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We describe our three-dimensional numerical relativity code for the evolution of inhomogeneous
cosmologies. During the evolution, the constraint equations are monitored but not solved. The code has
been tested against perturbation theory with good results. We present some runs of inhomogeneous
inAation with strongly inhomogeneous initial data.
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I. INTRODUCTION

Inflation [1,2] has become the favorite explanation for
both the large-scale homogeneity and the small-scale in-
homogeneity of the Universe. The recent observation of
the cosmic microwave anisotropy by the Cosmic Back-
ground Explorer (COBE) satellite [3] is consistent with
the inflationary Universe scenario. Most work on
inflation has been in the context of either a flat back-
ground spacetime or perturbation theory. A consistent
general-relativistic treatment of strongly inhomogeneous
inflation appears to require numerical relativity.

Previous numerical relativity calculations of inhomo-
geneous inflation have been one dimensional [4—7]. We
have written a three-dimensional numerical relativity
code for this purpose. The code consists of two parts.
The first part solves the initial value problem. We de-
scribed it in Ref. [8], where the motivation and back-
ground of this project are also discussed.

Here we present the second part, the evolution code.
The main focus of this paper is on the code rather than
physical conclusions about inhomogeneous inflation.
Thus we discuss the evolution equations (Sec. II), numeri-
cal techniques (Sec. III), and code tests (Sec. IV). In Sec.
V we present a couple of strongly inhomogeneous
inflation runs.

II. EVOLUTION EQUATIONS

h" P „=D„D"P. +Kn "t)„P (2.2)

n "n ttp =n B,(n ".B„P) nn" d—„P.
= n 'B,q+ n 'B„P(K"+a "n „)

1=n a.& h& —a„—aa.y, (2.3)

Eq. (2.1) becomes

D D"P+Kq nd ~+ h"—d„ad y=—V'(y) .
1

Here we have defined a new variable

(2.4)

n "B„P— (2.5)

to replace a second-order equation (2.1) with two equa-
tions [(2.4) and (2.5)] first order in time.

Hereafter we use 3+ 1 coordinates

respect to the argument. Also, the semicolon denotes a
covariant derivative with respect to the four-metric
g„=h„, n„n—, and Dz is the covariant derivative with
respect to the three-metric h„. Here n" is the unit nor-
mal vector to the three-space slice, for which n "n„=—1,
and n "h„=O (Greek letter indices range and sum over
0—3; Latin letter indices over 1 —3). Since

We derive evolution equations for general relativity
with scalar field dynamics in a form suitable for numeri-
cal solution. They will be in the 3+1 formalism [9] and
for a general gauge.

The matter source is a scalar field. The covariant form
of the field equation is

(2.1)

where V(P) is a potential function, the form of which we
are not restricting. The prime denotes a derivative with

(t,x', x,x )=(t,x,y, z),
with the metric [9]

ds2= adt +h, (dx'—+p'dt)(dx J"+pjdt) .

The scalar field equations just derived are now

—'(a, —p"a„)~= '
a, (&hh'~a, y)+K~

+—h'Jc);a 8 P —V'(P)
1

(2.6)

(2.7)
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and

—(a, —p"a„)y=~ .1 (2.8)

—(a, —P"a„)h,, = —2K„+—(h„,a,P'+h„, a,P") .
1 k 1

(2.20)

The 3+ 1 form of the Einstein equations is

R +K —K; -K''J= 16m Gp~,
D;K' —DJK =8+GSJ. ,

(2.9)

(2.10)

a,K' = D'D~—a+ a[RJ'+KK' 8m G—SJ'+4m G5' (S —
pH ) ]

+P'a„K,' K,'a.„—i3'+ a,P"K,', (2.11)

—a, &h =—h'~a, h;J (2.21)

with Eq. (2.12) we get

It turns out to be useful to have a separate evolution
equation for the square-root of the determinant of the
three-metric, &h. Using

a, h;. = —2aK; +D;P +D P; . (2.12) —(a, —P"a„)&h = —&h K+ —&h a„P" . (2.22)

Here R and R' are the Ricci scalar and tensor of the
three-metric, and G is Newton's constant. Equations
(2.9) and (2.10) are the Hamiltonian and momentum con-
straints. We do not concern ourselves with the solution
of the constraint equations in this paper as we have dis-
cussed it elsewhere [8].

For a scalar field, the source terms in Eqs. (2.9)—(2.12)
will be

To have a complete set of evolution equations we need
to specify equations for the lapse a and the shift P', i.e. ,
to choose a gauge. The simplest choice is the synchro-
nous gauge

a=1,
(2.23)

p„=,h'Ja, pa, y+, ~'+ v(y), (2.13) Another choice particularly straightforward to imple-
ment in this context is the harmonic gauge

SJ= —&h'Ja, y,
s'J =h'J[ 'h"'a„y a—,y-+ 'q v(p)-]—

(2.14)
—(a, —p"ak)a= —aK,1

a
(2.24)

+h'"hj'a ya, y,
s =s,'= ,'h'Ja, y a,—y+—,'q' 3V(y)-. —

(2.15)

