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Towards complete integrability of two-dimensional Poincare gauge gravity
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It is shown that gravity on the line can be described by the two-dimensional (2D) Hilbert-Einstein La-
grangian supplemented by a kinetic term for the coframe and a translational boundary term. The result-

ing model is equivalent to a Yang-Mills theory of local translations and frozen Lorentz gauge degrees.
We will show that this restricted Poincare gauge model in two dimensions is completely integrable. Ex-
act wave, charged black hole, and "dilaton" solutions are then readily found. In vacuum, the integrabili-

ty of the general 2D Poincare gauge theory is formally proved along the same line of reasoning.

PACS number(s): 04.50.+h, 04.20.Fy, 04.20.Jb

I. INTRODUCTION

Recently, two-dimensional (2D) models of gravity have
attracted some attention as a conceptual "laboratory" for
future studies of gravity in higher dimensions and as a
basis of string theory. As is well known, the Hilbert-
Einstein Lagrangian (s =signature)

VHE=( —1)'—,'R () ~hg
l3

of general relativity (GR) does not yield any Einstein-type
equations in two spacetime dimensions. [For n =2, no in-
verse fundamental length l ' occurs in (1.1) as a coupling
constant; in n dimensions this factor would be I ".]
Therefore, in the approach of Teitelboim [1] and Jackiw
(TJ model) [2,3], one had to resort to a dynamical model
with constraints in which the field equation of constant
or even vanishing [4] (scalar) curvature is enforced by
means of a Lagrange multiplier. This teleparallelism con-
straint of the TJ model will be put in this paper in its
proper perspective: E6'ectively, it yields a gauge theory of
spacetime translations.

In fact, in n =4 dimensions, a theory of gravity with
the constraint of vanishing Riemann-Cartan curvature
R ~ is known as teleparallelism theory [5,6]. It is a gauge
theory of local translations [7,8] and empirically indistin-
guishable from Einstein's general relativity theory.
Moreover, teleparallelism theory remains nontrivial in
n=2 dimensions and, as it turns out, has many salient
features of the TJ model. In the context of string theory,
2D teleparallel models were actually studied previously
[9—11].

In this paper we demonstrate the complete integrability
of 2D teleparallelism in vacuum. In accordance with old
mechanical knowledge on generalized coordinates [12],
the Lagrange multiplier A, of the constraint R ~=0 con-
verts into one of the two coordinates of our exact black-
hole solution.
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The coupling to gauge, scalar, and spinor matter is also
studied. It is a peculiar but common feature of two di-
mensions that all these fields have a vanishing 2D spin
current ~ p. Thus the material energy-momentum
current is symmetric and covariantly conserved with
respect to the Riemannian connection. This already indi-
cates that in two dimensions a decoupling from the
Lorentz connection I ~ occurs. It considerably facili-
tates the integration of gravitationally coupled matter.

Constrained dynamical systems tend to become liberat-
ed classically or, ultimately, by quantum fluctuations.
Nevertheless we will show for the first time that the gen-
eral Poincare gauge (PG) field equations [13] can be for-
mally solved in two dimensions. For a complete proof of
integrability, the gauge field momenta have to be inverti-
ble with respect to torsion T and curvature R P. This
puts only very mild restrictions on the form of the gravi-
tational gauge Lagrangian. As an application we demon-
strate that the general R+T +R Lagrangian is com-
pletely integrable and has black-hole-type solutions
[14,15]. In contrast with a previous proof of Katanaev
and Volovich [16] (see also Ref. [17]),we do not have to
rely on specific gauges, such as the conformal gauge for
the coframe.

Our paper is organized as follows. In Sec. II the
geometrical structure of Riemann-Cartan spacetime and
some of its peculiarities in two dimensions are exhibited
for both signatures of the metric. The transition from the
Hilbert-Einstein Lagrangian to teleparallelism is motivat-
ed in Sec. III. The resulting field equations are reduced
in Sec. IV in order to facilitate the proof of complete in-
tegrability in Sec. V. In general, we obtain a black-hole
solution, whereas a constant torsion leads to the 2D
"gravitational waves" of Sec. VI. The generalization to
charged black holes is straightforward. As shown in Sec.
VII, the gravitationally coupled Yang-Mills system is still
completely integrable. The coupling to scalar fields is no-
toriously dificult; nevertheless, an exact dilaton-type
solution has been obtained in Sec. VIII in the static mass-
less case. For the Dirac field of Sec. IX, a complete
decoupling from the gravitational field equations occurs
at least for massless fermions. In Sec. X, the conserved
Noether currents are presented such that the
identification of the integration constant as the mass of
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II. RIEMANN-CARTAN SPACETIME
IN N AND IN TWO DIMENSIONS

The geometrical arena consists of an n-dimensional
differentiable manifold M together with a metric

g =gJdx dx (2.1)

and an orthonorma/ frame and coframe field, respectively:

the 2D black hole becomes finally established in Sec. XI.
For an arbitrary PG gauge Lagrangian V, the general
field equations are formally completely solved in Sec. XII.
The former role of the Lagrange multiplier as a coordi-
nate is now taken over by the gauge-field momentum con-
jugate to the curvature. Lagrangians with invertible
gauge-field momenta turn out to be completely integra-
ble. This new result is exemplified for the R+T +R
Lagrangian in Sec. XIII.

sponding field strengths are given by the torsion two-form

T:=D6 =d8 +I AH= 'T—d"x'Rdxjp 2 &J

and the curvature two-form

R P:=dr P—r &or P=-'R Pdx'r dxJ
2 lJ

(2.6)

(2.7)

In a Riemann-Cartan (RC) spacetime in an orthonormal
frame, the curvature, like the connection, is antisym-
metric in a and P. For the irreducible decomposition of
torsion and curvature in exterior form notation, see Ref.
[19].

In order to isolate the Riemannian part of our RC
spacetime we decompose the RC connection into the
Levi-Civita connection I I

pI and the contortion one-form
Kp= —Kp..

e =e' 8, , BP=e Pdx J . (2.2)
I (yp I ~p K~p (2 &)

They are reciprocal to each other with respect to the inte-
rior product J, i.e.,

Algebraically, the contortion is the equivalent of the tor-
sion according to T =6 hKp . Then the curvature
decomposes into Riemannian and contortion pieces as

e J BP=e' e P=5P .a ai a' (2.3) R p=R I
pI

—DK p+K y AK p . (2.9)

In the following we adhere to the conventions (cf. Ref.
[18]) that a, /3, y, . . . =0, 1, . . . , n —1 are holonomic or
world indices, 8; are the tangent vectors, and h denotes
the exterior product.

