on t = ln p, here we have
an additional problem, the study of the functional struc-
ture of our generalized charges. These two tasks, the
investigation of a behavior of generalized charges at dif-
ferent t (that is a behavior at different scales) and the
investigation of the functional structure of these charges,
are combined together in the solution of differential equa-
tions in partial derivatives with respect to t and P.

In view of the extremal complexity of P functions which
we present in the Appendix the general solution of these
equations is hardly available for exhaustive analysis with-
out any simplifying assumptions about the structure of
U(P), G(P), and V(P). So the kind of information about
these functions we shall be able to extract here will con-
sist of the admissible large-Geld asymptotic behavior of
the generalized charges U(P), G(P), and V(P), which

will turn to be compatible with the conventional choice of
these functions in numerous quantum gravitational mod-
els. This asymptotic behavior unexpectedly hints us the
existence of a simple exact solution describing the high-
energy Weyl invariant and asymptotically free phase of
the gravity theory considered in the next section.

IV. ASYMPTOTIC FREEDOM, WEYL
INVARIANCE, AND OTHER IMPLICATIONS

OF THE GENERALIZED
RENORMALIZATION-GROUP THEORY

The implications of phenomenological particle-theory
Lagrangians in the theory of the early Universe can be
basically characterized by the conditions in which a large
but slowly varying scalar Geld generates the effective cos-
mological constant which drives the inflationary stage of
the Universe. This means that one mainly needs local
terms in the Lagrangian of the theory in the limit of
large P, discarding the terms of high powers in its space-
time derivatives. The magnitude of the corresponding
space-time curvatures in such inflationary models is also
supposed to be much below the Planck scale. Altogether
these two properties exactly match with the assumptions
of our approximation in the generalized renormalization-
group theory, which allowed us to truncate the system of
equations for generalized charges. Now, to make the for-
malism of generalized renormalization-group equations in

partial derivatives handlable, we can go even further and
consider only the large-field behavior of these charges.
For this purpose we shall look for the solution of our
system of equations in the asymptotic form

U = u(t) gP' (ln Q) ',
G = g(t) qP' (ln P)"'
V = v(t) P" (ln P)",

(4.1)
(4.2)
(4.3)

for P -+ oo. Note that such a combined power-
logarithmic behavior is natural in field theory, because
the emergence of logarithms in the effective potentials is
a well-known phenomenon underlying the effects of sym-
metry breaking and phase transitions [69].

Substituting the chosen ansatz (4.1)—(4.3) into the sys-
tem (3.24)—(3.26), we can compare in the limit P ~ oo
the largest powers of P on the left- and right-hand sides
of equations. This gives us the following two-parameter
family of asymptotics (4.1)—(4.3) with arbitrary parame-
ters (xg, z2),

y] ——x] —2, y2 ——x2) zi ——2 x7 ) z2 ——2 x2) (4 4)

and the following ordinary differential renormalization-
group equations for the coefBcients u(t), g(t) and v(t):

dtt 1

dt 32 7r2

2g 1

dt 32 sr 2

dv 1

32 7t

13v
3 Zl

—(2g —7x,u),
'U

2

5v
2 tt

(4.5)

(4.6)

(4.7)

U(P) = u(t) exp(A, P),
G(P) = g(t) exp(A2 P),
V(P) = v(t) exp(As P),

(4.8)

(4 9)
(4.10)

and, by using the same procedure as above, obtain the

Usually the potentials describing self-interaction of in8aton
scalar field have a more complicated polynomial structure pro-
viding the possibility of symmetry breaking; however, in the
limit P ~ oo the term AP dominates.

In the traditional particle-physics models and their ap-
plications in the theory of inflationary cosmology, the pa-
rameters of the functions (4.1)—(4.3) in the Lagrangian
(1.2) have the values xq ——2, yq ——0, zq ——4, which, ob-
viously, satisfy the obtained restrictions (4.4) and, there-
fore, do not contradict the generalized renormalization-
group theory.

The other interesting case, which can be considered, is
related to the choice of U, G, and V in the exponential
form. Such a choice originates from certain multidimen-
sional theories which undergo dimensional reduction to
an effective four-dimensional theory and result in a linear
combination of exponential potentials [49]. They are in-
teresting from the viewpoint of cosmological applications
because they provide the power-law inflationary scenario
[49—54]. Thus we assume that, for P ~ oo,
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following relations for A;:

A2 ——Ag, A3 ——2 Ai, (4.ii)

similar to restrictions (4.4) and forming another one-
parameter family of high-energy asymptotics.

