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Relation between physical and gravitational geometry
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The appearance of two geometries in a single gravitational theory is familiar. Usually, as in
the Brans-Dicke theory or in string theory, these are conformally related Riemannian geometries.
Is this the most general relation between the two geometries allowed by physics? %le study this
question by supposing that the physical geometry on which matter dynamics takes place could be
Finslerian rather than just Riemannian. An appeal to the weak equivalence principle and causality
then leads us to the conclusion that the Finsler geometry has to reduce to a Riemann geometry
whose metric, the physical metric, is related to the gravitational metric by a generalization of the
conformal transformation involving a scalar field.

PACS number(s): 04.50.+h

I. INTRODUCTION

The excellent description provided by special relativity
of elementary particle phenomena is usually taken to im-

ply that spacetime is described by a Riemannian geome-
try. This is because special relativity implies a Minkowski
geometry for spacetime, but as shown by Schild [1],
the experimental existence of the gravitational redshift
makes it impossible for the Minkowski geometry to ap-
ply globally. An obvious way to mesh the Minkowski ge-
ometries at various points is to have a global Riemannian
geometry which the Minkowski geometry of elementary
particle physics is tangent to at each spacetime event.
This is the situation in a one-geometry description of
physics, e.g. , general relativity (GR).

However, physics may not be that simple: Gravita-
tion may naturally require two geometries for its descrip-
tion. Two geometries in a single theory made their de-
but in Nordstrom's 1913 gravitational theory [2] which
preceded GR. As in Nordstrom s theory, and in theories
such as Brans-Dicke theory [3], the variable mass theory
[4], Dirac's theory of a variable gravitational constant [5],
string theories [6], and many others, two conformally re-
lated geometries appear. Usually one of these describes
gravitation while the other defines the geometry in which
matter plays out its dynamics. The strong equivalence
principle is violated by all these two-geometries theories,
but they usually preserve weak equivalence. Theories of
these sort have been of great value in clarifying the foun-
dations of gravitation theory.

Thus, the two-geometries approach to the formulation
of gravitational theory is an important paradigm. When-
ever it becomes necessary to formulate a new theory of
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ds = f(x, dx~), f(x l dx ) =t'f(x d ) (1)

Whenever f(x, dx~) is a quadratic form in the dxt, the
geometry is Riemannian. Otherwise, we have a Finsler
geometry as the playground of matter dynamics. We
shall show presently that this state of affairs cannot
be ruled out at the outset by the argument about the
Minkowski geometry of elementary particle physics.

Although Finsler geometry is quite different from Rie-
mann geometry, it is possible to introduce a metriclike
tensor for it. If in the second of Eqs. (1) we replace
p ~ 1 + e where e is an infinitesimal, expand in e, and

gravity, a conservative way to proceed in order to avoid
immediate convict with the tests of GR is to invoke a
Riemannian metric g p, build the Einstein-Hilbert ac-
tion for the geometry's dynamics out of it, and effect the
departure from standard GR by prescribing the relation
between g p and the physical geometry on which matter
propagates. Most known theories assume the relation is
a simple conformal transformation.

However, the conformal transformation is but the sim-
plest way to relate two geometries. Might the relation
between gravitational and physical geometries be more
complicated? In other words, within the two-geometries
paradigm for gravitational theory, what are the most gen-
eral theories that may be envisaged'? To answer this ques-
tion we consider physical geometry of the most general
kind that might be of interest physically. For this pur-
pose we have to discard conformal and aKne geometries
because they both lack the physically essential notion of
distance. We are thus left with Finsler geometry as a pos-
sible substitute for Riemann geometry in describing the
physical arena in which nongravitational physics takes
place.