Anholonomic indices are lowered by means of the
metric. The metric components with respect to an ortho-
normal frame read

We have developed the general geometrical formalism
for arbitrary n dimensions. However, as we can infer al-
ready from Table I, for the two dimensio-nal Rc space we
have two translation and one rotation generators. This
allows us to introduce a Lie (or right) duality operation,
that is, a duality with respect to the Lie algebra indices,
which maps a vector into a covector and vice versa:

Jo~p e ~e pgi'J'

(o p)=diag( —1, 1, . . . , 1) .
s n —s

(2.4)
~*=~ H=~ = ( I)'~'~-*-

The complete antisymmetric tensor is defined by

(2.10)

I P=r Pdx'= —IP .l (2.5)

Similarly as in the four-dimensional Poincare gauge
theory [13], the coframe 8 and the connection I "p are
regarded as gauge potentials of local translations and lo-
cal Lorentz transformations, respectively. The corre-

For s = 1 we have a Minkowskian and for s =0 we have a
Euclidean signature. In order to be able to relate the
pointwise attached tangent spaces to each other in a
differentiable manner, we introduce a linear connection
I =I pL, p with values in the Lie algebra of the n-
dimensional rotation group SO(n) or "Lorentz" group
SO(s, n —s), respectively. With respect to a holonomic
basis, the connection one-forms can be expanded as

y*. 1 ~ qaP yaP ( 1 )sr/aPy* (2.11)

In two dimensions we can appreciably compactify for-
mulas according to the notation given in Table II.

For n =2 torsion is irreducible and contains only the
vector piece (vector-valued zero form; see Appendix B for
further details):

T:=d8 +( —1)'g hI*=( —I)'r q . (2.12)

q p. =Q~deto„, ~e p,
where e p is the Levi-Civita symbol normalized to
e~-, =+1; for details of the g basis, see Appendix A. For
+=8 we get 8+=g ='8 . In the case of a bivector-
valued p-form f P= —P, the Lie dual is defined by

TABLE I. Gauge-field strengths, matter currents, and g basis.

Tcz

X
7 rzP

ga

Value dness

Vector
Bivector
Vector
Bivector
Vector

p-form

2
2

n —1

n 1

n —1

Components

n (n —1)/2
n (n —1) /4

n 2

n 2(n —1)/2
71

n=4

24
36
16
24
16

n =3 n =2
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n =2

r*:=-,'q. r ~
aP

T:=e J T
t':=o. t t~aPR*=dr*
R:=e Je~ JR ~

Scalar
Vector
Scalar
Scalar
Scalar
Scalar

TABLE II. 20 geometrical objects.

Valuedness p-form Components

aP 2 ~PR+Pg + iR ()~Pg:d(ya eT ) (3.2)

Then, our new Lagrangian (3.1) can be rewritten such
that the total Lagrangian reads

tity (see Eq. (5.4) of Ref. [6]) which relates GR to its
teleparallelism equivalent GR~~ in n 2 dimensions. Since
the torsion two-form is already irreducible for n =2, this
identity reduces rather drastically to

Since the curvature two-form has only one irreducible
component, it can be expressed in terms of the curvature
scalar:

L = V„+L „=(—1)'—,
' T *T +Ail

+( —1)'—,'R ~rt p
R~A—, t3+L (3.3)

R:=e Je JR ~ R ~= ——'R8 h&P (2.13)

a"=A~ "H, r.'t'=A. ~r, sA t' —A.~dA-'t'. (2.14)

With respect to the parametrization

A ~=5 ~coshco+g ~sinhco,

Eqs. (2.14) can be rewritten as

cosh&a —g sinhco,

(2.15)

(2.16)

Let us confine ourselves to the case s = 1 up to the end
of this section. The local Lorentz transformations are
defined by the 2X2 matrices A& (x)ESO(1,1) and, for
the basic gravitational variables, read

This presentation of the Lagrangian clearly exhibits the
leading Yang-Mills term for the translational field
strength, whereas

Art=(A/2)il li8 A8~

formally corresponds to a mass term of the coframe. Ob-
serve that the Einstein-Cartan term —,'R ~q &=R*=dI *
is a boundary term in two dimensions and, consequently,
will not contribute to the field equations.

I&. FIELD EQUATIONS

1 '~=I ~+r) ~de or I*=I*—d~ .

III. TELEPARALLEL 20 GRAVITY

(2.17)
The gravitational field equations resulting from varying

(3.3) with respect to 8, I ~, and A,
&

are

We regard gravity as a Yang-Mills-type gauge theory
of translations [7]. In this approach the coframe 6 and
the torsion T are the associated gauge potentials and
gauge-field strengths, respectively. (The intricate details
of such a (generalized) affine gauge approach are spelled
out in Ref. [8]. There local translations are considered as
a "hidden" gauge symmetry such that no need for a "cen-
tral extension" [4] arises. )

In our new model, the two-dimensional Hilbert-
Einstein Lagrangian is supplemented by a kinetic term for
the coframe, a cosmological term, and a boundary term.
Since two-forms are constructed solely from the transla-
tional gauge potential 8, conventional general relativity
appears to be rather minimally modified. Thus we con-
sider, instead of (1.1), the 2D Lagrangian

V„=VHE+( —1)'—,'T 'T +Ail —R ~hl, p

—( —1)'d(8 A*T ) . (3.1)

The fourth term, depending on the Lagrange multiplier
zero-form A, &, will enforce the constraint R ~=0 of van-
ishing Riemann-Cartan curvature on the residual Lorentz
degrees of freedom. This corresponds to the teleparallel-
ism condition and will replace the Teitelboim-Jackiw con-
straint of constant or, recently, vanishing Riemannian
curvature R ~ ~ ~.

In order to fully recognize the Yang-Mills-type struc-
ture of our new Lagrangian, we employ a geometric iden-

DA& (
—1)'8,

(
*—

T&) =r
t3 (second), (4.2)

R ~=0. (4.3)

Because of Dq &=0 in two dimensions, the Einstein-
Cartan piece in (3.3) does not give a contribution. By re-
laxing the teleparallelism constraint (4.3), one would ob-
tain a more complicated model (the quadratic theory
with Yang-Mills-type terms in the Riemann-Cartan cur-
vature and torsion was analyzed in Ref. [16]). We will
defer the analysis of the general theory to Sec. XII. The
right-hand sides are the current one-forms X and ~ &

of
energy-momentum and spin, respectively, of hypothetical
two-dimensional matter. Equations (4.1) and (4.2)
represent four and two independent components, respec-
tively.

The integrability condition for the second field equa-
tion is identically satisfied, because

DDA, p= —2R( ~X ~p)=0 (4.4)

in a teleparallel (Weitzenbock) spacetime, whereas

D*T —
—,'(e J T~)*Tt3+( —1)'Ail = —

(
—1)'X

( first), (4.1)
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D[r p+( —1)'6( 'Tp)]=0 (4.5)

T *T =( —1)'r'il

Then we find

(4.6)

follows from the "weak" Noether identity (10.2) for
matter and gravitational gauge fields, together with the
first field equation. Thus, the second field equation deter-
mines (nonuniquely) the Lagrange multiplier A, &.

In order to simplify the field equations we substitute
*T =t into the field equations (4.1) and (4.2), respec-
tively, and recall the formula *(@&8 )=e J *4, which
is valid for any p-form N. Moreover, note that the tor-
sion square piece in the Lagrangian is proportional to t:

In two dimensions, the volume two-form g equips the
spacetime manifold M with a symplectic structure. In va-
cuo, the volume two-form turns out, via the field equation

i1= —
( —1)'d*T/(2A) =( —1)'d(6' t )/(2A),

to be an exact form, as was conjectured by Cangemi and
Jackiw (Eq. (2.A7a) of Ref. [4(b)]). Since this volume
two-form appears explicitly in the Lagrangian (3.1), the
cosmological term in (3.1) turns out to be "weakly"
equivalent to the boundary term —

(
—1)'d*T/2. Thus,

to some extent, Machian ideas are realized: In fact, the
total volume p of our 2D "world" is, due to Stokes'
theorem, given by the integral of the dual torsion one-
form along the boundary:

(4.19)
Dt —( —1)'(-,'t' —A)il = —

(
—1)'X

DA, p ( —1)'i—'I( tp) =~
p .

