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Amplification of gravitational waves in scalar-tensor theories of gravity
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The gravitational wave equation for a spatially flat Friedmann-Robertson-Walker universe is derived
in the context of scalar-tensor theories of gravity, which have the Brans-Dicke theory as a particular
case. This equation is solved for several cosmological scenarios, including the expansions governed by
the Nariai as well as the Gurevich-Finkelstein-Ruban solutions of Brans-Dicke theory and for a new set
of exact solutions of other scalar-tensor theories. The amplification of gravitational waves is studied in

comparison to what happens in the general relativistic case. It is shown how the coupling with the sca-
lar field changes the scales defining very large and very small wave numbers, and consequently the value

of the amplification coefticient. It is found that very small values for the coupling parameter could lead

to amplification of subhorizon waves. The creation of the corresponding high-frequency gravitons is ex-

plained as a response to the rapid time variation of the gravitational "constant, " which can occur near
the singularity in some models. It is also shown that there could be amplification of waves even in a
radiation-dominated universe in some cases, because the wave equation is not conformally invariant, ex-

cept for the case of Nariai's solution in the Brans-Dicke theory.

PACS number(s): 04.30.+x, 04.50.+h, 12.10.Gq, 98.80.Hw

I. INTRODUCTION

One of the most remarkable predictions of a metric
theory of gravity, such as general relativity (GR), is that
perturbations of a background spacetime generate gravity
waves. The general results concerning gravitational
waves have been investigated by numerous authors long
ago [1—5]. In the context of GR cosmologies, Grishchuk
has shown that the varying gravitational field of the ex-
panding Universe would amplify zero-point fluctuations,
and lead to the formation of a nonthermal, stochastic
background of relic gravitons [6—9]. The advent of the
infiationary models [10] (for an updated review see [11]
and references therein) provides a new perspective on the
cosmological features of gravitational radiation [12—14].
In fact, not only was an explanation for the origin of
these perturbations put forward, but it also became possi-
ble to study their contribution to the quadrupole aniso-
tropies in the microwave background [15—17]. Thus, the
idea of using gravitational radiation as probe of the early
Universe has turned into a realistic possibility. Recently,
the auspicious results of the Cosmic Background Explor-
er (COBE) [18] seem to indicate that those expectations
are now closer to being realized, and this fact has led to a
reassessment of the predictions from inflation, so that a
detailed understanding of the interplay between the data
and possible theoretical models might be reached
[19—27].

Among the various prescriptions for the early

inflationary epoch, a framework was constructed which
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seems to provide a simple way of circumventing the
"graceful exit" problem, reviving the original idea of a
first-order phase transition. We refer to the La-
Steinhardt proposal of extended infiation [28], which con-
siders Brans-Dicke (BD) [29] scalar-tensor theory of
gravity instead of GR as the underlying gravitational
theory. Notwithstanding the problems faced by the origi-
nal proposal of La and Steinhardt, mainly due to the
difhculty in matching the value of the coupling parameter
required by the nucleation process with its post-
Newtonian limits [30,31] and the restrictions imposed by
the COBE data [19],the general idea of their prescription
is endowed with appealing features. For instance, as
pointed out by several authors, a coupling between a sca-
lar field and gravity seems to be a generic outcome of the
low-energy limit of string theories [32], and this in itself
justifies further consideration of scalar-tensor theories of
gravity.

It is therefore a matter of great interest to address the
question of cosmological gravitational waves within the
context of the scalar-tensor theories characterized by the
general action discussed by Bergmann [33], Wagoner
[34], and Nordtvedt [35], which we write as found in Will
[36]:

S= —gd x ——— '"+2 U +S

Here A is the Ricci curvature, P the scalar field, co(P) the
coupling parameter, U(P) can be interpreted as a poten-
tial associated with P, and SM represents the action for
the matter fields. It is important to notice at this point
that the usual condition

(2)
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where T„—:5SM/5g„, must be independently imposed
to guarantee that the equivalence principle remains valid.

The fundamental feature of this class of theories is that
there is a scalar field P coupled to the curvature. Its
essential role in homogeneous cosmologies is to induce a
time variation of the gravitational constant, for
G,s ~ I /P. Subsequently, any gravitational phenomena
become affected by such variation.

Here, we aim to assess the modifications induced by
the coupling of the scalar field to the mechanism of gravi-
tational wave amplification. We derive the equation
which governs the radiative modes of a small disturbance
on the background of a homogeneous and isotropic
space-time with Aat spatial sections. We solve for
different cosmological models. For the special situation
where co = co0 is constant and U (P ) =0 (Brans-Dicke
theory), we consider the power-law solutions obtained by
Nariai [37] and the solutions given by Gurevich et al.
[38]. This enables us to distinguish the cases where the
expansion is dominated by the energy density of matter
(Nariai's solutions) from the ones for which the solutions
clearly deviate from the GR behavior when t is small, due
to the domination of the scalar field energy. We study
some exact solutions of the wave equation as well as the
limiting cases characterized by very large and very small
wave numbers which play an important role in determin-
ing the contribution of gravitational waves to the anisot-
ropy of the microwave background.