It is interesting that the above-mentioned homogeneity
of the one-loop counterterms in the generalized charges,
which allowed us easily to calculate the P functions
(3.23), and the homogenety properties of P functions
themselves give a one-parameter family of the exact so-
lutions (4.1)—(4.3) with x2 ——y2

——z2 = 0 and the co-
efficients u(t), 9(t), and. v(t) satisfying the set of exact
equations (4.5)—(4.7). A trivial integration of the lat-
ter then gives the particular family of exact generalized
charges:

~(y t) 2C2 t15/37 y2xy192
37

o(y g)
— {342C/25/52 C 252/52) gp

—2

U (y t) C t26/37 ye~

(4.i2)

(4.i3)

(4.i4)

5'] y] g4 2/2

I
2 C2 555/5'2 4192

37

where C and Ci are two integration constants. Apart
from negative overall coefficients in (4.12) and (4.13) this
solution corresponds to the asymptotic freedom in the
high-energy limit, because the effective gravitational con-
stant 1/U vanishes in this limit, t —+ oo, and the growth
of the nonlinear scalar potential (4.12) is compensated by
the even faster growth of the coeKcient of the scalar ki-
netic term G (4.13) (which means that the contribution
of the higher-order Feynman graphs with scalar loops
will be highly suppressed by the powers of a scalar Geld
propagator proportional to 1/G). The negative sign in
(4.12), however, means that the scalar potential is neg-
ative, which apparently corresponds to the well-known
property of the pure AP theory being asymptotically free
only for the wrong sign of A. This makes the only Bxed
point 29 = 7xiu of Eq. (4.6) unstable and, moreover, im-
plies in view of Eqs. (4.13) and (4.14) that the effective
gravitational constant and the kinetic term of the scalar
field are of opposite signs, whence either the graviton or
the scalar boson are supposed to be a ghost particle.

A possible qualitative interpretation of this seemingly
unreasonable solution might consist in the following ob-
servation. Note that in the high-energy limit t ~ oo there
holds a relation G(P, t) = —3xi U(r/), t)/P between the
asymptotic behaviors of the generalized charges (4.13)
and (4.14). By redefining the old scalar field from P to a
new one p = P '/ one can use this relation to show that
the renormalized action (1.1) in this limit takes the form

where 0 (ti2/ ) includes both the second term of Eq.
(4.13) and the 0 ( to) terms of Eq. (2.72) of higher powers
in space-time derivatives and curvatures. But this action
is conformally invariant under the local Weyl transfor-
mations of the metric and scalar field

I 2 I —1
~p, v ~@~ ~ (4.16)

2 Kl
~@~ = 9) u 'P = 9) v 4' (4.17)

In terms of this new metric the action (4.15) takes the
form

s]g, p]= d 4'
54I/t c/ //(G')—

192 Ctvr C

(4.16)

of the asymptotically free Enstein theory with the posi-
tive (for C ) 0) gravitational and cosmological constants

I'=C' 't "~", W= m'C't —"~",192
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(4.ig)

both vanishing in the high-energy limit and providing the
smallness of higher-order quantum perturbation correc-
tions.

At lower energy scales the theory (4.15) loses its Weyl
invariance, the scalar field p (or P) becomes dynamical,
and due to its ghost nature induces the instability of the
Weyl- (and scale) invariant phase. Therefore, for inter-
mediate energies this rules out the above simple exact so-
lutions of monomial type in P. In full accordance with the
loss of conformal invariance, the possible alternative solu-
tions of our renormalization-group equations will have a
polynomial structure in P ' which necessarily induces in
the theory the extra dimensional scale the dimensional
coefficients of difFerent powers of P (note that in the above
formalism of monomial functional charges the scalar Beld
and the constant C were subject to only one-dimensional
restriction: the gravitational constant 1/U 1/CgP'
had to be of the squared length dimensionality). But
these dimensionful quantities can enter the theory with

whence it follows that a particular (monomial in p) so-
lution (4.12)—(4.14) of our renormalization-group equa-
tions describes in the ultraviolet limit a conformally in-
variant phase of the gravity theory. The wrong sign of
the kinetic term of the field y and its quartic interaction
in (4.15) does not mean the physical instability of the
theory, because this Geld is unphysical and represents a
purely gauge mode of local transformations (4.16), which
can (and must be) be gauged away by either imposing the
conformal gauge condition p = 1 or absorbing this field
into the redefinition of the metric field

+Ct / [B(9) rP +6(VP) ]

(p = Q '/, t —+ oo, (4.15)

A similar high-energy Weyl invariance of the nonmini-
mal coupling between the scalar field and space-time curva-
ture was found in Refs. [57,60,62263] in the context of the
renormalization-group theory for quantized matter in the ex-
ternal gravitational field.
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generalized functional charges only through certain di-
mensional parameters of the quantum state of the theory,
such as the value of the scalar Geld in a stable vacuum
of the theory with broken symmetry. These parameters
can constitute at least a part of the full initial data in
the Cauchy problem for our renormalization-group equa-
tions, which is supposed to select a unique solution for the
generalized functional charges. Presumably, this Cauchy
problem has to be posed at some intermediate- or low-

energy scale which corresponds to the low-energy physics
of the observable Universe described by excitations over
some stable vacuum state with broken conformal and
scale invariance. Such a stable vacuum state and its
dimensionful parameters are, in their turn, usually de-
termined from the condition of stationarity of the cor-
responding effective potential (or more generally of the
full eB'ective action) with respect to the mean scalar and
other fi.elds. Thus the Cauchy problem for the gener-
alized renormalization-group equations is related to the
effective equations selecting a stable quantum state. This
approach might represent a plausible development of the
proposed formalism in application to the above model of
quantum gravity theory, but it goes beyond the scope of
this paper.