(2.16)
—(a, —p"a„)p'= —a h '~ + —a (+h h ")

L

The evolution equation for the extrinsic curvature, Eq.
(2.11),becomes

—(a, —P"a„)K,'=KK,'. ——h '"(a,a„a—r,'„a,a)+R,'

—8~G [h '"a„y ajr+6,'. V(y) ]

+ '(K„'a,p" K—,"a„p') . —(2.17)

We shall evolve the trace K:—K and the traceless part
AJ KJ 3 5JK separatel y . The evolution equation for
the trace is

(2.25)

a, &h —a (P"&h )= —a&hK . (2.26)

From this follows a general conversion rule: If the origi-
nal form is

The evolution equations, Eqs. (2.7), (2.8), (2.17), (2.18),
(2.20), and (2.22), are valid for any gauge and we will re-
tain this property as we code them. We do not attempt
to simplify them by choosing a particular gauge.

We code these evolution equations in conservative
form. The conservative form of Eq. (2.22) is

'(a, P"a„)K=—K' —'a, (&h h—'Ja, a)+R

8~Gh'Ja, pa P —24nGV(P) . —

(a, —p"a„)f=g,
then the conservative form is

a,f a„(P"f)=g aKf, — —

(2.27)

(2.28)
(2.18)

where
Using

D,p, =a,p, —
—,'p'(a, h„+a,h„—a, h,, ), (2.19)

the three-metric evolution equation, Eq. (2.12), becomes

f=&hf,
etc.

Our final set of equations is

(2.29)

a,Kak(I3 K)= a;(h' '—a a)+—a&h R —. 8mGah' a;Qa P 24mGa&h V(P), —

a, Az
—al, (P"Jz ) = —h '"(a aka —I kaia)+ah '"Rk. —8wGah '"at, g a P

—
—,'5'[ —ak(h "a&a)+a&h R —8m Gab

"akpaip]+a p"Ak —akp'A

(2.30)

(2.31)
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B,q —B„(P"Fl)=B;(ah'JB P) —a&h V'(P),

a, &X —a, (P"&T ) = a—&TK,

d, h, —B"k(P"h; )= —,'aK—h; 2—aA h;~.+BJPh;~+d;Ph~z

B,P —Bk(P"P)= aK—Q+ar) .

(2.32)

(2.33)

(2.34)

(2.35)

The harmonic gauge equations in conservative form
are

a, m —a„(p"m) =0,
. . B~A

a,P' a„(P—"P')= aK'P—' ah—'J +a h '&

(2.36)

(2.37)

a, A,'+r', , A,
' r,', A,' —', a,K=—-8~Gqa—,y . (2.39)

We discussed the procedure for solving the initial value
problem in Ref. [8]. In addition to these numerically
solved initial data, we have also used data that satisfies
the constraints trivially.

This latter method, previously used by Goldwirth and
Piran [6], involves two scalar fields to achieve a momen-
tarily Hat space for the initial slice. One of the scalar
fields is the inflaton field P which can be set arbitrarily ac-
cording to the problem we wish to solve. The other field,

Pz, is an auxiliary field, with V(Pz ) =—0. We want the
right-hand side of Eq. (2.38) to be constant, and that of
Eq. (2.39) to be zero on the initial slice. This is achieved
by setting

g=0,
(2.40)

=—[2p —h'JB;y a, y —2V(y)]'",
where p~ =const. Equations (2.38) and (2.39) can now be
satisfied with

8mGp~
K=——3

3

1/2

A'. =0, (2.41)

h;. =5' .

The initial slice will thus have a homogeneous total ener-
gy density, but with an inhomogeneous composition. The
energy density becomes inhomogeneous immediately
when it is evolved. In a typical run, Pz soon redshifts
away whereas the vacuum energy V(P) keeps the inflaton
field dynamically important.

III. NUMERICAL TECHNIQUES

Replacing the continuous spacetirne with a discrete
grid requires a decision about the relative positioning of

where co= 1/a, or co =—&h /a.
We need initial data that satisfies the constraint equa-

tions (2.9) and (2.10), which we can write as

R+ ,'K A—'A~=—8mG[h''d, Pd P+q +2V($)], (2 38)

t

variables on the grid. As discussed below, we have divid-
ed the variables into two sets staggered in time. This
division arises naturally from the form of the equations,
although some terms in the equations violate this struc-
ture and require interpolation.

In the previous section, Eqs. (2.30)—(2.35) are written
in the order they are actually evolved in our code. The
lapse is calculated before Vh, and the shift before K.
This ordering is determined by what quantities are need-
ed to evolve which quantity. The quantities a, v'h, h;,
and P are evaluated after the full time step, i.e., at times

tn &, tn —tn —j.+attn

where b, t" is the nth time step. The quantities p', K, A~,
and g are evaluated at half-time, i.e., at times

tn —i+ i d tn tn+ i gtn+i
2 7 2 7 ~ ~ ~ ~

With the possible exception of lapse and shift, this
scheme does not require any extrapolation in time. All
quantities that are needed to evolve a particular quantity
have already been evolved to the time level at which they
are needed. The quantities a, p', Vh, and K are needed
at both full and half-time, so they are interpolated when
needed. Depending on the choice of gauge, the calcula-
tion of a and P' at a new time level may require extrapo-
lation of some quantities in time, and should then be
iterated.