Previous work on the subject of gravitational radiation
within Brans-Dicke theory, carried out by Wagoner [34],
was concerned with gravitational waves generated in the
weak-field limit. Here, we consider only the cosmological
aspects of the problem.

We shall also analyze solutions of the cosmological
gravitational wave equation is some general scalar-tensor
theories [co(P)Wconst]. This more general setting is of
particular interest because the constraints placed on a
constant coupling by post-Newtonian solar-system tests
and by the evaluations of primordial nucleosynthesis seri-
ously limit the applicability of the Brans-Dicke theory to
model phenomena such as inflation which take place dur-
ing the early Universe. An example is provided by a
theory in which the coupling increases from a small value
at early times towards a value in agreement with the con-
straints at the time of nucleosynthesis. Both in BD and
in the co(P) theories we investigate the possibility of hav-
ing amplification of modes with wavelengths smaller than
the Hubble length as a consequence of rapid variations of
the scalar field.

An outline of this paper is as follows. In the next sec-
tion, we derive the gravitational wave equation for the
general class of scalar-tensor theories characterized by
the action (1). In Sec. III we consider the particular case
of Brans-Dicke theory, solving the equation for a number
of cosmological behaviors of the background space-time.
We first analyze the simpler case of a power-law expan-
sion and then the situation where the expansion is
governed by the solutions derived by Gurevich et al.
[38]. In Sec. IV we extend our study to the case of more
general theories where we allow the coupling parameter
to run with P. Some solutions are investigated. Finally,

we conclude with a section devoted to an overall sum-
mary and discnssion of the results.

II. DERIVATION OF THE GRAVITATIONAL
WAVE EQUATION

(3)

but

8~G 1+co Q) 1R = T„„—
2co+ 3

+ 2&~&;-+

1 gpv dco/dP
2 P 2co+3

P(d U/d P)+2(co+ 1)U
pv 2'+ 3

where P satisfies

8~ dco/dP
~2'+ 3 26)+ 3

2[/ (d U/d P) —P U]
2'+ 3

(4)

Therefore, when perturbing the field equations, we must
consider some additional terms not present in GR. These
are

1+co
~

8~
2co+ 3

CO 1

1 gpv dco/dP
2 P 2co+3

$(dU/dP)+2(co+1) U
5 g„ 2'+ 3

which arise from the presence of the scalar field in the
equations.

The perturbations to the metric that represent weak
gravitational waves can be expressed as

h, (t, x)= Jd kh, ' '(t, x), (8)

h,. '(t, x) = Y~(t)g;, (k, x),1

a (t)
(9)

We follow Weinberg's treatment of the analogous
problem in GR [39]. That is, we consider a small distur-
bance h„of the spatially Oat Friedmann-Robertson-
Walker (FRW) metric, and equate the perturbations in-
duced on the field equations. A synchronous gauge is
chosen (h00=0=h0; with i =1,2, 3), and the computa-
tions are made to first order in the small quantities con-
sidered.

The essential difference between the GR derivation and
the present one results from the fact that the field equa-
tions which one obtains from varying the action (1) are
no longer
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where the functions I'k(t) and g,"(k,x) satisfy

(V +k )g;.(k, x)=0,
F~+f(t) Yq+g '(t) I'k =0,

where

(10)

(12)

kg(t):— +4
Q Q

8~ 2( 1+co ) 2'
2'+ 3 2'+ 3p p

(14)

The eigenfunctions g,"(k,x) can be written in terms of
plane-wave solutions exp(+ik x) times a constant polar-
ization tensor and using the field equations in the zero-
curvature FRW model we can simplify (11) and recast it
as

k ~ 4 d /d
a " a~ a a P 2co+3

(t d U/d /+2(co+ 1)U

2'+ 3

III. SOLUTIONS OF THE GRAVITATIONAL
WAVE EQUATION IN BRANS-DICKE THEORY

The Brans-Dicke scalar-tensor theory of gravity is
characterized by the restriction that cv(P) be a constant,
and U =dU/dg=0. We write co—=coo=const. We intro-
duce the conformal time g defined by

dt =adg . (16)

Each component h ' of the gravitational wave perturba-
tions can be written as

h, ' '(ri, x)= p(k, r))g;J(k, x)
1

R r)

where

(17)

and

R"p"(k, r) )+ k — p(k, 7) ) =0 (19)

with the prime indicating derivatives with respect to q.
The solution given by (17) and (19) is formally identical

to the corresponding one obtained in the general relativis-

des/d P P Pd Uld P+ 2(co+ 1 ) U
2'+ 3 p 2'+ 3

In the above equations, a (t) is the scale factor,
i,j =1,2, 3, V is the spatial Laplacian operator, an over-
dot indicates derivatives with respect to the synchronous
cosmic time t, and k—= ~k~, with k being the comoving
wave vector, i.e.,

kH = = 2'(a '/a ) .2&Q

H
(20)

tic case [6—9], but with the quantity R (r) ) defined by (18),
replacing the scale factor a(ri). Equation (19) describes
an oscillator with varying frequency or a Schrodinger
equation with "potential" R "/R for a particle with ener-
gy k and with the variable q playing the role of a spatial
coordinate [6,9].