(4.7)

(4.&)
On the other hand, the cosmological term cannot com-
pletely compensate the explicit "topological" term

—'d 1,+ (
—1)' ' tpal~ =r+— (4.9)

We do not lose any of its four components if we multi-
ply (4.7) by H from the right and employ the formula

D(r i'IP) ( —1)'[t t~———,'5P(t' —2A)]il

(4.10)

Thereby, the energy-momentum current of the gravita-
tional field is nicely represented. The trace of (4.10), on
substitution of (B5) of Appendix B, reads

( —1)'d*T+2Ail=X AB

In a similar move we substitute (B4) into (4.9):

(4.11)

(4.12)

A very useful condition for the torsion-square function
t can be derived by contracting (4.7) with t

,' dr2 ( ,'r2 A)T=——( ——1—)'t—X
We eliminate T by means of (4.12) and find

(4.13)

dt'+(r' —2A)di, =2[—
(
—1)'t X +(t' 2A)r*] . —

Let us represent the Lagrange multiplier as
A, &=( —1)'(1,/2)g &, where A. =A*, according to the no-
tation in (2.11). Then, in the last equation, it is more
economical to switch over to its Lie dual by multiplying
itwithg ~:

A,:=(—1)'(*d*d+d*d*)A,=( —1)'2A (4.20)

on the "would-be" coordinate A, . Fortunately, it turns
out (see the next section) that this is merely a condition
on a metric function unspecified so far. Thus, Eq. (4.20)
resembles the harmonic gauge condition in 4D general re-
lativity.

Formally, Eq. (4.20) has the solution

k=( —1)'2 'A, (4.21)

such that the constraint part of the Lagrangian (3.1), (3.3)
takes the form

( —1)'R*A,=2R* 'A . (4.22)

By imposing the additional constraint R =A, one can ob-
tain the "weak" relation

d(8 A*T )= —d*T

in (3.1). Observe also that, according to Ref. [4(b)], the
one-form T seems to be related to a gauge one-form a
associated with the central extension of the 2D Poincare
algebra.

In vacuo, T is also an exact form. If it were chosen as
one of the basis one-forms, it would be a natural basis
one-form, that is, the Lagrange multiplier A, could be in-
terpreted as a coordinate. Such a transmutation of A,

from a "constraint force" to a generahzed coordinate is
known from mechanics [12] and quantum cosmology
[20]. However, in our model, the vacuum field equations
(4.16) and (4.17) impose the wave equation

(4.14) ( —1)'R*A,=—2R*O 'R = —(R 'R )il . (4.23)

Let us now specialize to the vacuum field equations.
They read

In Riemannian spacetime, this term is easily recognized
as Polyakov's "string inspired" [21] Lagrangian.

Ch'= —(r ' —2A)d A, ,

d'T= —( —1)'2Ag,

T 7

R P=O.

(4.15)

(4.16)

(4.17)

(4.18)

V. BLACK-HOLE SOLUTION
AND COMPLETE INTEGRABILITY

The general quadratic Poincare gauge theory in two di-
mensions (in the absence of matter) is known to be com-
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dt = —t +2A,
dk

(5.1)

can easily be solved for t %2A It yie.lds the square of
the torsion as a function of the Lagrange multiplier:

r =2A+( —I)'2Moe (5.2)

Here Mo denotes an integration constant which, for Min-
kowskian signature s =1, will later be identified with the
active gravitational mass of the configuration. Observe
that we recover, for MD=0, the special solution t =2A
which will be analyzed in the next section.

The field equation (4.17) suggests that we interpret the
Lag range multiplier A, as a coordinate, such that
T= —dA, is one leg ("bein") of an orthogonal coframe.
Let us first construct the frame dual to the coframe.
Define the vector field

pletely integrable [16,17]. Usually this fact is established
with the help of a convenient choice of coordinates, such
as the light-cone or conformal ones. We will demonstrate
that the model under consideration is also completely in-
tegrable. Again the choice of coordinates will be an
essential step, but we will use an approach discussed by
Solodukhin [22].

Before integrating the gravitational equations it is
worth noticing that the fiat (Minkowski) spacetime arises
when both the Riemann-Cartan curvature and the tor-
sion are zero. The former is described by (4.18), but it is
clear that torsion cannot be zero in the case of a nontrivi-
al cosmological term in (3.1), (3.3), (4.15), and (4.16).
Hence the Oat Minkowski spacetime is not a vacuum
solution of the theory. It is also evident that t in general
is nonzero —again the cosmological constant prevents its
identical vanishing.

The vacuum equation (4.15), i.e.,

BB(k,p) B(l,,p)
t' (5.7)

The same relation could have been obtained from the
wave equation (4.20) for A, . Upon integration we obtain

B(A,,p)=BO(p)t e (5.8)

In terms of the frame (B15) or (B19) of Appendix B, the
metric explicitly reads

(5.9)

or, after substituting t and absorbing Bo(p) according to
the coordinate transformation dp:=Bo dp,

g =(—1)'e 2[Moe +( —1)'A]dp

dj2
2[Moe + (

—1)'A]
(5.10)

From (B19)one readily obtains the frame

(5.1 1)

(5.12)

and thus the components of the torsion tensor read

Remarkably, this metric has the form of the black hole
in the two-dimensional dilaton (string motivated) gravita-
tional theories, widely discussed in the literature (cf.
[14,15,23 —25]). We will see in Sec. XI that the integra-
tion constant Mo is in fact related to the mass of this
black hole.

Along with the metric (5.10) one can construct explicit-
ly the coordinate components of the torsion

g*= (r lr')e—
which is dual to *T, i.e.,

g+ J *T=1;

(5.3)

(5.4)

(5.13)

Using the definition of the torsion two-form (2.6) one can
express the two-dimensional Lorentz connection (2.5), ac-
cording to Table II, in the convenient dual form

cf. (B9) and (B10). In view of (B12), Eq. (4.17) yields the
constancy of the A, variable along the vector field g*: I*=(*d6 )8 +'T . (5.14)

l~~k, =g'+ J dA, =g+(A, ) =0, (5.5)

*T=B(A,,p)dp . (5.6)

Because of the orthogonality, there enters no term pro-
portional to dA, . We substitute the ansatz (5.6) into
(4.16), use the explicit expression (B20) of the volume
two-form, and find

where 8&=g J d+d J g is the Lie derivative. This fact is
crucial, since (5.5) allows us to introduce a second coordi-
nate, for example, p, defined by the integral lines of the
vector field g*. In view of (5.5), the (A, ,p) coordinate sys-
tern is orthogonal. Thus the form *T should be propor-
tional to dp, while T, in view of (4.17), is already propor-
tional to dA, .

The leg orthogonal to T is *T. Thus we introduce the
orthogonal coordinate system (A.,p). Then

i =t sinhu, t'=t coshu, (5.15)

In order to complete the analysis of the integrability of
the model under consideration, one should also study
(4.18) and verify that it is satisfied by the solution de-
scribed above. In general this is a nontrivial problem,
especially in the presence of matter, see Sec. VII.