Finsler geometry, introduced by Riemann and first
studied systematically by Finsler, is the most general ge-
ometry in which the squared line element is homogeneous
of second degree in the coordinate increments [7]:
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focus on the terms of O(e ), we have (this is a facet of
Euler's theorem)

g~p dx dx = — dx dx: f28dx Bdx~

general this requires the introduction of new fields. First
suppose there exists a dimensionless scalar field Q (such
as the dilaton in many contemporary field theories) and a
length scale I, e.g. , the Planck length. Then a nontrivial
Finsler line element may be written

Thus we may express the line element as [8] ds' = g p dx dxP F(I, H, g), (5)

ds = g~p dx dx

and think of g p as a kind of metric. However, it must
be remembered that g p itself depends on dx . Because
of this difference from the Riemann metric, we call g p
the quasimetric. Our arguments will make heavy use of
it.

II. SPIRIT OF COVARIANCE

Because in the theory being discussed there is already a
symmetric tensor g p, we may rewrite Eq. (1) in general
as

ds = g p dx dxP X(x, dx /dx, dx /dx, dx /dx ).

This is because the expressions such as dxi/dxo are the
only independent combinations of the coordinate incre-
ments which are homogeneous of degree zero in dx

As it stands, Eq. (4) is still the most general Finsler
geometry. However, there is something about it which
does violence to the spirit of the principle of covariance.
Suppose we make a general coordinate transformation.
We know that the form g p dx dx~ is invariant. This is
achieved by the components of g p changing in an appro-
priate way so that at a fixed spacetime point the metric
is described by ten numbers of which four may be cho-
sen arbitrarily. In other words, covariance requires that
four numbers be free at any spacetime point. Since we
also want invariance of d8, not just of g p dx dx~, it is
plain that the form of the function T cannot be invariant.
It will vary with coordinate systems in such a way as to
compensate for the transformations of the ratios dx'/dx
into rational functions of themselves.

Not only is this ugly, but it also means that the freedom
inherent in coordinate transformations is, at a fixed point
in spacetime, not just that in four numbers, but rather
that in a function of three variables. Although the letter
of the principle of covariance is still obeyed by having
this free function T, it would seem that the spirit of
the principle is violated. The vast freedom engendered
by coordinate transformations would seem to empty the
principle of any physical content.

One may recover the situation where only a few quanti-
ties are free at a point by confining attention to a function
E of coordinate invariants alone. However, out of the in-
variant g p dx dx~ alone one can form only one homoge-
neous function of second order in the dx: the invariant
itself. This would bring us back to the situation where
the physical metric is identical to the gravitational one.
To go beyond triviality one needs more invariants. In

I = I'g p4'-4' p

12 (y dxn)2
—g~p dx

S = — g p x xP I"(I, H, Q) dA.
2

(8)

Here by H we mean the expression in Eq. (7) with
dx -+ x—:dx /dA (A is a parameter along the trajec-
tory). Equation (8) is the straightforward generalization
to Finsler geometry of the action used in GR for clas-
sical particles (in a form not invariant under changes of
parameter A). It is easy to see that a trajectory with

Note that both E and its arguments I, H, and Q are
dimensionless. We now note that covariance of Eq. (5)
is to be had at the same price as that for ordinary Rie-
mannian geometry: four free metric components at every
point in spacetime. The function E is fixed, one and the
same for all coordinate systems.

Of course, we could have added further arguments to
F constructed out of second and higher derivatives of g.
We refrain from this in order to preclude higher deriva-
tive terms from entering in the matter equations of mo-
tion (after all the matter action will be built on the line
element ds ).