In order to facilitate comparison with the BD case, we
summarize the classical mechanism of gravitational wave
amplification in GR described by Grishchuk [6—9] for a
spatially Aat FRW universe. In this context, the equation
analogous to (19) (with a replacing R) becomes the ordi-
nary wave equation in Minkowski space-time for those
modes obeying the condition k ))~a "/a~. Its solutions
will be oscillatory and hence the amplitude of the pertur-
bations, given by an expression analogous to (17), will de-
crease adiabatically with Q . This will not happen,
however, if the above condition is not satisfied. In partic-
ular, in the opposite regime k « ~a "/a~ we get two solu-
tions of the form p, ~a(g) and p2 cac(g) J"a (7)')de'.
For an expanding Universe, and after averaging over the
initial phases, it is found that the dominant solution is p&.
Therefore, as long as the wave stays under the potential
V= ~a "/a~, its amplitude h,'"' will remain practically
constant. (From now on, unless otherwise stated, we will
reserve the word potential to indicate the modulus of
a "la or of R "/R. ) If a wave exits from under the poten-
tial barrier and again satisfies k ))~a "/a~, it will have a
greater amplitude than it would following purely adiabat-
ic behavior. Grishchuk has called this mechanism the su-
peradiabatic amplification of gravitationaI waves From. a
quantum-mechanical point of view, this will appear as
creation of gravitons by the expanding Universe, since
the gravitational wave equation is not conformally invari-
ant [6].

If the background matter satisfies the equation of state
p =cap, —1(a~ 1, we will obtain dift'erent behaviors for
the potential V, depending on the value of a. For
ct) —1/3 (a&1/3), V will be arbitrarily large near the
singularity and will decrease to zero as g —+ ~. The con-
dition for amplification, k « V, will then apply near the
singularity. For 0.=1/3, a radiation-dominated universe,
V will vanish identically and no amplification will occur,
whereas V =const for a = —1/3. In the most interesting
cases, a& —1/3, which will lead to power-law or ex-
ponential inAation, the potential barrier will have a bell
shape, going to zero near the singularity as g —+ —~ and
as g~ ~. A wave with a given k will then encounter the
barrier at a certain g; and be amplified until it reassumes
its adiabatic behavior when it leaves the under-barrier re-
gion at a later time gf. The amplification coefBcient will
scale as a (gf )/a (g,. ) [9].

It is common to identify the condition for amplification
k « ~a" /a~ with that of having modes well outside the
horizon (actually of having modes whose physical wave-
lengths A, are greater than the Hubble length A,H:H'). —
To be more precise, we wish to compare the comoving
wave number k defined by (14) with the "Hubble comov-
ing wave number" kH given by
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Although in most situations the two requirement are ap-
proximately equivalent, this will not always be so [6].
For the above mentioned power-law or experimental ex-
pansions in GR, the ratio between V and kH can actually
be written as

V 1

k. -4-
1 30!

2
(21)

p

pg a,
p &p ap

a~-0.01
az

3a—1

(22)

where the 10 factor allows for pair annihilations in the
standard model that couple to p but not to p . Hence, we
see that if a = 1/3 there is no relative increase or decrease
of p with respect to the density of other matter. If
a) 1/3 then p exceeds p at t„by a factor (a, /a~)
and this will lead to a present day graviton abundance
that exceeds the microwave background density by this
factor. Such an enhancement of pg over the radiation
density occurs when t )f, in all cases where the equation
of state is hard (a) 1/3) and is maximal when a= l.
Clearly, this places a strong constraint on the possible
behavior of the equation of state of matter at very high
density during the very early stages of the Universe. We
know that the accord between astronomical observations
of helium-4 and the predictions of primordial nucleosyn-

with the plus sign holding if a 1/3 and the minus sign
holding if a ) 1/3. For a = 1/3 this ratio will be zero. In
general, as +~1/3, V&&kH and the conditions k && V
and k «k~ will not be equivalent. Note that V/kH is
constant in time and that, at a fixed i), V(a) will have a
maximum at o.=1. Moreover, V will always be less than
k~, so if a mode satisfies k && V it will automatically
satisfy k «k~. The requirement V & kH agrees with
the fact that, quantum mechanically, graviton production
is exponentially suppressed for mode with frequencies
higher than the expansion rate of the Universe (k )kH ).
This happens because as far as the high-frequency modes
are concerned, the Universe approaches the limit of an
infinitely slow expansion (the adiabatic regime) where no
particle production is expected [12,40,41].