It is a common practice to have a similar staggering in
space. A gradient of a variable would naturally lie be-
tween the grid points where the variable is located. In a
three-dimensional (3D) code this becomes complicated.
Picture the grid dividing the space into small cubes, or
zones. Some variables might naturally lie at zone centers,
others at zone faces, and yet others at zone edges. The
grid will have 3 times as many faces and edges as zones
(in three different orientations). Typically the different
components of a three-vector would lie on differently
oriented faces. If the equations respect such a structure,
the extra coding effort will pay off by giving a good accu-
racy with a small number of zones. We, however, did not
find our equations to naturally fit into such a scheme. Be-
cause so many terms would have to be interpolated, it ap-
peared unlikely that this would lead to much improved
performance. Therefore, we decided to position all the
variables the same way in space. We refer to these loca-
tions simply as grid points. To obtain a value of a spatial
derivative at a grid point we thus need to difference over
two grid spacings.

For simplicity and generality, we are using Cartesian
coordinates. We have coded for nonuniform grid spac-
ings in x, y, and z. However, to maintain second-order
accuracy in space with a nonuniform grid the spacing
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should not vary too steeply. A variable will lie at a grid-
point (x,y, z), where, e.g., x takes on any of the values
x] y ~ ~ ~ y x+ y and

x

p'(x „y,z) = —p'(x2, y, z),
(3.3)

=x I+Axn (3.1) 12(xl y&z) h12(x2~y~z)

f( ~, y»=f(
f(x, y, z)=f(x~ „y,z),

(3.2)

The first and last grid points in each direction, e.g. , at x,
and x&, are dummies. Variables are not evolved at these

X

grid points but are set after the evolution according to
the boundary condition. Thus the "physical" grid has
only (X„—2)(X~ —2)(N, —2) points.

Periodic boundary conditions are

The largest piece of the evolution code is the calcula-
tion of the Ricci tensor R, . It is calculated from the
three-metric h; and is needed for evolving the extrinsic
curvature. In the process we obtain the connection
coe%cients r'k, also needed for evolving A~'. (1 Jk is also

gk&

needed for checking the momentum constraint, and
R =—R,.' is needed for checking the Hamiltonian con-
straint. ) These are computed directly from their
definitions

etc. Reflective boundary conditions for tensor s are
di6'erent than for scalars, because some components
change signs, e.g.,

r'k =——,'h "(BkhI +d)h(k —Bih k) (3.4)

=-,'a„h"'(a, h„+a,.h„—a, h,, )+-,'h"'(a„a, h„+a„a,h„—a„a,h,, ) ——,'a, h"'a, h,„——,'h «a a, h,„+r"r' —r'r'
(3.5)

(We first invert h;J to obtain h'~. ) We use the latter form
for R;. to avoid taking derivatives of I 'k, which already
involves derivatives. With our grid structure we obtain
second derivatives more compactly by calculating them
directly.

There are 6 components of R, and 18 components of
I '& to be calculated, with double sums. This could have
been coded with loops over the indices, relying on the
compiler to unroll the summation loops to permit vector-
izing. However, there are complications due to the sym-
metries in indices. Also, many of the terms cancel out
with certain combinations of indices. Therefore, we have
coded in all components separately, with the sums writ-
ten out. We actually wrote a small program to produce
this long (almost 600 lines of FoRTRAN) but repetitive
piece of code.

The evolution equations are mostly rather straightfor-
ward to code. Since we are evolving the quantities with
carets [see Eq. (2.29)j which are often needed without
carets, we have to be careful to multiply and divide by
&h when needed. To make this possible, &h has to be
evolved to a new full-time level first.

The present version of the code does not yet include
the advection terms Bk(p"f), and is therefore restricted to
P'=0. Also, the right-hand-side terms involving P' have
been left out in the 2'. and h; equations. This allows us
to evolve 3 ' without matrix inversion.

The evolution of h," involves matrix inversion since the
right-hand side of Eq. (2.34) contains other components
of this tensor in the —2aA h, &

term. With p'=0, the
discretized form of this equation (taking us from t" to
t" ) can be written as

H" + ' =H" 'ab, tM (H"—+—H" + ')
2 (3.6)

or

H"+'=(1+ ,'ab. tM) '(1—,'ab, tM)H", ——(3.7)

where H =(h», h, z h, 3 h22, h23, h33) is a six-compo-
nent vector, and M is a 6 X 6 matrix, whose components
are linear combinations of the extrinsic curvature com-
ponents. A matrix inversion at each grid point would be
rather time consuming. As we only need second-order
accuracy in b t, we replace Eq. (3.7) by

H"+'=(1 abtM+ 'a b, t M )—H"— (3.8)

which requires mere matrix multiplication, and does not
prevent vectorization over the grid.