The introduction of additional scalar fields and invari-
ants constructed from them as arguments of F is like-
wise not logically excluded. However, given that @ is a
field with a special status (building block of the physical
geometry), simplicity requires that we abstain from mul-
tiplying such entities. One may also consider introduc-
tion of invariants built with the help of additional vector
and tensor fields v and t p, e.g. , (v dx ) /g pdx dxP.
Again, such a move can be criticized on the grounds of
economy: A vector field would add four more fields to the
theory, and a tensor field at least ten more. Furthermore,
once the inclusion in the theory of t p is permitted, it is
simplest from the point of view of the two geometries
paradigm to just identify the symmetric part of t p as
the Riemann metric of the physical geometry and forego
the appeal to Finsler geometry. However, gravitational
theories based. on two independent metrics have never
fared well in the confrontation with experiment [9]. In
view of all this, we conclude that the line element in Eq.
(5) is the most general that may be constructed with a
minimum of elements: gravitational metric and a scalar
field.

It is consistent with all our previous discussion to pos-
tulate that the classical trajectories of free particles are
those which extremize the action
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ds = 0 all along it automatically extremizes S [which
is simply the integral of (ds/dA)2]. Thus in this theory,
just as in GR, null curves are automatically trajectories
of free particles. We do not require that the trajecto-
ries which extremize S in the Finsler geometry coincide
with the geodesics of g p. There is no physical basis for
such an assumption in our context: The metric g p is for
gravitational phenomena, whereas the Finsler geometry
is for matter dynamics.

Before passing on let us rebut the argument that infers
a global Riemannian geometry from the Minkowski ge-
ometry of elementary particle physics. Consider Eq. (5).
For general F the line element certainly does not look like
one that could locally be brought to Minkowski form by a
coordinate transformation. However, suppose F(I,H, @)
is regular and nonvanishing in the limit I —+ 0 and H —+
0. Then in a region where the vP field varies slowly (pre-
sumably the solar system is like that), the line element is
seen to be of the form ds —F(0, 0, g) g p dx dx~ which
corresponds to a Riemann geometry. Therefore, under
everyday circumstances some Finslerian geometries can
masquerade as Riemannian ones, and can thus be consis-
tent with the evidence &om elementary particle physics.

III. PORN OP THE PINSLER PUNCTION E

As long as all we have to deal with is classical parti-
cle motion, Finsler geometry seems perfectly adequate as
the physical geometry. However, classical physics also in-
volves field equations, i.e. , Maxwell's, and once we enter
into quantum physics even particles must be discussed in
terms of wave (field) equations. But it is unclear how to
formulate the familiar Geld equations on a general Finsler
geometry. The problem is that to formulate the typical
field equation (think of the scalar equation for concrete-
ness), one requires a contravariant "metric" to raise in-
dices of derivatives and so form divergences. To put it
another way, to form a scalar action out of derivatives of
Gelds, one requires an object capable of raising indices.
In Riemannian geometry g ~ serves this purpose. If we
try to use the inverse of the Finsler quasiinetric, Q
we will Gnd in general that it depends on the increments
dx and not just on the spacetime point. Clearly, field
equations constructed with g / would be meaningless in
general.

One way out of this problem is to conGne attention
to geometries for which g p is independent of dx; this
guarantees that g ~ will be too. Let us use definition (2)
to write the quasimetric for the Finsler geometry of Eq.
(5). The result is

g p = (F —HF')g p —L (F'+ 2HF")Q, Q,p

// @/(~ gp)// g~//dx gp//dx

Q, ~ dx& gp dx/'dx~

where a prime denotes a partial derivative with respect to
H and parentheses around subscripts denote symmetriza-
tion. This Q p will be independent of dx only if F"
vanishes, i.e. , if

F = A(I, Q) —B(I,Q)H,

But here the relation between the gravitational metric
g p and the physical metric g p is more complex than
via a conformal transformation.