Note that the solution obtained above completely de-
scribes the behavior of torsion: Eq. (5.13) gives the tor-
sion components with respect to the coordinates (p, A, ),
while the torsion square was obtained explicitly in (5.2).
Its Lorentz frame components seem to remain undeter-
mined, but this is clearly related to the gauge freedom of
the model, which means that a vector at any point can be
arbitrarily rotated by means of the local Lorentz transfor-
mations (2.14). Let us demonstrate this explicitly. Since
t is a known function of A, one can assume the general
ansatz for the frame components of the torsion:
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where t= tt/t and u =u(p, A, ) is some function of both
space and time coordinates which is real for s=1 and
purely imaginary for s =0. Substituting (5.15) into (819)
and differentiating it, one finds

B 1dg = t B——+ —8 u —rI t~B u rt, (5.16)B

1
arctan(y/x ) for s =0,

0

1
arctanh(y /x ) for s = 1

0

(5.25)

and hence the dual Lorentz connection (5.14) turns out to
be

converts the metric (5.23) into the explicit conformally
ji'at form

r*=[a ta„—(S/t)]dp a,u—dp —B„u dA,

B B~t= B—aB+- dp du
t 2

(5.17)

dx +( —1)'dy

{1—(A/2)[( —1)'x +y ]]
(5.26)

In the new coordinates (x,y) the coordinate com-
ponents of the torsion read

Z*=dr*=0,
reduces to the condition

(5.18)

Evidently the last term represents the local Lorentz
transformation (2.17) and can be discarded by choosing
the gauge u =0 in (5.15). While calculating the two-
dimensional Riemann-Cartan curvature, one notes that
the last term in (5.17) does not contribute to it. Therefore
(4.18), i.e., the vanishing of the curvature two-form

X—
xy

2y

[(—1)'x +y ] 1 ——[(—1)'x +y ]2

(
—1)'2x

[(—1)'x +y ] 1 ——[(—1)'x +y ]2

VI. GRAVITATIONAL WAVES

(5.27)

B B&t
a B—aB+—

2 t2

Using (5.8) one finds

=0. (5.19)
In order to exhibit the propagating degrees of freedom

of our model we consider the vacuum field equations.
For nonvanishing "cosmological" constant A we obtain
from (4.1) and the constraint (4.3):

B B~t B B~t
g —Q g+ — = —— =( —1)'M B0 0 (5.20)

and

D "B~=DrI = —d ln(t —2A) hr) (6.1)

Since (5.19) holds for the solution (5.10) and (5.13), the
proof of the integrability of the vacuum equations
(4.15)—(4.18) is completed.

Let us investigate some of the properties of the metric
of our black-hole solutions and, in particular, compare
these with those of the dilaton gravity black holes. In a
first step, one can try to find a new coordinate X such that
8 can be represented as a natural leg:

ya. —
( 1 )s( eD eD +D eD e )ya

=( —1)'(t 2 —2A)8 (6.2)

These gauge-covariant nonlinear Proca-type equations for
the coframe are exact consequences of our "topological"
gauge model (3.1) with teleparallelism.

For the special solution t =2A, which has been left
out in Sec. V, these equations simplify to a wave equation
for the coframe:

8 =dX=dA/+2[Mac +(—1)'A] . (5.21)
CIB =0 (6.3)

Clearly, one has to distinguish different cases:
Moe +( —1)'A)0, =0, or (0. Here we restrict our-
selves to the first case. Then the coordinate transforma-
tion reads

( —1)'A . 2,A
A, = —ln sinh (

—1)'—
Mo 2

' 1/2

(5.22)

Substitution into the metric (5.10) yields

X=[2/+( —I )'2A]arctanh't/A[( —1)'x +y ]/2,
(5.24)

g =(Mo/2A) sinh [ t/( —1)'2A X]dp +di . (5.23)

Then, the further coordinate transformation

We adopt the solution (5.10) of the previous section for
Mo =0, except that we are using the coordinate freedom
in order to set Bo =e —+1'. Then we find the metric

g=[( —I)'/2A]dk +2Ae ' +~~dp— (6.4)

(6.5)
in 4D gravity (cf. [26], p. 975).

It can be shown that the Cauchy problem for (6.3) is
well posed: In two dimensions, the coframe 6 =e~ dx~
has 2X2=4 components. Two degrees of freedom get
fixed by considering coframes in the conformal gauge
8 =Qdx . Moreover, the one local Lorentz degree

of a left or right moving wav-e solu-tion. It is the analogue
of the plane fronted gravitational wave solution

g= dA, +I (A, z)(e ~' '—dx +e ~' —'dy )+dz
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of freedom A„ in the transformation formula (2.14) has
1

also to be subtracted out. Then for Minkowskian signa-
ture s = 1, Eq. (6.3) constitutes a (hyperbolic) wave equa-
tion for the conformal factor 0 as the only remaining
dynamical degree of freedom.

Thus our two-dimensional model contains only a mass-
less "spin-2" mode, i.e., a "topological graviton. " Quant-
ization will be straightforward. Moreover, by relaxing
the teleparallelism constraint, the extended model with a
Yang-Mills-type curvature squared term appears to be re-
normalizable [27].

VII. CHARGED BLACK HOLES

Let us add to our gravitational Lagrangian (3.3) the
standard Maxwell Lagrangian

1. =( —1)'—'F h *F, (7.1)

where I =d 3 is the field strength of the Abelian gauge
potential one-form A. In two dimensions there is no
magnetic field: the only component of the field strength
describes the electric field along the unique spatial direc-
tion. This is expressed by introducing the scalar f dual
to the Maxwell field strength, i.e.,

f:=*F, F=(—

1)'foal

.

The energy-momentum current in (4.1) reads

X:=e J LM —( —1)'(e J F) A*F
= —( —1)'—,

' (e J F ) A *F= —
—,
' f rl

(7.2)

(7.3)

whereas the spin current vanishes, i.e., ~ &=0, since the
Lorentz connection does not couple to the Maxwell field.
Observe that the energy-momentum trace, in contrast
with four dimensions, does not vanish:

8 AX = f g. — (7.4)

The inhomogeneous Maxwell equation is obtained from
the variation of (7.1) with respect to 2 and in vacuum
reads, as usual,

d*F=df =0 . (7.5)

In two dimensions this can be easily integrated to givef=const=Q. This constant is, indeed, the conserved to-
tal electric charge.

As a result, the field equations (4.11)—(4.13) are com-
pletely integrable along the same line of reasoning, and
the relevant charged black-hole solutions are simply ob-
tained by the following shift of the cosmological con-
stant:

holes except that

Q2 —fAf f eF (7.8)

Note that f~ is not a constant in view of the nonlinear
nature of the Yang-Mills equations

D'F„=df„+c„ecA f =0,
but its square is conserved.