An intuitive understanding of the gravitational wave
amplification and its dependence upon the equation of
state parameter, a, in the GR case can be obtained by the
following discussion. Suppose that the equation of state
of the dominant form of material (excluded in the gravi-
tons) has the form p =ap from the Planck time tp until
some later time t~ &&1 s. After t~ the material assumes
the usual radiation-dominated equilibrium state (a = 1/3)
until t —10' s. Initially, quantum processes will produce
a graviton density p —(Gtp) ' at t~ and the other ma-
terial will be in equilibrium with a similar density p-p .
Subsequently, p ~ a but p ~ a ' +". Hence, if
a) 1/3 the graviton density will fall off more slowly than
the material density. After t, , p~pg ~a, ignoring
minor injections of entropy into p from particle annihila-
tions, and the present day value of p d/pg will reAect the
value of p/ps at t, :

k'» V(i)),

where

(23)

(24)

(19) will have purely oscillatory solutions, and (17) takes
the form

h'"'(i) x)= 1

a(r))P' '(i))

where C& and C2 are arbitrary constants and the third
constant go was introduced for future convenience. We
see that the effect of the scalar field P is for the scale of
amplitude decrease to be set by the function R (i)) instead
of by a(i1). As will be shown later, only when both a (t)
and P(t) are assumed to have a power-law behavior in t
and when the equation of state is p =p/3, will we get the
adiabatic decrease with a '. In general it is possible to
have the high-frequency regime (23) with amplitudes de-
creasing faster or slower than a

In the opposite regime of very small wave numbers,
where

(26)

we obtain

h~j"'(il, x)= C, +C2 f R (i)')di)' g; (k, x) . (27)

As in GR, there is a mode which is constant in time.
Note, however, that, for bell-shaped potentials, the
amplification coefficient will scale as R(r)f)/R (il;) in-
stead of a(gf)/a(i);). Furthermore, the requirements
k~ && V(i)) and k2 &&kH2 may be quite different in some
situations. In fact, it is not only possible to get a time-
dependent ratio V/k~, but also to have, at least in princi-
ple, V) kH. Unless we conveniently restrict coo, this
could lead to the existence of modes with k )k~ which

thesis mean that p ~p at t —1 s when neutron-proton
freeze-out occurs otherwise helium will be overproduced.
Hence (a, /ai, )

' & 10 when a ) 1/3. This means that
there can be only a very brief period of post-Planck time
evolution with an a ) 1/3 equation of state unless there is
a subsequent period of inflation to dilute the graviton
density relative to the density of matter reestablished at
the end of inAation by reheating. However, we note that
the essence of the argument leading to (22) is the p(a)
evolution of the matter when a ) 1/3. If the evolution of
the Universe is dominated by some other stress (for ex-
ample, anisotropy or a massless scalar field) in addition to
the matter then, although these stresses may produce an
a (t) evolution for the scale factor that differs from
a o- t', they will not lead to a graviton enhancement if
the equation of state of the sea of interacting matter still
has 0. ~ 1/3.

We turn now to investigate what happens in the BD
case. As in GR we can distinguish two extreme regimes.
For very large wave numbers or, more precisely, for
waves such that
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a (t) =a, (t/t, )

y(t) =go(t /to)

(28)

(29)

without yet determining the constants 3 and B.
For A W 1, the translation of (28) and (29) into the con-

formal time yields

would satisfy, at the same time, the amplification condi-
tion (26) (see below). This seems to violate the fast de-
cline in particle production for modes whose frequencies
are greater than the expansion rate. This new effect may
be explained, however, if we realize that now the
definition of an adiabatic vacuum should take into ac-
count not only the speed of the expansion of the
Universe, but also the rate of variation of the scalar field

Actually, as it will be shown below, the condition
V & kH can hold only near the singularity, where the en-

ergy of the free scalar field dominates, and for very small
values of cop, when the gravitational "constant" varies
very rapidly.

The general cosmological solutions for the zero-
curvature FRW background space-time when matter
satisfies the equation of state p =ap, with —1~a~1 a
constant, were derived by Gurevich et al. [38] (see
below). An important feature of these solutions is that
they distinguish two different limiting regimes associated
with the asymptotic behaviors at early and late times.
The first corresponds to an expansion dominated by the
energy of the scalar field, and approaches the vacuum
solution close to the singularity. The latter corresponds
to an expansion dominated by the matter energy and
tends to a power-law behavior. The asymptotes therefore
coincide with the vacuum solutions derived by O'Hanlon
and Tupper [42] and the power-law solutions derived by
Nariai [37], respectively.

We start by considering these simpler cases, where the
scale factor and the scalar field evolve as power-laws of
the cosmic time and write

0o=do

'r
apHp

(40)

Cp —CpO p =Rp1/2

Ro ——aogo
1/2

S

apxp

q
(41)

(42)

The wave equation takes the form

p"(k, g)+ k — p(k, g)=0 .
s(s —1)

(g —
halo)

(43)

X(g)=k(g —go),
1 33+B—1I =s
2 2(1 —A)

(45)

(46)