Might not a more general relation between physical and
gravitational geometry be possible than that we have ex-
hibited? Perhaps reasonable matter field equations can
be formulated on the basis of some structure other than
the quasimetric. For example, consider a Finsler geome-
try determined by a symmetric fourth-rank tensor [10]:

d84 = F p~g dx dx~dx~dx . (12)

We assume S p~g is not degenerate; i.e. , it cannot be
written as q p q~g. Suppose we use the inverse tensor

~~~ in lieu of a metric to construct invariant field La-
grangians. For a scalar field 4 the simplest choice for the
Lagrangian 8 = F ~~ 4, C,p 4,~ 4,g is quartic in the
Geld. It cannot lead to a linear field equation. And if
we take the square root of the above invariant as the La-
grangian, linearity is still out of reach. The full symmetry
of E' ~~ also prevents us from forming a Lagrangian for
an antisymmetric Maxwell field F p which is quadratic
in the field. A fourth-order invariant can be built, but
even if we use its square root as the Lagrangian, we can-
not obtain linear equations. Needless to say, we cannot
do without linear equations in physics. And in the more
general case when d8 is given by an nth-order form in
dx with n & 3, the problems mentioned will persist.
This discussion underscores the implausibility of a viable
Finsler (but non-Riemannian) physical geometry for mat-
ter dynamics. So far we have only been able to make do
with the special linear Finsler function of Eq. (10) which
is equivalent to a Riemannian metric.

Of course it is possible that a Finsler geometry picks
out a certain Riemann geometry more complex than g p
as special. If so we might contemplate using that metric
to construct field equations for matter. In that case one
would have to check whether the physics is consistent
with the Finsler geometry being the arena for matter
dynamics. We shall now explore this program.

Our principal tool will be considerations of causality.
In order to be clear, let us introduce the terms "gravi-
ton" and "photon" with very specific meaning. We have
agreed that g p is the metric which the Einstein-Hilbert
action is written with. This means that the characteris-
tics of the Einstein-like equations which govern gravita-
tional dynamics in the envisaged theory must lie on the
null surfaces of the metric g p. Short wavelength per-
turbations of g p will thus propagate on these null sur-
faces. We call these gravitons (no quantum connotation
implied) .

By photons we mean short wavelength excitations of

with A and B two dimensionless functions of the shown
arguments. With an F like this it is possible to construct
the familiar Geld equations.

When we substitute Eq. (10) into Eq. (5) we find that
the quasimetric reduces to a Riemann metric g p..

ds = g pdx dx~ = (Ag p+ L Bg, @,p) dx dx~
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matter fields such as the scalar field, the Maxwell field, or
the Weyl neutrino field. In GR these travel on the null
cone of the metric. We shall adopt this wisdom as an
axiom of the present theory and take it to mean that if
viewed as a point particle, a photon follows a trajectory
in the Finsler geometry with ds = 0. We have seen in
Sec. II that such trajectories correspond to free particles
in the theory. The totality of such trajectories passing
through a point in spacetime defines the physical light
cone at that event. Note that we do not assume that
the null surfaces of g p coincide with the physical light
cones as would be the case in theories where the geome-
tries are necessarily conformally related. Thus we do not
assume that F & 0 everywhere as is often done in studies
of Finsler geometry [8]. We do assume, and this is the
content of the causality principle, that all physical par-
ticles travel on trajectories with ds & 0. It is still true
here that nothing travels faster than light.

Note that the point H = +oo of the geometry is to be
identified with H = —oo. This is because the passage
&om one to the other corresponds to g p dx dx~ passing
through zero &om negative to positive values. Therefore,
the line element ds should be continuous as H jumps
&om +oo to —oo, so that as H ~ +oo, F Inust either be
bounded or blow up no faster than linearly with H. If F
blows up linearly, the coefIicient of H must be identical
in both limits to preclude a discontinuity in ds . We shall