A similar procedure wi11 have to be utilized in the evo-
lution of 2 '. once nonzero shift is included. Presently, we
evolve each component separately. Although only five of
the components are independent, we evolve all nine of
them since reconstructing the remaining components
from the minimum set of five is nontrivial. (Since A; =0,
we could easily skip evolving one of the diagonal com-
ponents. ) The covariant components are symmetric, so if
we rewrote Eq. (2.31) to evolve A, instead of A'. , there
would be only six components to evolve. But this gives a
nonlinear equation, whereas Eq. (2.31) is linear in J'.

We are presently running free evolution; i.e., the con-
straint equations are not solved after the initial slice. To
see how accurately the constraints are maintained, we
compare the left- and right-hand sides of Eqs. (2.38) and
(2.39) during the evolution.
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We use three conditions to determine the time step.
The first is the Courant condition. The code requires
three time steps to carry information from the grid point
(xi,ym, z„) diagonally to (xi+ „y~ +„z„+,). The time
step must be short enough that this grid velocity is not
less than the speed of light. To satisfy this condition
everywhere, we need to find the shortest physical distance
As, where

I I I I I I Ill I I I I I I I II I I I I I I lli

hs =h; hx'4x~, (3.9)

between neighboring points. To be more precise, we set

b, tc =C min( b,s /ad ), (3.10)

where d = 1, 2, or 3 depending on whether the neighbor-
ing point differs in one, two, or three coordinates, and
C ( 1. In practice, we have used C =0.7.

The second condition is an expansion condition. Ac-
cording to Eq. (2.33), the local volume expansion rate is
given by —nK. To keep expansion per time step below a
certain amount E, we set

0—

10 100
t/t

1000
I I I I IIII Ill I I I I I I III I I I I I I I I

10

b, tz=E/max(a~K~) . (3.11)

The third condition is a smoothness condition. To
prevent the time step from increasing too rapidly, we set

b, ts=(1 +S)ht„,„,,„, .

The time step is then the smallest of these three:

b, t =min(b, tc, Et', At+) .

(3.12)

(3.13)

The Courant condition gives a shorter time step when
the number of grid points is increased. In the runs
presented here, we adjusted the other two conditions with
grid size so that halving the grid spacing also halved the
time step consistently over the whole run. Thus we have
used E =0.1(32/N) and S =0.01(32/N), where N is the
number of grid points in one direction.

In practice, the controlling condition was the Courant
condition in the early part of the run, the expansion con-
dition during most of the inflation, and the smoothness
condition after inAation. The time scale of the
postinflation oscillations of P is not related to any of these
three conditions. Indeed, when we ran long enough, the
time step became too long to resolve these oscillations.
We experimented with a fourth condition to control this,
but could not easily find one that is both general and sim-
ple. Instead, we just chose a small enough value for S to
resolve the first oscillations, as we were not interested in
the later ones. In running different problems it may be
useful to experiment with the time-step control, to optim-
ize it for each case.

time evolution of the inflaton P and the scale factor a, re-
spectively. The code deviates from the exact results by
less than 10 . Another run with a different time step
showed the error to be quadratic in time step. We also
ran a Kasner model, where the expansion rates along the
three axes were all different, and obtained similar accura-
cy.

40 I I I I I I I II I I I I I I I I I I I I I I I I

30

tg-80—
0

FIG. 1. The inflaton field ltI as a function of time in homo-
geneous chaotic inflation. The lines showing the code result and
the exact result fall on top of each other and cannot be dis-
tinguished by eye. Inflation ends near t =300tp].

IV. CODE TESTS

A. Homogeneous tests

The simplest test is a homogeneous one. We did a
homogeneous chaotic inflation [10] run with the potential
V(ltl)= —,'A,p, A.=10, and the inflaton field initially at
$=5mp&. The perturbation runs below are perturbations
around this homogeneous run. Figures 1 and 2 show the

01 10 100
t/tpi

1000
I I I I I I I I

10

FIG. 2. Same as Fig. 1, but for the scale factor a. Inflation
ends after a linear expansion of 10 ", or a volume expansion of
10102
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B. Perturbation tests

The perturbation theory for infiation has been dis-
cussed by Brandenberger, Kahn, and Press [11]. The un-
perturbed spacetime is assumed to be spatially Hat. We
shall work in the synchronous gauge. The metric and the
inAaton field can be written as

ds2= dt =—a(t) I[1+A (t, x)]5, . +B(t,x),.~]dx'dx J

Ko = —3H,

with E =Eo+5E. The scalar three-curvature is

g = —2a

(4.12)

(4.13)

(4.14)

(4.15)

and

P(t, x) =go(t)+5/(t, x),

(4.1)

(4.2)

The initial data has to satisfy the perturbation theory
constraint equations (4.9) and (4.10). This is accom-
plished by choosing arbitrary values for Po, Po, 5$, 5P, A,
and B, and solving for A and B from Eqs. (4.9) and (4.10).
For our test runs we have chosen initial data of the form

(4.3)

where 5$, A, and B are small perturbations. The zeroth
order, or homogeneous, equations are

2

H = a 8~@
a 3 2

—0 +V(0 )

a=1,
go= 5m@),

NO=0

and

2—+a
a

2
a 1 2= —8wG —

Po
—V(iI)o)

2 ' (4.4)
X 54,e"",
k

5/ =0,
3=0,

(4.16)

iI)o+ 3Hpo+ V'(Po) =0, (4.5)
B =0.

where Eq. (4.3) is the Hamiltonian constant. The
momentum constraint vanishes identically to zeroth or-
der.