VIII. COUPLING TO A SCALAR FIELD

(7.9)

Let us now consider a gravitationally coupled scalar
field P for which L „in (3.3) is given by

L~ =( —1)'—,
' dP h*d(h+ Uil . (8.1)

The potential U = U(P) may include the mass term
—,'m P as well as a nonlinear self-interaction of scalar
matter. Introducing the notation

(8.2)

where X is just the Lagrangian function, one finds for the
sources of the gravitational field

(8.3)

The gravitational field equations (4.1)—(4.3) have to be
supplemented by the field equation of the scalar matter:

'd*dP — =0 .
dP

(8.4)

(8.5)

Then, the vacuum equations (4.15), (4.16), and (4.17) are
modified as

dt'= [ t2+2[A+( —1)'X]—]dA, ,

d'T= —( —1)'2(A+ U)il,

T

(8.6)

(8.7)

(8.8)

Let us consider a configuration Po for which the self-
interaction potential has a nontrivial local extremum
(usually a minimum), i.e.,

As a first step toward a solution of the highly nonlinear
system (4.1)—(4.3) and (8.4) we will confine ourselves to
the static case, such that

A~A=A ——'Q
2 (7.6)

dU
(8.9)

It is straightforward to see that this result is also valid
for a Yang-Mills field with an arbitrary gauge group:
After replacing I by the non-Abelian Lie-algebra-valued
two-form F, and the Lagrangian (7.1) by

Evidently the constant configuration P =const =$0 is
then a solution of (8.4). The remaining gravitational field
equations (8.5) —(8.7) are reduced to those of the "vacuum
case,"except that the cosmological constant is shifted to

(7.7) A~A=A+ U($0) . (8.10)

one obtains, with the aid of (7.6), the same charged black The solutions are thus again represented by the black-
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hole metric (5.10).
In the general case we find the solution in the same

way as in Sec. V: the coordinates (p, A, ) are introduced
such that (5.6) and (5.9) hold. However, (4.16) is replaced
by (8.7), and this, for the function B(p,k), yields the con-
dition

spin current

BL~
p

=
—,'g(*yo t3+o tt*y)Q

—(i /8)n. pf("yys+y5" y 4 =o (9.4)

(8.1 1)

In these coordinates the wave equation (8.4) for the
matter field reads explicitly

L&=(i/2)(gy h*dg+'dghyg)+I ~hr p imp—Prt

=(i/2)(gy h "dP+*dgh yP) im—ggg . (9.5)

vanishes identically on account of (C4) and (C5). Conse-
quently, the Dirac Lagrangian (9.1) reduces to

8 P+ —(8 B)B P —— =0 .
1 1 dU

(8.12) Variation of the Dirac Lagrangian (9.1) with respect to
g yields the Dirac equation

For A= U=O, similarly as in an exact Einstein-dilaton
field solution in four dimensions [28], the term X=—,'C
effectively replaces the cosmological constant. In two di-
mensions this leads to a conformally invariant model, for
which the exact dilaton solution

/= CA BQ =B0(p)

dk2 B2dp2
+( —1)'

C2 C2 g A,

(8.13)

IX. COUPLING TO DIRAC MATTER

In this section and in Appendix A we consider only
Minkowski spacetime (s= 1). The theory of spinors in
two dimensions can formally be constructed along the
same lines as in n dimensions; see Ref. [29] and Appen-
dixes A and C. However, there are certain peculiarities
due to the Abelian nature of the two-dimensional Lorentz
group. The most unusual feature is the absence of cou-
pling of the 2D Dirac field to the local Lorentz connec-
tion.

Let L „in (3.3) now be the Dirac Lagrangian

L
&
= (i /2 )( gy h *DQ+ *Dg h y g ) i m gfri, —(9.1)

where y:=y 8 is the matrix-valued one-form of the
Dirac algebra in 2D satisfying yhy= —2gy5. (For the
details on spinors and the realization of the Dirac algebra
in two dimensions see Appendixes A and C.) The covari-
ant exterior derivative is defined by

ay=dq+r@, ay=de qr, —

where

(9.2)

can be obtained. In general, the integration is more
difficult mainly due to the necessity to satisfy the zero
curvature constraint (4.18). Consequently, the system
(8.5), (8.10), (8.11), and (5.18) may admit dilaton black-
hole-type solutions only for specific potentials U(P).
Nevertheless, it is likely that generic two-dimensional
black holes have no "scalar hair. "

y h*DQ+ ,'y g tt—T~Q mfrt—=0 . (9.6)

Using (9.3) and (5.14) one can verify that (9.6) does not
contain torsion: the apparent term is actually canceled
by those hidden in the exterior covariant derivative.
After defining D =e J D, Eq. (9.6) is equivalent to

y D()P—m/=0. (9.7)

This again proves the absence of any coupling of 2D
Dirac spinors to the local Lorentz connection.

Variation of (9.5) with respect to the coframe yields the
energy-momentum current

(9.8)

where we took into account that the Dirac Lagrangian
vanishes "weakly, " i.e., L& =—0, on account of the Dirac
equation (9.6).

Similarly as in the case of the scalar matter we are not
attempting to find the general solution, but restrict our-
selves to the static case. Then we have

8 i)'j-t 8 /=0 .

Thus
X t —=0, X h8 =imgPr—i,

(9.9)

(9.10)

where again I.
&
—=0 has been used.

Hence the gravitational field equations (4.1)—(4.3) are
reduced to the system

dt'=(2A t') T, —

d T= (2A im gg)r—i,
T

R p=0,

(9.11)

(9.12)

(9.13)

(9.14)

In the massless case m =0, a static Dirac field com-
pletely decouples from the gravitational field equations.
Hence, Eqs. (9.11)—(9.14) reduce to the vacuum case
(4.15)—(4.18) and thus give rise to the same black-hole
and wave solutions. The massive spinor case will be dis-
cussed elsewhere.

r:=—'r ~~ =-'q r ~q =-'y r*
4 aP 4 aP 5 p 5 (9.3) X. NORTHER IDENTITIES

AND CONSERVED CURRENTS
is the SO( 1, 1 )-valued connection.

In two dimensions, the connection is not only Abelian
but also involves the y5 matrix. This implies that the

The sources for the gravitational gauge fields are the
material energy-momentum current 2:=6L, „/5B and
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DX =(e J Tr) AXr+(e J Rr ) h&rs (10.1)

the spin current ~ p..=6I „/6t, which are both
(n —1)-forms in n dimensions. In fact, in two dimensions
X represents stress —this is a well-known concept of a
force distributed over a (one-dimensional spacelike) line
element. In four dimensions, however, X describes
energy-momentum distributed in a (three-dimensional)
volume element. Accordingly, X corresponds to the in-
tuitive notions of a line-stress and energy-momentum
density in two and four dimensions, respectively. This
convinces us of the correctness of the interpretation of
the (n —1)-form X . An analogous consideration applies
to ~ p as spin moment stress and spin angular momentum
density, respectively.

From local Poincare invariance [structure group:
R "C&&SO( s, n —s)], one finds [5,13], for n )2, the 1st and
the 2nd Noether identity

involving the exterior covariant derivative D with respect
to the transposed connection

r.p:=r.p+e. a V.p, (10.9)

is such a weakly closed form:

d cRc=0 (10.10)

Thus, in the presence of spacetime symmetries cRc is a
globally conserved energy-momentum current.

XI. MASS OF THE BLACK-HOLE SOLUTION

In order to apply these results to our exact black-hole
solution, observe that the metric (5.10) is independent of
the coordinate p. The corresponding timelike Killing
vector field 8 can be expanded in terms of the frame:

P

g+ J 'T=O —g=B =Bg*= e t 'e . — (11.1)

D~ p+8) R Xp)
-——0 . (10.2)

These equations having n and n(n —1)I2 independent
components, respectively, hold only "weakly, " denoted
by —=, i.e., provided the matter field equation 5L/5/=0
is satisfied.