discount the possibility that F can blow up slower than
K because this would entail nonanalytic behavior, e.g. ,
F - H'~'.

A. Pinsler function F with no zeros

Suppose F is of one sign throughout with no zeros
in the finite H axis. We take its sign positive by con-
vention and refer to this case as case A. Now the light
cone is delineated by coordinate increments which make
g p dx dx~ = 0. But in order for ds to actually vanish
for such increments, F is not allowed to blow up (even
just linearly with H) as H ~ Woo for in that case the
zero of g p dx dx~ would be canceled out.

Now massive particles (not photons) follow trajectories
with ds ( 0. So since F ) 0, Eqs. (5) and (7) tell us
that g p dx dx~ ( 0 and H ) 0 for the corresponding
trajectories. Thus physical trajectories fill the whole pos-
itive H axis, with photon trajectories lying at H = Woo
at which point F must be bounded.

Suppose F does not tend to zero as H ~ +oo. Clearly
we must require F(I, +oo, @) = F(I, —oo, @) so that
the line element does not jump between H = +oo and
H = —oo. Then the graviton null surface coincides with
the physical light cone. In fact, near the graviton null sur-
face ds2 F(I, Woo, @)g pdx dxP; i.e. , the Finsler ge-
ometry induces a Riemann geometry near the light cone
because the conformal factor is independent of dx there.

Following our program let us construct the matter
physics, i.e. , Maxwell's equations, the gauge field equa-
tions, Weyl's equation, etc. , using the effective metric

g p = F(I, oo, g) g p

that has been picked out as special by the Finsler geom-
etry. It is clear that short wavelength solutions of these
field equations will propagate on the light cone as defined
above simply because their characteristics coincide with
the null surface of the metric used to build them. Photons
will thus travel on the light cone and so their trajectories
will extremize the action S as required of classical par-
ticles moving in the Finsler physical geometry. Thus we
reach a consistent picture of photon dynamics.

But for massive particles a dichotomy appears. These
might be described by the Dirac equation with nonzero
rest mass or the massive Klein-Gordon equation. In or-
der that the weak equivalence principle be satisfied, let
these field equations be formulated with the same metric
g p as used for the other fields. The classical trajectories
corresponding to a field equation may be inferred, say,
&om the the Hamilton-Jacobi equation that results from
the eikonal approximation to the field equation. Working
out this procedure for the massive Klein-Gordon equation
shows the trajectories to be geodesics of the effective met-
ric g p.

Unless some very special conditions are satisfied
[10,11], these will not be geodesics of the Finsler geome-
try, i.e. , extrema of the action S. An inconsistency thus
appears: The two descriptions of particles predict differ-
ent trajectories. The only way to bring about harmony is
to require that F(I, H, g) = F(I, oo, g) = A(I, g), i.e. ,

that the Finsler geometry reduce to the Riemann geom-
etry defined in Eq. (13). Of course, this is just a special
case of the physical geometry obtained in Eq. (11).

The above remarks are not directly applicable to the
subcase when the Finsler function vanishes asymptoti-
cally as H ~ +oo. For then the line element ds re-
mains non-Riemannian on the graviton null surface; i.e. ,
Eq. (13) is not applicable. We are left without a metric
with which to build the field equations, so that the mat-
ter physics would remain ill defined. We conclude that,
physically speaking, this behavior of F must be excluded.

B. Finsler function F with one zero

L2(g dxn)2
—g~~ dx&dx (14a)

or

(hg p + L g, g,p ) dx dxP = 0. (14b)

In obtaining the second equation use has been made of
the assumption that h g oo, i e , g~„dx"dx .g. 0 at the
zero of F. Thus, the coordinate increments dx which are
null with respect to the Riemann metric hg p+L g, g,p
have ds = 0 with respect to the Finsler geometry. They
make up the light cone on which photons propagate.

Case A does not exhaust the possibilities. The function
F may have zeros in H (for finite H). Let us consider
the case, case B, in which F has one zero, H = h(I, g),
being positive for H & 6 and negative for H & h. We
see that this zero corresponds to the physical light cone.
That is, ds2 = 0 when