The Hankel functions H"', H' ' can be replaced by any
pair of linearly independent Bessel functions such asJ,Y' or J,J (if m is noninteger). In order to define
particle states it is important to have a solution consistent
with the requirements for the definition of an adiabatic
vacuum, hence it is useful to write the solution of (43) in
terms of Hankel functions. The basic solution represent-
ing an adiabatic vacuum state is

p(k, il)= e' k '/ X'/ (g)H' '(X(g)), (47)i 8 —i /2 i /2

where 0 is an arbitrary constant phase and we have im-
posed the normalization condition on the Wronskian of
the solutions [40]:

w(p, p')=pp*' —p*p'=i . (48)

Its general solution can be written as

p(k, q) =k '"X-'"(q)[C,H"'(X(q) )+C,H"'(X(q) ) ],
(44)

where

a(g) =c,(g —go),
0(n) =~o(n —no)"

R (g) =Co(g —go)',

where

(30)

(31)

(32)

(33)

The difference between the solution (47) and the corre-
sponding one in GR (see equations (57)—(59) of Ref. [41])
lies in the presence of the coefficient B in the parameters s
and m. Setting B =0 we recover the GR solution as ex-
pected, since this corresponds to the requirement that P,
and hence G, remains constant.

For m %0 (s%1/2, BA1—3 A ), the low frequency lim-
it for the general solution is

B
1 —A

(34) p(k, 'Il) =(rl rlo)' [C, ( tl Fl—o) + C2(vl —r/—Q™] (49)

r 23+Bs=q+ —=
2 2(1 —A)

q
Ip

ap p

'tlo = rt( to ), —

HQ=H(to),

(35)

(36)

(37)

(38)
QOHp( g Y)0)a(g)=aoe ' (51)

whereas for m =0 (s =1/2, B =1—3A), we have, in
this limit,

p(k, g ) = (g —qo)'/ [C, + C2in(g —qo) ] .

For the very particular case A = 1, a, P, and R can be
expressed as

Cp =ap
q

apHp
(39)

R(g)=Roe '
(52)

(53)
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where

2+B
kp =—

2
apHp .

3 cop+ 1+

COp
. &y2. , B =1—3'

2COp+ 3
(58)

The wave equation (19) becomes

p"(k, i))+(k —ko)p(k, i))=0 .

Its general solution is

(k ) C '+C&e 2

(55)

(56)

The solution p(k, rI) will be expressed in terms of Bessel
or Hankel functions of order zero. In GR the I =0 case
occurs for matter with an equation of state p =p. This is
not surprising since the free scalar field plays the role of
an effective material source of the geometry analogous to
an ideal fiuid with the stiff equation of state p =p [38,43].
As we are assuming coo) 0, A %1, and a singularity will
occur at gp. The potential V will be given by
I/4(i) —ilo), thus becoming arbitrarily large as r)~i)o.
On the other hand,

with 1

16m q
(59)

(57)

An equation analogous to (55) is obtained in GR when, as
in the present case, the scale factor grows linearly with
the cosmic time t. The curvature term —kp enters in the
same way as would a mass, albeit a negative one (corre-
sponding to a tachyon). This situation is usually taken to
mean that the underlying vacuum is unstable [40]. It is
problematic to define an adiabatic vacuum state when
k ~ kp since it would be impossible to satisfy the condi-
tion (48).

Near the singularity the expansion is dominated by the
energy of the free scalar field which is not connected with
the matter and approaches the vacuum solution derived
in [42]. (We will be assuming coo) 0 in what follows. ) The
exponents A and B are then given by

and if we take the plus sign in (58), q would become arbi-
trarily small as cop~0. Therefore, we may have V )kH
and, as it was stated above, at least in principle some
modes with k &kH could obey the amplification condi-
tion (26), unless we set an appropriate lower bound to coo.

The excitation of these high-frequency modes is a
response to the rapid variation of P near the singularity.
As g grows larger than gp, V decreases and a few modes
could have k & V. It is then easily found that the ampli-
tude of these modes would decrease slower than a ' if
the minus sign is taken in (58) and faster than a ' if the
plus sign is used. (This, of course, assumes that the vacu-
um solutions remain approximately valid as we move
away from the singularity. )

The power-law matter solutions of Nariai [37] have the
form (28) and (29) with

p

2+2coo(1 —a)
4+3coo(1 —a )

Hp

B= 2(1 —3a)
4+3coo(1 —a )

2mpo[3coo(1 —a )+4]
3I coo(1 —a) +3coo[(1—a) —

—,', (1—3a) ]+2—3a}

(60)

(61)

( 1 —a )(2coo+ 3 )

(1 —a )(1+3a )coo+ 2

3(1—a) coo+2(2 —3a)
2(1—A) 2[(1—a)(1+3a)coo+2]

2 —(1+3a)A

2(1 —A)
(62)

(63)

For a= 1, (p =p) we get s =0, m = —1/2 which does not
agree with the corresponding case in GR. Again, this is
not surprising since, for a= 1, the expression for a (t) it-
self does not approach the general relativistic case when
coo~ oo (see, for instance, [44])]. In GR we would obtain
m = —1/2 only if ~a~ could be allowed to be arbitrarily
large, in which case we would get a constant scale factor
[41].