V. DISCUSSION AND CONCLUSIONS

Unfortunately, at the moment the picture, obtained
thus far, does not imply much predictive power at
intermediate-energy scales and does not give the quan-
titative mechanism of transition between the possible
high-energy Weyl-invariant phase of the theory and our
low-energy realm. One should bear in mind that the
above interpretation has basically a qualitative nature,
because at present we do not have a rigorous formal-
ism incorporating the dynamical transition of the theory
"defreezing" purely gauge modes into the physical dy-
namical ones. This problem is analogous to the issue
of a rigorous quantization of classical gauge modes ac-
quiring the dynamical content at the quantum level due
to anomalies, which now has a well established status
only in simple low-dimensional field theories. Neverthe-
less, our approach would seem to give certain selection
rules for admissible Lagrangians of the inflaton scalar
Geld nonminimally coupled to gravity and predict the
existence of its nontrivial high-energy phase with very
attractive features of asymptotic freedom and Weyl in-
variance. Just to summarize the difFiculties of the above

In connection with this one should mention an interest-
ing approach extending the methods of the two-dimensional
string models to the quantization of the conformal factor in
four-dimensional gravity theory, undertaken in [70,71]. These
references also contain the renormalization-group construc-
tion of a stable conformally invariant phase in the infrared
limit of gravity theory the domain which might be also at-
tained within our approach via the as yet unknown solutions
of the generalized renormalization-group equations.

model and of the whole formalism, let us briefly consider
the questions of principal arising in the proposed gener-
alized renormalization-group technique, which can serve
as a guiding principle for possible further development of
this approach.

The fundamental problem, which remains beyond
the reach of our considerations, is the setting of the
boundary-value problem for the renormalization-group
equations (3.24)—(3.26). Since the P functions on their
right-hand sides involve the generalized charges, func-
tions of t and P, as well as their derivatives with respect
to P, these boundary conditions consist in the Cauchy
data, that is the functions of P at some "moment" of t.
These functions replace the initial values of usual charges
in multicharge theories at some Gxed energy scale. To
see it, notice that our generalized charges are actually
the result of partial summation in the theory with an
infinite number of usual (numerical) charges: the expan-
sion of U(P), G(P), and V(P) in powers of P recovers the
infinite set of these usual charges as coefficients of this
expansion. Therefore, the infinity of their initial values
can be encoded in the functions of P, which comprise the
initial data for our renormalization-group equations. Un-
fortunately, we do not have at present exhaustive physi-
cal principles to fix this data, except the considerations,
briefly mentioned above and relating this Cauchy prob-
lem to the search for stable quantum states of the theory.

Another approach to these equations, actually domi-
nating the renormalization-group theory, consists in the
analyses of the fixed points of (3.24)—(3.26) and does
not essentially require the knowledge of this initial data.
Again, a nontrivial generalization of the usual equations
for fixed points,

is that in our case these equations are not algebraic, but
rather represent ordinary differential equations of high
order in derivatives with respect to P. The analyses of
these equations, which goes beyond the scope of this pa-
per, would give the answers to the problem of the high-
energy behavior of this conventionally nonrenormalizable
theory, the ultraviolet or infrared stability of the fixed
points, structure of the renormalization-group flows, etc.
These equations will also require the constants of integra-
tion (the Cauchy problem of lower functional dimension-
ality) which again might be read off the stable quantum
states in the theory.

This analysis would raise the basic conceptual is-
sue behind the approximate nature of our general-
ized renormalization-group approach the justification
for the truncation of the system of charges to a Gnite
set of the first few ones U(P), G(P), V(P), etc. Our
truncation was based on the physical assumption that in
concrete problems under consideration the contribution
of higher-order charges is negligible because of the slowly
varying nature of the scalar field and small curvatures of
space-time. This assumption can at best be justified only
at the heuristic level, for virtual quantum disturbances of
Gelds always probe in the renormalized Lagrangian arbi-
trarily high powers of their derivatives. The fundamental
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solution of this problem would consist in the formula-
tion of the generalized condition of asymptotic freedom
or safety, which basically would reduce to a statement
that at Axed points of the generalized renormalization-
group Rows all higher-order functional charges go to zero
and thus justify our approximation. Anyway, the ap-
proach of this paper and a particular model demonstrat-
ing its complexity raise more questions than physically
sensible predictions, but, probably, pave a path to more
constructive attempts to renormalize conventionally non-
renormalizable theories.
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APPENDIX
We list here the expressions for the P functions (3.23),

with due regard for equations (3.20)—(3.22) and (2.73)
and (2.74) for the counterterms:

1 117 -2v = —
32 2 (U G 3(v/) 2)4

U (U') V + 108 U (U') r V V'

——(U') (V') + —U (U') (U ) (V') + —U (U') (V )

36 (V )3 vlf V V/ + 36 (U/)6 V Vff 9 V'2 (U/)3 Vlf Vf VII
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