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Trajectories whose tangent coordinate increments have
H & OwithH & d'or H ) hwithH ) Oarephysi-
cal trajectories of "massive" particles (because they have
ds2 ( 0). Thus when h ( 0 (the physically interesting
case as we shall see in Sec. IV), the whole positive H
axis and that part of the negative axis left of h represent
trajectories of massive particles. It may be seen that the
light cone, at H = h, is the boundary of these trajectories
(recall that H = +oo and H = —oo are to be identified),
in accordance with intuition.

If F is bounded as H —+ +oo, another light cone ap-
pears: When g~p dx dx~ = 0, ds vanishes also. The
simultaneous existence of two light cones at one event,
with the second one having physically acceptable trajec-
tories on either side of it, is unphysical. We thus re-
quire that F H as H ~ +oo so that the vanishing of
g p dx dxP is compensated for. In this way ds g 0 on
the null graviton surface.

In order to pick out a special metric from the Finsler
geometry, let us expand F(I, H, @) in powers of (H —h,)
about the light cone H = h. Retaining only the first
term we have

ds = g pde dxPF'(I, H = h, g) (H —h).

If we now multiply in g p dx dx~ and define

B(I,@) =— F'(I, h, g—); A(I, g):—h(I, g)B, (16)

we find that the geometry in the vicinity of the light cone
is Riemannian with the metric g p of Eq. (11). Since we
are considering the case where F & 0 for H ) 6, we must
require that B & 0 in this case.

How would things change had we assumed that F is
negative for H ) h,? In that case the physically allowed
trajectories are restricted to the range [0, 6] of H. Gravi-
ton trajectories (at H = Woo) are not contiguous to this
physical range so that gravitons travel on trajectories
with d8 ) 0. We may thus exclude this case by causality
and require

B(I,@) ( 0.

C. Other cases

The other cases of the Finsler function F may be char-
acterized by the number and order of the zeros it pos-
sesses in the variable H. If there are more than one zero,
we return to the problem of multiple light cones, and
must thus exclude this case. Even when there is only
one zero, at H = h(I, @), we must face the possibility
that it is a zero of higher order, i.e., that one or several
derivatives of F vanish at H = h, .

Suppose E has a zero of order n ) 1. In its vicinity
we may expand F in powers of H —6 and retain the first
term:

((h(I @)g-p+ L'@ - @v 1
d* Pd~P)"

D(I g)(g dx~dxP)"

The manifold defined by the vanishing of the curly brack-
ets in this expression is the light cone. We see that in
its vicinity the line element is not even approximately
Riemannian. Of course we may still use the metric
hg p+I vP, vj,p to construct Maxwell's equations, etc
and this will give photons which travel on its null sur-
face. However, the usual problem will arise for classical
massive particles: The field equations suggest they follow
geodesics of hg p + L @,~ g,p, but the action S predicts
they follow geodesics of the Finsler geometry. We cannot
bring about harmony here by having the Finsler geome-
try reduce to Riemann geometry because the higher order
zero means that the Finsler geometry is never close to a
Riemann one, at least not near the light cone. We must,
therefore, exclude the case with a higher order zero.

So far we have concentrated on special Riemann met-
rics picked out by the Finsler geometry on account of
its behavior near the light cone. Of course, there may
be other Riemann metrics which might be of relevance
to our quest and which are not so characterized. How-
ever, because they would have separate origin, it seems
implausible that such metrics would serve to construct
matter Geld equations whose behavior at the light cone
is compatible with the required photon trajectories. In
view of this it seems we are restricted to the Riemann
metrics given by Eq. (11).

The Finsler geometry has thus picked out a special Rie-
mannian metric g p, whose null surfaces coincide with
the physical light cones. By analogy with the discussion
in the last subsection, we must construct all field equa-
tions, such as Maxwell's, with g p to ensure that short
waves travel on the physical light cone, g p dx dx~ = 0.
This will then be in harmony with the classical "photon"
trajectories derived from the action S. As before, massive
particles will be predicted by the field equations to travel