In two dimensions, the Noether identities can be
rewritten as

The material spin current of our exact solution van-
ishes [32], i.e., r &=0 such that (10.8) reduces to
eRc.=@X . This is, in fact, a general feature of all the
matter sources considered in this paper: the Yang-Mills
bosons, the dilaton, and even a Dirac field. On the other
hand, for a nonzero mass Mo, the material energy-
momentum current cannot vanish everywhere, but needs
to have a 5-type concentration at the origin, i.e.,

DX -=( —1)'il i(, (t'X, Rr")— (10.3)
X -5(0)rt (11.2)

and

dw ——'g RX —=02 (10.4)

For the derivation of the corresponding weakly con-
served current (10.8), we eliminate X in (10.8) by means
of the field equation (4.7). Because of (4.9), i.e.,

Note that the right (or Lie) dual r+ of the spin current is
also given by

t rl =( —1)'T= —(
—I)'dA, ,

we easily obtain

*"-
2 5r* (10.5) ERc=pX =( —1)'—,'e [dt2+(t —2A)dA, ] . (11.3)

R Xp) =—0, DXI I -=0 . (10.6)

For spinless rnatter, the energy-momentum becomes
symmetric and covariantly conserved with respect to the
Riemannian connection [30]:

Since this current can be derived, via

Rc dM

from the superpotential

M = ( —1 )'e ( —,
' t —A ),

(1 1.4)

(1 1.5)

If a spacetime admits symmetries, from the Noether
currents we can construct a set of inuariant conserved
quantities, one for each symmetry. We consider Killing
symmetries, where the vector field g=ge is a generator
of a one-parameter group of di6'eomorphisms. Then the
generalized Killing equations

M =MD,

we recover (5.2).

(11.6)

the current cRc is conserved, indeed. On the "mass
shell, "

Xgg=(g~g i3+2gr( et') J E~vV)8 8~=0,
%~I P=0 (10.7)

hold, where X& is the usual Lie derivative and
E& =g J D+Dg..J is the gauge-covariant version for ex-
terior forms.

As it was shown in Ref. [31],the current one-form

ERc:=+X +(ep J DP)r r, (10.8)

XII. INTEGRABILITY OF THE GENERAL
PG EQUATIONS IN TWO DIMENSIONS

For the quadratic Poincare gauge (PG) model in two
dimensions the complete integrability in vacuum has been
established earlier [16,17,22]. However, these proofs rely
on certain choices of a gauge. In this section we will ex-
tend this result to the case of the general 2D Poincare
gauge theory without imposing any gauge condition.

In PG theory the total action of interacting matter and
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gravitational gauge fields reads

W= I [L(8,%,D%)+ V(8, T,R ~)] . (12.1)

It is a functional of a minimally coupled matter field 4,
which, in general, may be a p-form, and of the geometri-
cal variables 8 and I ~= —I ~ . Their independent vari-
ations yield the field equations

H*=-,'q PH. =:—,'~.ap

Then we get

—,
' d~ —

—,'H. q =~+

(12.13)

(12.14)

switch over to its Lie dual by multiplying it with —,'g p

and to introduce the notation

—( —1 PD =0, (matter),aL aL
aD%

(12.2)
or, in view of (12.10),

da' —*H=2&+ . (12.15)
DH E=—2 (first),

DH
&

E&=—r & (second) .

(12.3)

(12.4)
Observe that the gravitational energy-momentum

current can be rewritten as

Observe that, in two dimensions, the gauge field m-omen
ta are zero-forms:

H:=—a'

H ap

av
Bd 8

av
adr p

av
aT

av
aR p

(12.5)

The sources of these Yang-Mills-type field equations are
the one-forms of material energy-momentum and spin, re-
spectively:

E =( —1)'(V+t~Hp ,'Ra—)r—i.

=:(—1)'Vg (12.16)

2 =o~p a p (12.17}

can be derived by contracting the first field equation
(12.3) with H:

where V:=*V is the Lagrangian function (zero-form).
Then a very useful condition for the squared translational
momentum

5L 5L
gya ' ~p' prop

(12.6)

Because of the universality of the gravitational interac-
tion, the one-forms of gravitational energy-momentum

—
( —1) V~H=H

2 a '

We eliminate 'H by means of (12.15) and find

dH ( —1)'2V—dz=2[H X —
( —1)'2Vr+] .

(12.18)

(12.19)
av
aa

=e J V+(e J T~) RHp+(e J R~r) RHpr

(12.7)

and gravitational spin angular momentum

E p. = —8( R, Hp) (12.8)

8 AE =2V+2T R, H +2RP~AHp (12.9)

In order to reduce the field equations we introduce the
one-forms

H:=H 8, *H=H g (12.10)

provide a self-coupling of the gravitational gauge field.
The trace of the energy-momentum current (12.7),

formed with the aid of the coframe 8-, in general gives us
back the gauge Lagrangian V amended by Yang-Mills-
type terms according to

Let us now specialize to the Uacuum field equations.
They read

dH = ( —1)'2V d~,
dH=( —1)'(t H —2V)q,
dz=*H .

(12.20)

(12.21)

(12.22)

Circ:=( —1)'('d d+d*d*)x.

=( —1)'(2V —t H ) (12.23)

for the would-be coordinate ~.
In order to obtain the general solution one can proceed

along the same line of reasoning as in Sec. V: We intro-
duce a coordinate system (p, ~) which is related to the
translational one-forms (12.10) via

Moreover, in our general PG model, we can derive
from the vacuum field equations (12.21) and (12.20) the
wave equation

In the first field equation we do not lose any of its four
components if we multiply (12.3) by H from the right:

H=8 dp, 'H =de, (12.24)

D(8~H )+T~H 6—RE =8 RX—(12.11)
with some function B(p,x). Similarly as in the teleparal-
lel case, the volume two-form is, for H2&0, given by

The trace of (12.11), on substitution of (12.9) and (12.10),
reads

v]= —(B/H )de Rdp; (12.25)

—dH —T H —2V —2RP~AHp =P h, X (12.12)

In the second field equation it is more economical to

cf. (B20) with the torsion one-form being replaced by*T~(—1)'H.
Insertion of this ansatz into (12.21), together with

(12.20},yields
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Bv

t H
lnH —( —1)'

Be
(12.26)

A formal integration of (12.26) straightforwardly leads to
the solution

R ) variable. Provided V, and hence P, is smooth, the
solution of this first-order ordinary diff'erential equation
always exists, thus completing our formal demonstration
of the integrability of the general two-dimensional Poin-
care gauge theory. Remarkably, the complete vacuum
solution (if H %0) is again of the black-hole type with
the metric

t H
B=Bo(p)H exp —

(
—I )'f di~ (12.27)

d 2 t H
g =( —1)' +H exp —( —1)' d~ dp

H H

V(8, T,R ~)= V(8, T,R ) . (12.28)

The gravitational gauge field momentum (12.13), on ac-
count of (12.5), can then be rewritten as

BV
BR

(12.29)

For H =0, Eq. (12.20) yields V=O, and, by means of
(12.16), E =0. Hence in vacuum the first field equation
(12.3) degenerates to DH =0. The integrability condi-
tion of this equation is the vanishing of the curvature:
R &=0. If this is satisfied, we actually return to the
teleparallel case, which was analyzed in detail in previous
sections. However, in general, R &WO. Then, in com-
bination with the equation V=0, we find

aV
2 BR

Summarizing, one is left with two algebraic equations for
curvature and torsion:

where again Bo(p) is an arbitrary function only of p.
Let us conclude with several remarks on the integra-

tion of the vacuum field equations (12.3), (12.4), or
(12.20)—(12.22), respectively.