We expand the perturbations in plane waves Ak=O,
(4.17)

For this case, the constraint equations (4.9) and (4.10)
give

5$(t, x)= +5/k(t)e'
k

(4.6)

etc. , where k is the cornoving wave vector. The first-
order perturbation equations for the modes 5/i, (t),
Ak(t), and Bk(t) are then

The initial values for the extrinsic curvature variables are
thus

Eo = —3H,
3Ak kBk+3H(3—Ak kBk)+k—a Ak

24m. G [Po5gk——V'(Po)5/k ], (4.7)
V'(iI)o)

5K = —4~G g 5g„e'"'*, (4.18)

A„+3HA„= —8m G [itio5$„—V'(Po)5itik ],
—k2a 2A„—H(3 A„kBk)— (4.8)

k

k;kJ 5y eik x
k

8vrG[itio54k+ V (ko)5itik ] (4.9) where

' 1/2
A„= 8~Gjo—5y„,
5pk+3H5pk+ V"(po)5/k

(4.10)
V(go) (4.19)

(4.11)
The particular initial data we have used are a superpo-

sition of three perpendicular plane waves,

To obtain "exact" perturbation theory results, we
solved these ordinary differential equations with the
Runge-Kutta method. The metric evolution equations
(4.4), (4.7), and (4.8) can here be ignored, and the metric
(a, Ak, Bk ) can be evolved using the constraint equations
(4.3), (4.9), and (4.10).

For the perturbation runs with the code, we need the
relation between the code variables K and AJ', and the
perturbation theory variables A and B. From the metric
evolution equation (2.12) we obtain

5$(to, x)=5/, (to)e ' +5/, (to)e

+5/3(to )e

with small and equal amplitudes

5/1(to) 54'2(to) 543(to)= 10

but different wavelengths L; =2m/k;,

L1=0.2H ' L2 =0 3H ' L3 =0.4H

(4.20)

(4.21)

(4.22)
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10 I I I I
i

I I I I

perturbation theory

Here the subscripts i =1,2, 3 denote the three different
modes, rather than components of a vector. Our grid
had one wavelength in each direction. To get the same
number N =N =N or grid points per each wavelength,X g Z

we have used different grid spacings hx' in each direc-
tion.

We studied the convergence of the code results towards
the perturbation theory results as the number of grid
points is increased (the time step and grid spacing is de-
creased}. The results are shown in Figs. 3 —5. These show

mp)
=2.29mp) . (4.23)

The initial values of k; IH were 10m, 20m I3, and 5n.. We
have arbitrarily set the initial time as to tp} ~ As th
Universe inmates, the waves exit the horizon one by one.
De6ning the time of exit by k;=H, this happens at

the evolution of the amplitude of the three perpendicular
perturbation waves in P, A, and B.

Initially, the waves are well inside the horizon. (By
"horizon" we refer to the Hubble length, as is common
among astroparticle physicists. ) The Hubble constant at
the initial time is

2

5x 10

l I I f I
i I I I I

06
'&
'O

5x 10

-5x10

0

-1x10 I I I I I I

3 4

4x 10

-5x10

3x10
I I I I I I i I I I

2
t/t„

2x10
I I l l 0 I Ill I I I I I I I II

10-6
2x10

10

10«8 g g & I, , i

10
s sr i i ssl il

100 1000
t/th)

10

FIG 3. The amplitudes of the three perpendicular plane-
wave pertnrbations 5$„5$z, and 5$, in the intlaton field. The
difFerent line styles show code results with difFerent grid resolu-
tions, as well as the perturbation theory result. (a) Early part of
the run, perturbations inside the horizon. The perturbations
with the longer wavelengths have longer oscillation periods, but
all are damped by the expansion at the same rate. In this case
the code results are rather accurate, and the lines fall onto each
other. (b) Late part of the run, perturbations outside the hor-

f 25.izon: The vertical scale has been expanded by a factor o
4tThe inset displays the last decade {from t =10 tpi to t =10 t'ai)

with a further expanded scale to show the postinflation oscilla-
tions.

- ix10
1

(b)
I i I s s s sil I I I I I I I I I

10 100
t/t,

I i sil I I I I I I I I

1000 10

FICx. 4. Same as Fig. 3, but for the perturbations 2 &, A2, and
A3 in the metric. (a) Early part of the run. (b) The entire run.
The perturbations exit the horizon between t =2tp& and 3t» and
the oscillatory behavior changes to monotonic growth, which
ceases as inAation ends.



3618 KURKI-SUONIO, LAGUNA, AND MATZNER 48

10

2 10

3x10

be achieved at the cost of making the code more compli-
cated, less readable and more time-consuming. Thus the
code requires 86 words of memory per grid point, or
about 24 Mwords for a 64 run. In practice, the largest
grid that fit in the 32M queue on the Cray-2 at NCSA
was 70 .