on geodesics of g p, and by the action S to follow entirely
diferent trajectories —extremal curves in the Finsler ge-
ometry. Harmony can be secured only by requiring that
the Finsler geometry reduce, for any dx~, to a Riemann
geometry with metric g p. Then the expansion Eq. (15)
is exact. Note that in this case the requirement that F
blow up linearly with H as H —+ +oo is met automati-
cally.

IV. DISFORMAL TRANSFORMATION AND
CRAVITATIONAL THEORY

We may subsume both cases A and 8 by adopting the
form Eq. (11) for the physical metric together with the
stipulation that B(I,g) cannot be positive. Then g p in
Eq. (11)with B = 0 coincides with the physical metric for
case A. Thus on the basis of weak equivalence, causality,
and consistency between the predictions of matter field
equations and classical action principle for the trajecto-
ries of classical particles, we have made it plausible that
Eq. (11) is the most general relation between gravita-
tional metric g p and physical metric g p when the only
additional structure admitted is a scalar field.
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One more re6nement is in order. The metric g p de-
pends explicitly on g as well as on its derivatives. In
general this would mean that one cannot change the zero
of Q without changing the metric in a non-negligible way.
One can conceive that it mould be useful to retain the
property of translation in g which exists in other con-
texts in physics. We may secure this by requiring that
both A and B in the metric depend on @ only through
a common factor of the form exp(2'). Any redefinition
of the zero of g then amounts to a multiplication of the
physical metric by a constant, i.e. , to a global change
of units which is physically irrelevant. Implementing this
factoring leads us to our final expression for the physical
metric:

0 p =—e ~[A(I)~-p+L B(I)~-~ p]

with

B(I) & 0. (20)

We recognize Eq. (20) as the condition imposed by
causality. It has earlier been derived in a diferent way
in Ref. [12].

We call the sort of relation between g p and g p in
Eq. (19) a di,@formal transformation. The term is meant
as a contrasting one to conformal transformation which
is the special case with B = 0 of Eq. (19). When
B = 0 the transformation of a region of spacetime im-
plied. by g p

—+ g p leaves all shapes invariant and merely
stretches all spacetime directions equally. When B P 0
the stretch in the direction parallel to @, is by a dif-
ferent factor &om that in the other spacetime directions
and shapes are distorted. Maxwell's equations, the Weyl
equation for spinors, gauge field equations, etc. , are all
invariant under the transformation with B = 0, but not
generally under g p ~ g p with B g 0. Of course, the

physical context in mhich we have introduced the disfor-
mal transformation requires that all the mentioned equa-
tions be written at the outset with the metric g p.

The disformal transformation was introduced in Ref.
[12] where restrictions on the various functions appear-
ing in it were summarized. One is condition (20). We
reiterate some of the others. For this purpose let us de-
Gne

A(I) & 0, C(I) & 0. (22)

Comparing Eqs. (16), (20), and (22), we see that neces-
sarily h depends only on I and h(I) ( 0.

To be a bona fide metric, the physical metric g p must
be invertible: There must be an inverse metric g p at
every spacetime point. If it exists it must be of the form

y-P = e '~A(I) '[g--P —L'B(I)C(I) 'g "-gP Q,„Q,.].

(23)

The conditions (22) guarantee that this inverse is well
de6ned everywhere.

One more condition can be obtained if it is agreed
that there should be a one-to-one correspondence be-
tween gravitational metric and physical metric. Suppose
one contracts Eq. (23) with Q,p. The result is

g Pg, p = C(I) e ~g Pg,p. (24)

A further contraction with @, gives

1—:L g PQ, g,p = e +IC(I) (25)

where it is clear that J is de6ned as the analogue of I
written with metric g ~. In principle it is possible to
solve Eq. (25) for I. If we solve Eq. (19) for g p and
eliminate I everywhere, we get

~-p = A[I(Je'~)1 '(e '
~-p —L'B[I(J" )]&-&p).

(26)

It can be seen that if I(J e ~) were to be multiply val-
ued, there would be several gravitational metrics for each
physical metric, which would be unphysical. The way to
avoid this is to require that J be a monotonic function
of I for fixed @. We shall thus require