First of all, let us treat the case H =0. In two dimen-
sions the curvature has only one nontrivial component,
namely, the curvature scalar R. Thus, in view of (2.13),
the general gravitational action (12.13) has the form

(12.33)

even if it is more complicated than (5.10). In (12.33) we
set Bo= 1. Torsion and curvature for our solution are ob-
tained by inverting the definitions in (12.5) of the gauge-
field momenta, or equivalently, by inverting the relations

K=K(r, R) r =t (K, P)
P=P(r', R) R=R(~,P) '

For the solution to be unique one must assume the
relevant Hessian (8 V/BR M, B VIBt dt ) to be nonde-
generate. It is straightforward to derive from (5.14) the
curvature scalar of our general solution:

„,H' a B a
8 BK H BK

(12.34)

XIII. COMPLETE INTEGRABILITY
OF QUADRATIC PG LAGRANGIANS

IN TWO DIMENSIONS

Let us apply these results of the general Lagrangian to
a specific example, namely, to a Lagrangian with terms
quadratic in torsion and curvature. Since both, torsion
and curvature, possess only one irreducible piece, respec-
tively, the most general quadratic (parity conserving) La-
grangian reads

H=0, V—R ='0,B

BR
(12.30) I.=( —1)' —T *T + —R ~rl + —R *R ~

P 2 P

the roots of which yield constant values for R and T.
Let us now turn to the general case with H %0. Since

R is a scalar, it is clear form (12.28) that, modulo bound-
ary terms, the torsion can only appear in V in the form of
the scalar t, i.e.,

+Ay+I. (13.1)

Following the prescriptions (12.5), (12.7), and (12.8), re-
spectively, we calculate from (13.1) the gauge-field mo-
menta

V(6, T,R ) = V(6, t', R ) =( —I )'V(t', R )rl .

(12.31)
and

H = —(
—1)'at, H'=a't', (13.2)

Hence the relevant translational momentum reads

H = —2, t:=P(t', R )r
BV
t' (12.32)

H li= —
—,'( —1)'(1 bR )rl 13,

— (13.3)

as well as the gravitational energy-momentum current

Together with ~ = ir( t,R ), this function plays a decisive
role in the formal integration of the system
(12.20) —(12.22). Indeed, since t H =Pt and H =P t,
one recognizes (12.20) as a well-posed equation which in-
volves one dependent (e.g., t ) and one independent (e.g.,

E = — t +( —1) ——R —A
a sb
2 4 a ~

and the gravitational spin current

E li
= ( —1)'a 8( tp) .

(13.4)

(13.5)
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Then the vacuum field equations (12.20) —(12.22) read

a'dt'= —[at'+ ( —1)'(b /2)R ' —2A]d)r, (13.6)

and

a d" T= [(b /2)R —
( —1)'2A]g, (13.7)

(13.8)

T =0, R =( —1)'(4/b)A . (13.9)

For t iWO we find from (13.6) and (13.8) by integration

t =( —1)' 2Moe ' — Rb

2Q

In the special case t =0 we are led to a space of con-
stant Riemannian curvature, similarly as in the TJ model:

multiplier is an independent field which can "transmute"
freely to a coordinate, there seems to be a catch in the
case of the general theory. The scalar curvature R, re-
garded as a coordinate, may still keep alive the memory
of its origin as a derivative of the Riemann-Cartan con-
nection. For our exact solution, the connection one-form
I *contains the leg R in its expansion. Thus we have to
face a highly implicit interrelation between the curvatureR*=dI* and the formal coordinate R. Fortunately,
one can show the self-consistency of our scheme: insert-
ing (13.2), (13.10), and (13.13) into (12.34) one can verify
that the scalar curvature R (p, R ) is indeed equal to R re-
garded as the coordinate. %"e also checked this with the
aid of the ExcALc package of the computer algebra sys-
tem REDUCE [33]. This finally concludes the proof of
complete integrability of the R + T +R model.

+R +( —1)' (13.10)
ACKNOWLEDGMENTS

According to (13.8), the torsion one-form T is again an
exact form:

T =d [ (b /a )
—R ] . (13.11)

Thus we can repeat the reasoning of Sec. V and regard
dR as one natural leg. Then R is the associate coordinate
such that *T is orthogona1 to T, implying again the an-
satz

*T=B(p,R )dp . (13.12)

Following the steps performed in (12.25) and (12.26)
with *H= aT and H=( ——1)'a*T, the unknown func-
tion B in (13.12) turns out to be

B(p,R)=B0(p)t e (13.13)

For the black-hole solution we can set Bo = 1 without loss
of generality and, eventually, obtain the following new
orthonormal one-form basis [cf. (B15)of Appendix B]:

0 T b dR
a Qt2

(13.14)
gl. — —e bR/aug 2 dpQ)2

APPENDIX A: (ANTI-)SELF-DUAL BASIS
FOR EXTERIOR FORMS IN TWO DIMENSIONS

The symbol h, denotes the exterior product of forms,
the symbol J denotes the interior product of a vector
with a form, and the asterisk denotes the Hodge star (or
left dual), which maps a p-form @(P' into a (2 —p )-form.
It has the property that

s s (y(p) ( 1 )p(2 —p)+sq)(p)

The volume two-form is defined by

q:= —,'q p8 AB

(A 1)

where rI &.=Q~deto„, e t), and eat) is the Levi-Civita
symbol normalized to eo-, =+1. Together with q, the fol-

lowing forms span a basis for the algebra of arbitrary p-
forms in two dimensions:
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for E.W.M. and F.W.H. by the German-Israeli Founda-
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with the square of the torsion components given by
(13.10). Accordingly, the anholonomic torsion com-
ponents satisfy the relation [cf. (B21)]

T'=0, T'= &t'eon, e'. — (13.15)

rt:=e J g=*8, il P =et) J rl =*.(8 /), gp) .

We mill call the forms

(A3)

(A4)

Since the metric is

b dReZbR/at2dp2+( 1)s
a t

(13.16)

the g basis of the two-dimensional space. In two dimen-
sions q &

is a zero-form which we took for the definition
of the Lie dual in (2.10). For the inversion of the Lie
dual, we have to use the two-dimensional relation

our solution is given by (13.14)—(13.16), together with
(13.10), and the proof of the integrability of the general
quadratic 2D PG model is formally completed.