The code runs at 140 Mflops on a single processor, and
takes about 0.02 ms of computation time per grid point
and cycle. Thus a 64 grid runs at about 700 cycles per
hour. To run the 70 e-foldings of inAation required to ob-
tain the observable Universe from one preinAation Hub-
ble volume takes almost 10 h of Cray time with this reso-
lution. The most time is spent on calculating the connec-
tion coefficients I 'k and the Ricci tensor R;J, about 43%%uo

of total time. The second most time is used in the evolu-
tion of the extrinsic curvature tensor AJ'. , 11%.

2
t./t, „

FIG. 5. Same as Fig. 3, but for the perturbations B1,B„and
B3 in the metric We only show the early part of the run, be-
cause in the late part B stays almost constant in time.

t =2.20tp, , 2. 33tp&, and 2. 51tp, .
The behavior of the perturbations change markedly as

they exit the horizon. Inside the horizon, the initial P
perturbation oscillates and these oscillations are damped
by the expansion, all three wavelengths at the same rate.
There was no initial perturbation 3, or B, in the metric,
but these are now induced by the P perturbation. The A

perturbation oscillates with a growing amplitude, a quar-
ter phase behind 5$. The B perturbation exhibits mono-
tonic growth with a small oscillation superimposed. The
metric perturbations do not have time to reach the P per-
turbation amplitude before the perturbations exit the hor-
izon.

Outside the horizon the oscillations cease. The P per-
turbation decreases while 3 grows and B stays constant.
At the end of inflation the growth in 3 ceases, whereas
5$ shows anharmonic oscillation with Po around the bot-
tom of V(P).

The discretization error exhibits a quadratic behavior
when we increase the number of grid points from 16 to
48 . The errors in B are small, as are the errors in 3 and
5P while inside horizon. The larger errors in 5$ and 2
outside the horizon are due to the switch from oscillating
to monotonic behavior, when a small phase error leads to
a relatively large amplitude error. Even then, the errors
in the final values in the 48 runs are less than 3%, after a
volume expansion by more than 10'

C. Memory and time requirements

The code has 56 variables per grid point. These are
h, h, (6), h '~ (6), I '.„(18),R, . (6), R, a, /3' (3), K, A ' (9),

p, il, pz, and il~ (the numbers in parentheses indicate the
number of component variables). In addition, 30 memory
locations per grid point are used for work space or auxili-
ary variables. The code is not optimized for memory
usage but rather for simplicity, so memory savings could

V. INHOMOGKNEOUS INFLATION RUNS

We now present some runs of inhomogeneous inAation.
These 64 runs use the Aat initial data described in Sec.
II. A run using initial data obtained with the initial data
solver was presented in Ref. [12].

The requirement that the initial time slice has homo-
geneous total energy density (as implied by fiat initial
data) gives an upper limit for the variation of the infiaton
field P within a Hubble length. From

1 3mp&
2

—(V'P) &p= H
2 8n

(5.1)

we get

VP&
3

4~

1/2
mp)
0-' (5.2)

Thus inhomogeneities that begin inside the horizon have
small amplitudes. Runs where we had large initial varia-
tion in the inAaton field have initial grid lengths L equal
to many Hubble lengths.

These runs are of chaotic inflation. The potential is
V(P) =—,'AP, with A, =10 . We chose initial data of the
form

2
1y(r„x)=y, +5y

, Imn
sinxl siny sinz„, (5.3)

+l 2~1& I L + Oxl etc. , with O~l random phases.
The initial Hubble constant was chosen to be
H =0. 1Pl pi alld (ho: Smpi,

We present a small-scale run with L =H
5/=0. 0125mp„and a large-scale run with L =32H
5/=0. 4mp, . The phases for these particular runs were

O&]
=3' 83& O&2=2. 59~ Oy)

=3.02~ Oy2= 1.837 Oz&
=3' 197

and O 2= 1.33. The same phases were used in both runs.
In the initial data, the minimum P value turned out to be
Po

—3.35$, and the maximum $0+2. 15$. The maximum
value of V'P was within a factor of 2 from the upper limit.
In Fig. 6 we show the regions of small and large P.

The results are shown as three-dimensional contour
plots of the scalar variables P, v'h, E, and R. These are
supplemented by one-dimensional plots showing the
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FIG. 7. Figures 7-14 show results from the small-scale run.
This figure shows the inAaton field along the reference line at
various time slices. These correspond to t/t» =5 (initial time),
5.6, 6.4, 7.6, 9.2, 11.3, 14.3, 18.5, 24.1, 42.6, and 77.7. The Hub-
ble time was initially 10tp1. At the last slice shown, where
inAation has taken hold, the potential contributing 99.6% of to-
tal energy, the approximate Hubble time is 28tp&.

quantities along a reference line at different time slices.
This reference line runs parallel to the y axis and goes
through the initial P minimum. Figure 6 applies to the
initial data of both the small- and the large-scale runs, al-
though the amplitude of these P variations were of
different magnitude.