For A&1, we can use the fact that 3(a+1)A +B =2
to recast the parameters s and I as

For a = 1/3 (p = —p /3 ), we obtain

8COp+ 9
s =—3(2coo+3), m = (64)

In GR, and a = —1/3 case leads to a (t) ~ t and therefore
to the above-mentioned problems in defining an adiabatic
vacuum. In BD this problem does not arise as long as cop

remains finite.
It is easily seen that for a&i, —1/3 the parameters s

and m given by (62) and (63) agree with the GR results
for cop~ ~. In Particular for a= —1, 0, and 1/3 we ob-
tain, in this limit, the general relativistic result
m = —3/2, +3/2, and 1/2, respectively [41].

Note that q )0 and so 0& A &1 for a, &o. 1 but

q &0 and so 3 ) 1 if + &a&, where
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1 —+4+ 6/coo

3
(65)

1 1M—=—+-
2+1+ 3 coo

(72)

Therefore, there will be a singularity at g =
gp for

a, &a+1 and at g~ —~ for o, &ai. This last condition
corresponds to an inflationary expansion ( 3 & 1). In the
cop~ ~ limit, ai approaches the general relativistic value
—1/3. (In order to have a, & —1, it is necessary to re-
quire coo & 1/2. ) Furthermore, the potential V(q) and the
square of the Hubble wave number will be expressed, re-
spectively, by

is(s —1)i
(66)

(n —no)'
2

(n —no)'
(67)

Hence, V and k~ will go to zero as q —+ ~. Nevertheless,
in BD, the potential (but not kH) will vanish identically
not only for a radiation-dominated universe
(a = 1/3, s = 1), but also if the equation of state is that of
sti6'matter (a= l, s =0). In this latter case, however, the
amplitude of the Auctuations will remain constant in
time, since s =0 implies R =const [see Eq. (32)]. For
a=1/3 we have /=go=const, and the amplitude will
decrease as a '. At the singularity k~ will go to infinity
in both cases.

For a, & a & 1, both V (except for a= 1/3) and kH will
be arbitrarily large at the singularity, whereas for e & o. i
they will approach zero as q~ —oo. Hence, as in GR,
we get a bell-shaped potential in the case of infIationary
expansion. The ratio V/kH is again constant, but will
approach zero whenever +~1/3 or a~1.

Since R ~ t +, the amplitude of the high-frequency
modes, k )) iR "/Ri, will decrease slower than a ' if
a ) 1/3 and faster than a ' if a & 1/3.

For a=a„we will have 2 =1, the solutions given by
Eqs. (51)—(57) will apply, and

1N:—+ +1+—coo

The wave equation will then be expressed as

(n. nb—)'
p"(k, rj)+ k +, , p(k, rI)=0 .

4(rl n. )—'(n nb )—'

(73)

(74)

C2 n —
nb

p, =(g q, )' (—g —g )'~ C, + ln

There will be a singularity at g, [38] and

2
Oa 1b

4(g —g, ) (g —gb)

(g —g, )'
kH —4~

(75)

(77)

where

7), =g, —M(rl, —
gb ) . (78)

Both V and kH will go to infinity at the singularity and to
zero as g —+ ~, but at difFerent rates, that is, the ratio
V/kH will be time dependent, decreasing as 1/(rl —q, ) .
We may have V &k02 for

Note that for g, =qb we get back the case of power-law
behavior analyzed above in which there should be no pro-
duction of gravitons in a radiation-dominated universe,
since the wave equation is conformally invariant [6].
However, for rI, &g&, Eq. (74) is not conformally invari-
ant and we should expect graviton production even when
the equation of state is p =p/3. In the low wave-number
limit we obtain

V= 1+ 3

2cop
(aoIIo)

(rI —g, ) &(g, gI, )
——M1

(79)

kH =4~ (aoIIo) (69)

The potential V is larger than k~ for cop ~ 0.04. The am-
plitude of the high-frequency modes will decrease faster

3/ I + 3 /2coo
than a ' since R ~ t

We now consider the more general background
behavior given by the solutions derived by Gurevich
et al. [38] forth zero-curvature FRW models in BD
theory. For a radiation fluid (p = p/3 ) we have ct(r)=cto(r r, ) (r rb—)— (80)

Obviously, the right-hand side of the above inequality
will be positive only if cop ~ 0.6. Note that as cop grows we
approach the GR case where P —+const and the rate of
expansion alone will determine the definition of particle
states.