This was first done in Ref. [22], but the following
essential point was not explicitly demonstrated: Com-
pared to the teleparallelisrn model, where the Lagrange

From Table I we recognize that two-forms are of cen-
tral importance in two-dimensional gravity. This is also
true for q, which is Lie dual to the one-form 8~. Indeed,

(A6)
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The exterior product of the coframe with the g basis
satisfies the relations

APPENDIX B: THE MANY FACES
OF TWO-DIMENSIONAL TORSION

8~5, g =6~q, 6~g p= —6~gp+5p~g

which imply, in particular, that

(A7) In two dimensions, the torsion has two independent
components. And so has its Hodge dual, i.e.,

(A8)
t:='T with T =( —1)'*t, (B1)

Differentiating the g's yields

Dg = T~ R, g, Dg p=0 . (A9)

(+) (+)
a + e (Al 1)

and satisfy the relations

(+) (+)
o R, op=0,

(A12)

Under the SOD(1, 1) transformations (2.15), these objects
simply transform as

(+) (+)
&0 —e +co ~ 0 (A13)

This became manifest in the theory of spinors in two di-
mensions (see Sec. IX). Equations (All) show that each
o-form actually has only one independent component,
which can be denoted as

(+) (+)
0 = 0 (A14)

For 2D spinors, these are the generalized Pauli matrices.

For s=1, the Lorentz transformation (2.15) suggests
that we introduce one-forms which are irreducible with
respect to the connected component of the Lorentz
group:

(+)
o. =8 +g (A10)

These forms are self- and anti-self-dual,

according to (A 1). Thus, instead of T, we can
equivalently express the field equations in terms of t .
This is more convenient, since a zero-form can be han-
dled more easily than a two-form. The two-form T can
also be developed with respect to the volume two-form g:

(B2)

The torsion two-form T is not only fully contained in
the zero-form t, but also in a one-form T. This comes
about as follows. In n dimensions, the torsion can be
decomposed into three irreducible pieces: a tensor, a vec-
tor, and an axial-vector piece; see [19]. In two dimen-
sions the torsion is irreducible and only the (co)vector
piece survives:

' 'T~:=8 h(e J T~)=6 h T with T:=e&J T~ .p

(B3)

The one-form T can be expressed in terms of t as

T=e& J T~=( —1)'t~e& J rl=( —1)'t&rI~ .

Because of e J *&0= *(4h 6 ), its dual reads

"T=*(e13J T~)=( —I)'*(e&J *t~)

=( —1)'**(t~Bp)= tp6~ . —

Now it is easy to show that the vector piece of the torsion
coincides with the total torsion:

'~'T =8 6 T=( —I)'8 5 tpr)~=( —1)'ting A g~=( —1)'t rI=T

Accordingly, we recognize that the torsion alternative-

ly can be presented by the zero-form t, the two one-
forms T or T, or by the standard two-form T: (B9)

t~.='T~ T:=e g T~ *T=—yp*T
p& (B7) (B10)

Apart from singular points, the condition t %0 holds as
a result of the field equation. Then we find

(B8)

The set It, T, *T,T I of equivalent torsion forms turned
out to be very useful.

For the presentation of exact 2D solutions it is rather
convenient to introduce, instead of 8 and ep, quite gen-
erally the new coframe I T, *T I together with its dual
vectors [g', g*]. By duality we have

t' t' (B1 1)

Furthermore, one can show that

g J *T=O and g+ J T=O . (B12)

As a final proof that T and *Tformally span a coframe
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we display the orthogonality of g and g* with the help of
the metric g. Since the e 's are orthonormal we have

g ptpt &

g(f I )=
4 g(e ey)=

and, as usual, the spinor space at any point of the space-
time manifold is related to the tangent space at this point
via the spin-tensor objects: the Dirac and the Pauli ma-
trices.

The Dirac matrices y satisfy the standard relations
(813)

y yP+ yPy =2o P (C2)
The vectors t g, /+ I are not of unit length, rather

0':=g(k, k) =( —1)V*'

(814)

and in 2D these 2X2 matrices can be chosen to be real.
Further elements of the 2D ClifFord algebra are the y5
matrix and the SO(1, 1) generator cr & which are defined
by

Consequently, the new coframe
ys:=2'rl py y, u p =(i/.2)[y, yp) . (C3)

From (C2) and (C3) one can derive the useful relations
e =Ieo e') = rr +r y5=o (C4)

tp tp= ( —1)'
v't ' ' v'g' (815) y rs=n'rp (r. rpl= —2n.y's .

If we introduce the matrix-valued one-form

(C5)

is orthonormal with respect to o p, in contrast with the
system I T, *TI which is only orthogonal. The dual
frame reads

y =y. (C6)

Eqs. (C2) —(C5) can be rewritten in Clifford-algebra-
valued exterior forms as

e,, — ei,2 t2 yy =g y ~ y = —2y5n 'y =y5y . (C7)

that is,

J e~=5~ and g(6, 8p)=o Ii (817)

The action of the gauge (local Lorentz) group on spi-
nors is given by

with

and e~= 6,~dX',a
a gxi (818)

P'=sf, g 't("=ps

where the Dirac adjoint is defined as

(C&)

(C9)

where X' are some (holonomic) coordinates.
A two-dimensional Lorentz transformation depends

only on one parameter. From (815) we can read off its
inverse:

ta+
v't' v't'

ta
v'g' v't' (819)

The volume two-form can also be expressed in terms of
the coframe (815):

Equations (C2) and (C7) relate the metric structure on
a spacetime to the spinor space. Then the Lorentz trans-
formation is converted, via the covering homomorphism
SO(1, 1)=SO(1,1), to the similarity transformation

(C10)

of the y matrices, where y'=y O' . Substituting (2.14)
and using the explicit form of the local Lorentz rotations
(2.15) one finds

rl=e'he'=(1/t')T A*T . (820)
COS=exp —

y5 =cosh CO +y sinh
2 5 2

(Cl 1)

Moreover, from (86) we find for the torsion components
with respect to the new coframe (815) that

T'=0, (821)

APPENDIX C: SPINORS IN TWO DIMENSIONS

Dirac spinors in two dimensions have two (complex)
components,

This completes the definition of a spinor algebra on a
2D manifold. The next step is to develop the spinor
analysis, and the central point is the notion of the so-
called spinor covariant derivative D. The formal
definition of the spinor covariant derivative is given by
(9.2), where the connection one-form, due to the covering
homomorphism, has the usual transformation law

I I '=SI S '+S dS (C12)

2.
(Cl)

The explicit form of the connection (9.3) is obtained from
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the natural assumption that spinor bilinears behave co-
variantly, that is, gg, $7 g, and t)'jy hyllr are the zero-,
one-, and two-forms, respectively, on the spacetime mani-
fold. This is equivalent to the condition

(+)
0 —o.

( —)

0
(C15)

(C13)

(+) ( —
) ( —) (+)

o h o. = —o. h, o. =2g .

Then one can easily prove that

(C14)

for which the explicit solution is just (9.3).
The concrete realization of the Clifford algebra (C2)

and (C7) on a 2D manifold is easily achieved in terms of
the 1X I Pauli matrices given in (A14). According to
(A12) they satisfy

(+) (+) ( —) ( —)
o. 5, o = o. R, o. =0,

0 1 0 10'~[10 1 0
0 —1

(C16)

In view of (C10) it is clear that each of the two com-
ponents of the Dirac spinor (Cl), llew, and $2, represent the
irreducible spinor fields with the simple transformation
laws

compare with (A13).

(C17)

is, indeed, the matrix-valued one-form (C6) in two dimen-
sions. Using (A14), one can read off from (C15) the expli-
cit realization in terms of the Dirac matrices
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