We discuss the small-scale run first. The grid length
was initially set equal to one Hubble length. Thus the in-
homogeneities are at first well inside the horizon. The

FIG. 6. Regions of small and large values of P in the initial
data. We express the contour levels as a percentage between the
minimum (0%) and the maximum (100%) value in the slice. (a)
The regions of small P are enclosed by 20%, 40%, and 50%
contours. In the small-scale run these correspond to
/=4. 973mp&, 4.986m~&, and 4. 993mp, . In the large-scale run
the contours have /=4. 12mp„4. 55m&&, and 4.77m&&. The
minimum value, near the back corner enclosed by all three con-
tours, was 4.959mp& in the small-scale run, and 3.69mp] in the
large-scale run. ibi The regions of large P are shown enclosed
by 75% and 90% contours (5.010mp] and 5.020mp& for the
small-scale run, 5.31mp& and 5.63mp& for the large-scale run).
The maximum value was 5.026mp& in the small-scale run, and
5.85mpi in the large-scale run. In some of the following figures,
quantities are plotted along a reference line. This line runs
parallel to the y axis, which in this figure goes to the right from
the origin. The reference line goes through the initial
minimum near the back corner and through the region with
large P near the right end of the y axis.

FICz. 8. The inAaton field at t =9.2tp&. We show regions of
small P enclosed by 15% and 30% contours.
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dynamical time scale of the infl. aton field is therefore
shorter than the expansion time scale, given by the Hub-
ble time. At the initial slice the energy density is dom-
inated by the kinetic energy of the P and Pii fields, ac-
counting for 84% of total energy. 13% of the energy is
in V(P) and 3% in field gradients (although at the point
of maximum VP they account for more than half of the
energy density). The initial Hubble time is t~=10tpi.
We arbitrarily set the initial time as to=t~(to)I2=5tpi
The time step is at first controlled by the Courant condi-
tion, and thus we get several hundred time steps per Hub-
ble time. %e show a number of contour plots of the slice

at cycle 256, or t =9.2tp~ ~ Of the total energy in this
slice, 52% is kinetic, 46% potential, and 2% gradient.
The Hubble time is now roughly 18tp&, so this slice is
about a quarter of a Hubble time from the beginning.

As the inhomogeneities evolve, they oscillate and their
amplitude is damped (see Fig. 7). After a quarter of a
Hubble time of evolution, the regions of small and large P
are quite difFerent from what they were initially (see Fig.
8). By the time the inhomogeneities have exited the hor-
izon, the inAaton field has become much more homogene-
ous than it was initially.

Since we started with Rat initial data, &h, IC, and R
were all homogeneous at the initial time (and R was
zero). The inhomogeneities in P induce inhomogeneities
in these curvature quantities.

We show regions of small and large expansion &h
after a quarter of a Hubble time in Fig. 9. Regions of
both large and small initial P end up as regions of small
expansion. The region of largest expansion forms a shell
surrounding the initial P minimum. This is partly due to
the large gradient energies in this region at early times,
and partly due to the inflaton field happening to have
large potential values in this region during the time when
most of the expansion inhomogeneity is generated. After
a volume expansion of about 100, further expansion is
rather homogeneous, and the &h profile stays the same
(see Fig. 10).

The extrinsic curvature X is related to the rate of
change in Vh. In F~i. 11 large absolute values of K in
the region of large &h are seen. Later K becomes rather
homogeneous (see Fig. 12). Regions of largest intrinsic
curvature R (Fig 13) se. em to be at or around regions of
small expansion. This is partly because in this run those
are more pronounced than regions of large expansion,
partly because expansion decreases R by increasing the

1
I

I ~ I
I

~ I I

512
384, 448

&56, 320
.................128, 192

cycles 0, 64

10

FIG. 9. The local volume expansion &h at t =9.2tp&. {a)Re-
gions of small &h are enclosed by 30%, 70%%uo, and 83% con-
tours. (b) Regions of large &A are enclosed by 94% and 98%
contours.

I I I I I I I I I I I I I I I I I I I

0 2 .6 8

FIG. 10. Same as Fig. 7 but for &h .

10
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FIG. 13. Scalar curvature at t =9 2t Reg1ons o" large R
are enclosed by 25%%uo and 75% contours.

FIG. 11. T1. Trace of the extnns1c curvature at t =9.2tpl. {a)
~ ~

Small values of ~X~ are enclosed by 50%, 80%, and 88% con-
tours. (b) Large values of ~X~ are enclosed by the 98% contour.

curvature radius. Figure 14 shows R along our reference
line at different times.

We show only the early part of this run, since the later
evolution is less interesting. The inQaton rolls down its
potential staying rather homogeneous. Inflation ends as
P reaches the bottom and begins to oscillate.