For the other values of a, the solutions are

(70) 7 P 7 7g T 7b (81)

4'(n) =4o
I Ib

(71)

where rl, & gz are two constants of integration (only one
of which is removable by a choice of the zero of time),
and M, X are given by

with dt =a d~, and

1

3[cr+ 1+(1+—2coo)' ]

1

3[cT + 1+(1+—,'coo)' ]

(82)

(83)
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1 + ( 1 + & to )
1/2

3[(r+ I+(I+—', a)o)'i ]

1+(1+—'o) )'i

3[o.+1+(1+—,'o)o)' ]

where o =—(1—a)o)o+ 1. Note that for a=0, r = t.
The equation for the gravitational waves is

d Yk dY
+ —(3a+ 1) +

d a dv

(84)

(85)

2(0(p)+ 3 = s p ', (89)

R (ri) = C(g —21o)'i

J dan=3/31 ( — ),

(90)

(91)

where C and g0 are arbitrary constants. The wave equa-
tion becomes

where e) 0 is a constant and l is real number (for l =0,
o)=const and we recover the BD theory). We have, in
this case,

lt i2

+ k ' 'i —2 +6 a —2 + Y =0
a a'

(86)

For the very small wave-numbers limit, we are able to
derive a solution in the form

Yk(r) =C1(r r, ) '(—r rb —
)

(3a—1)P) +1—P2 (3a—1)Q(+1—
Q2+C2 r —r, 1 1 b

(87)

where C& and C2 are again constants of integration. Un-
fortunately, the relation between ~ and t is too complicat-
ed for us to be able to express Yk(t) explicitly.

IV. THE EQUATION FOR THE RADIATIVE MODES
IN MORE GENERAL SCALAR-TENSOR THEORIES

In this section we extend the class of scalar-tensor
theories to consider the possibility of having to=co((t. ).
The enables us to consider more Aexible cosmological
scenarios which permit cu to take very large values today
(in accord with solar system observations), but take small
values in the very early Universe when graviton produc-
tion occurs. Although no definitive form for a)((t) has
been proposed, some interesting cases are found in the
literature, which address some generic features it would
be possible to associate with o). See for instance [45—52].

From Eq. (15) with U =dU/d(t =0 and using the vari-
ables previously defined in Sec. II, we get

p"+ k + 1

4(n —no)'

3l

(21—
11o) [sP(')+ l3/31n(21 —

2)o) ]
(92)

R"
V(g):— +term from o)(P)

R
(93)

The condition for amplification, k ((V(21 ), will be
satisfied as 2)~2lo and, in this limit, the solution for (92)
1s

)M(g)=(g —go)' [D, [sp()+l3/31n(2l —bio)]
'

+D2[ep(')+13/31n(2) —2)o) ] '],
where D, and D2 are arbitrary constants and

(94)

P1 = —,
' I +V'1+ I /l

P = —,
' 1 —3/I+ I/I

(95)

(96)

where Po is a constant of integration. It is possible to
show that a singularity will occur at g0, and therefore
near this singularity (and also for ri~ ~ ) the term
I /4(21 —2)o) will dominant over the term originating
from o)(()() and we would get the BD vacuum solution
V (n)" (n no)'"~—o"

I k(n no)]-
The ratio V/kH will be time dependent and, in princi-

ple, could be grater than one, and the new potential is

do) /d
p, "(k,ri)+ k — — p(k, 21)=0 .

R 2'+ 3
(88)

The presence, in the wave equation, of the additional
term arising from the dependence of o) with P will make
it very dificult to solve, in general. It will also alter the
scale which determines what is meant by small or large
wave numbers and, hence, the conditions for
amplification of the gravitational waves. Even a solution
for R (21) is not easily available for some common choices
for a)(P), except in vacuum and radiation-dominated
universes.

As an example, let us consider the vacuum solutions
found by Barrow [52]. It was found in this reference that
the behavior of R (1l) is independent of the choice for
co(P), though the behavior of P is not. We consider first
the ansatz [52]

p +.k +
2(2) —2)o)

1x —+
2

3

cos [—,(3/3 1n(rl —7io)]
.@=0 . (97)

The interesting point here is that, contrary to what hap-
pens in most situations of GR and BD, the dominant
solution as 2) grows (exponent p, ) in this small wave num-

ber limit is not constant in time, but grows as (1n21) '.
(See, however, [53].)

Similar comments apply in the case of Barker's theory
of gravitation [45,52], except that the term originating
from to(P) cannot be neglected in comparison to the one
arising from R "/R since the wave equation takes the
form
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352'(P)+3=
(in/)

(98)

where 5 is a constant. Then, for vacuum, (91) still holds
and we find, using the methods of [52] that

P(i)) =exp(ri'/ ), (99)

A nice example which enables us to solve the gravita-
tional wave equation exactly is given by the scalar-tensor
theory defined by the ansatz

treme regime k « V(i)) and simply neglect the term k
in (101). The resulting equation has the solution

ii,(+ )
—

r) 1/2[c H~ ~

( 27)i/2)+ c H ( 2g ) ] (109)

For completeness we also present the asymptotic
behavior valid for large r) and/or k. For fixed k the limit
of (102) for i)~ ~ will lead to

p[z(g)]=c,zze '/ f~+'(z)+c2( —z)xe'/ f~ '(z),

(110)
1/5

a(r)) =Car)'/ exp (100) where

where Co is a positive constant and we have set a =0
when g =0. The wave equation becomes

I 1
p + k +

2
+

2 2 ($/$) p 0 0

4g 6g
(101)

p[z(ri)] =Ci W'&0(z)+C2 W'
& 0( —z),

where

(102)

z(i)) =i2kr),
1

X

(103)

Note that the condition for amplification, k « V(i)),
[see Eq. (93)] will hold near the singularity, and that al-
though only the product kg appears in the argument z,
the parameter g is a function of k alone. Therefore, for a
fixed wave number, the behavior of the above solution as
g~0 can be obtained by using the leading term in the ex-
pressions for the Whittaker functions near the origin [54].
We find

p(i)) =(2k')'/ [D, +D2ln(2k')'/ ] .