d I
dI C(I) (27)

We have required I/C to be increasing because the op-
posite assumption runs counter to the situation in many
known theories (see below).

with one axis aligned with @, , it is possible to show that
[12]

C(I):—A(I) + IB(I)

The ratio C/A quantifies the anisotropy of the disformal
transformation: The direction along g, is stretched by
a factor C/A as large as that for the other three direc-
tions. Because we think of g p as a gravitational metric,
it is clear its signature must be (—,+, +, +) globally (or
(+, —,—,—) in the competing convention). Otherwise,
the lack of global hyperbolicity will make the setting up
of the initial value problem for the metric g p impossi-
ble. Furthermore, the physical metric g p must also have
signature (—,+, +, +) globally in order that it may be
able to reduce to a Minkowski metric at every spacetime
event. By considering these conditions in a local frame

V. CONCLUSIONS AND QUESTIONS

We thus conclude that subject to conditions (20), (22),
and (27), Eq. (19) is the most general relation between
physical and gravitational metrics which respects the
weak equivalence principle, ordinary notions of causal-
ity, and which is insensitive to a change of zero for the
sole auxiliary scalar field g.

It should. be noticed that Finsler geometry served.
mostly a negative role in our argument. Although it is
more general than Riemann geometry, we found it rather
unpromising for building dynamical equations for mat-
ter. It did point us to certain Riemannian geometries as
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candidates for the physical geometry. Had one proceeded
entirely within the &amework of Riemann geometry, one
might not have thought of a relation such as Eq. (19)
between gravitational and physical geometries. Thus the
line of thought developed here opens up for discussion a
broader class of physical geometries than those conformal
to the gravitational geometry.

A conformal transformation between metrics can be in-
terpreted as a change of local units of length [3,5]: The ra-
tio between gravitational and material units varies from
event to event. By analogy we may interpret the disfor-
mal transformation as a change of local units of length for
which the units for intervals along the gradient of g are
diAerent than those for intervals orthogonal to it. Confor-
mal transformations have traditionally been the source of
insight into field theory. It appears likely that disformal
transformations will help to supplement those insights.
At the most immediate level, they provide a method for
constructing novel gravitational theories based on pairs
of disformally related geometries. As far as we are aware,
such theories have been considered only once before [12],
and the motivation there was to relate the standard in-
terpretation of the data &om gravitational lenses to the
modi6ed gravity resolution of the missing mass puzzle
[13]. The present work thus provides a theoretical back-
bone for those studies.

Thus far we have only described a framework; concrete
theories will arise when dynamics are specified for g. GR
is the trivial case; it corresponds to the requirement that

@ = const. By an appropriate choice of units it can be ar-
ranged that exp(2@) A(0) = 1, so that, as expected, QR
equates physical and gravitational geometry. The value
of B is plainly irrelevant and may be set to zero by fiat.
Brans-Dicke theory (in Dicke's form) [3], Dirac's theory
[5], and the variable mass theory [4] all prescribe nontriv-
ial dynamics for @, but choose (in the appropriate units)
A(I) = 1 and B(I) = 0. One can further conceive of
theories with A(I) g const and B(I) ( 0 in which gravi-
tons travel slower than photons, a feature which might
be subject to direct experimental test. One such theory
has been studied in detail in Ref. [12).

If the true gravitational theory is of the conventional
type (A = 1 and B = 0), the question arises what sym-
metry or selection principle forces A and B' into these
trivial values when they could be functions of the invari-
ant I? Conversely, if nature has taken advantage of the
wider possibilities for A and B, in what ways are the
intuitions about gravity that have been molded by con-
ventional theories to be modified? Further work will take
up these and other questions.
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