The new constants D, z are related to C, z by

I iC, 3C~

2 r(-,' —y) r(-,'+~)

(105)

(106)

For 6=1 its general solution can be expressed as a linear
combination of the two linearly independent Whittaker
functions JVx o(z), IV z o( —z) [54]:

~ [(-,'+x), l'
f~+—'(z)= g . +0[(+z) '],

~ =o j'(+z)'
(x)0=1 (x)j=x(x+1) . (x+j —1) . (112)

For large k, y ~

—&0 and the Whittaker functions
F00(+z) can be written in terms of Hankel functions
with argument (iz)/2 whose asymptotic form will lead to
the expected result

p(ri) =c, e '""+
c2e

' " . (113)

(k )=- e' 8' ('2k )p, 7) — e zo i T/ (114)

It is interesting to note that, in analogy to what hap-
pened with Eq. (43), we could have chosen other pairs of
linearly independent functions to express the solution of
(101) [54]. However, the choice of IV++ o(+z ) is specially
suited to write its solution in a Hermitian form since
8'z o(z) = W', o(z*) [54] and hence, in the present case,

X
W

& o(
—z) = W& 0(0). Moreover, unlike for other pairs

of independent solutions of (101), the Wronskian of
W+& o(+z) never vanishes (it is equal to e ' z), and so
enables us to impose the normalization condition (48). In
the quantized theory this condition is necessary in order
to guarantee that the commutation relations between the
field h; (g, x) and its conjugate momentum lead directly
to the corresponding commutation relations between the
creation and annihilation operators. The above analysis
of the asymptotic behavior for k ~ ~ then shows that
the basic solution representing an adiabatic vacuum state
is

D i(7I /4)
2

C) iC2

r( —,
' —y) r( —,'+y) (107)

where 0 is an arbitrary constant phase. This model will
be studied in more detail in a subsequent paper.

i (q) =q'"[c,a,"'(k~)+c,H,"'(k~)] . (108)

By using the small argument approximation for the
Hankel functions [55] we recover an expression of the
type (105).

For a fixed g it is not straightforward to analyze the
limit k~0, since in this case ~g~ ~ ~ due to (104),
whereas z =z(y)~0 [54]. It is easier to study the ex-

where I is the gamma function. Alternatively, we can
neglect, for g~0, the third term in the square brackets
of Eq. (101) in comparison to the second. The solution of
the resulting equation is simply

V. SUMMARY AND CONCLUSIONS

We have derived the gravitational wave equation for a
general class of scalar-tensor theories of gravity, assum-
ing a spatially Rat Friedmann-Robertson-Walker
universe. In the particular case of the BD theory we
have solved this equation in several cosmological models,
including the power-law expansion given by Nariai s
solutions [37] and the more general expansion governed
by the solutions presented by Cxurevich et al. [38]. We
have analyzed the limits of very large and very small
wave numbers and have found that the coupling with the
scalar field P will change the determination of these limits
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in comparison with GR. As a result, the scale of ampli-
tude decrease of the high-frequency modes and that of
the amplification coefficient will be set by R —=aP'i rath-
er than by the scale factor a (t) alone. Moreover, there is
the possibility, for very small values of the coupling pa-
rameter coo, of significant amplification of subhorizon
waves. The corresponding creation of high-frequency
gravitons is seen as a new effect arising in response to the
rapid time variation of t(). It was also shown that, unlike
in GR, there can be amplification of gravitational waves
in a radiation-dominated universe. These new features
are also present in more general scalar-tensor theories.
In this context we have presented an example in which
the dominant solution for the wave equation in the smal1
wave-number regime is not "frozen, " as usually happens
in GR and in BD, but can grow with time [53]. We have
also introduced a particular co(P) for which the gravita-
tional wave equation can be exactly solved and have stud-
ied its solutions.

In a subsequent paper we will use the results derived
here in order to obtain the spectrum of the relic gravitons
for some specific models. This will enable us to constrain
some of the parameters appearing in the scalar-tensor
theories. In parti"ular, it seems possible that an over-

production of gravitons due to the effects described above
could impose a further restriction on the value of the
coupling parameter at early times. A small enough co(P)
is required to have satisfactory nucleation processes in
some inflationary cosmologies.

When this work was nearing completion we became
aware of the paper by Gasperini and Giovannini [56] who
have derived the gravitational wave equation in the con-
text of a higher-dimensional Brans-Dicke theory. By
considering a parametrization for the scale factor and for
the scalar field which is equivalent to the Nariai's solu-
tion, they have obtained the low-frequency band of the
spectrum for a three-stage model in which an inflationary
phase is followed by the usual radiation- and matter-
dominated epochs.
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