In the large-scale run the inhomogeneities are outside
the horizon. They do not oscillate. Rather, they main-
tain their shape without damping. After a few Hubble
times the regions of low (Fig. 15) and high P look very
much the same as initially (Fig. 6). Figure 16 shows P
along the reference line at various times through the en-
tire run past the end of inflation. We see that aside from
the Aattening of the sharp initial minimum, the inhomo-
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FIG. 12. Same as Fig. 7 but for Il . FIG. 14. Same as Fig. 7 but for R.
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sion. At first the effect of the other scalar field Pz (see
end of Sec. II) shows, but later the regions of the most
expansion match those of large P rather closely (Fig. 17).
Since the regions of large P and high infiation stay the
same, the inhomogeneity in the expansion becomes
steeper and steeper (Fig. 18). When infiation ends, some
regions have expanded by a volume factor of more than
10', while others have expanded by less than 10

For the extrinsic curvature we show just the 1D plot
(Fig. 19). The 3D plots would look intermediate between
the P and Vh plots. Note the correspondence between
Figs. 16, 18, and 19. Larger P, and thus V(P), means fas-

FIG. 15. Figures 15—20 show results from the large-scale
run. This figure shows the inAaton field at cycle 512, or
r =166rp„after about 6 Hubble times. Regions of small P are
enclosed by 15%, 34%, and 44% contours.

geneity maintains its shape. Because of the larger scale,
the Courant condition allows a larger initial time step for
this run.

The spatial pattern of the other scalar quantities fol-
lows that of P. Larger values of P lead to faster expan-

6 I I I I
I

I I I I
I

I I I
I

0—
I I I I t I I I I I I I

100 800 300
&~~PI

FIG. 16. The inAaton field along the reference line at every

512th cycle. The initial slice is at the top, and the last slices at

the bottom, as P moves down with time. The slices shown cor-

respond to t/t» =5, 166, 482, 598, 852, 1140, 1471, 1861, 2337,
2947, 3797, 5201, 9624, 6.02X 10, and 7. 10X 10 . Defining the

end of infiation as the time when Vlgl falls below 50&o of the

total energy, it happens at t =1.2X10 tp&. The run contains

four periods of postinAation oscillations. The last two slices

shown (close to each other) are from this era.

FIG. 17. The local volume expansion &h. (a) At cycle 64 or
t = 14.7tpi ~ Regions of large &h are enclosed by 60% and 80%%uo

contours. (b) At cycle 512 or t =166tpl. Regions of large &h
are enclosed by 5'Fo and 50% contours.
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Cg0

100

50

I I I I I I I small-curvature regions increases, so that later contour
plots would pick up only the largest-curvature region
near the back corner.

The Hamiltonian and momentum constraints were
monitored during the evolution. During the small-scale
run the maximum errors (root-mean-square relative
difference between the left and right sides) were Hamil-
tonian 0.2% and momentum 3.3%. In the large-scale
run these errors were smaller: Hamiltonian 0.05%,
momentum 0.3%. We ran these runs also with a coarser
grid. Going from a 32 grid to the 64 grid, the Hamil-
tonian error went down to about one-quarter, the
momentum error to about one-half.

'0 I I I I I I I I I I I I I

100 200 300

FIG. 18. Same as Fig. 16 but for &h. &h moves up with
time.

ter expansion, i.e., larger (more negative) K. This then
builds up as a larger cumulative expansion &h .

In Fig. 20 we show regions of large positive and nega-
tive three-curvature R at cycle 64, after half a Hubble
time of evolution. The largest curvature is at the region
where the expansion has been the smallest. This region
of large positive curvature is surrounded by a shell of
negative curvature. After more inAation, the curvature
decreases but the relative contrast between large- and

I I I I
s

t

-0.05

—0.1

I s i, , I

100 200 300
x/~„

FIG. 19. Same as Fig. 16 but for K. K moves up with t
Th

wi ime.
e initial slice, where E is homogeneous, falls below the area

plotted.

FI~. &0. Scalar curvature at t =14.7t». (a) Regions of large
positive R enclosed by 15%, 30%, and 50% contours

(R =0.15X10 mp&, 0.55X10 'm», 1.10X10 'mp&). (b) Re-

gions of negative R enclosed by the 3.7%%uo contour

(R = —0. 16X10 ').
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VI. CONCLUSIONS

We have created a working, truly three-dimensional,
numerical relativity code for studying inhomogeneous
inflation. The code has been tested against perturbation
theory with good results. On Cray Y-MP computers, a
practical grid size to run the code with is around
48 —64 . This is enough to handle an interesting amount
of structure with reasonable accuracy (but just barely).
Present memory limits would allow larger grids, but the
increased computation time leads to much worse
throughput.

A variant of this code is being used [13] at present for
interacting black-hole studies, with initial data computed
as described by Cook et al. [14],and with asymptotically
Aat (rather than periodic or reilective) boundary condi-
tions. Sizes at least up to 128 are being implemented on
a CM-5 computer [15]. We are working also to move the
cosmology code to this machine where it will be run with
inflaton and with other sources, to describe a number of
three-dimensional physical situations.

One of the main motivations for the inflationary
scenario was to explain the large-scale homogeneity and
isotropy of the Universe without requiring these proper-
ties as initial conditions [16]. An apparent shortcoming

in the main body of work on inflation is then, that it has
nevertheless been in the context of homogeneous space or
small perturbations around it. We have now presented
numerical simulations of inhomogeneous inflation, where
the inhomogeneity has been truly three-dimensional and
nonperturbative. These runs had sufficient inflation to
solve the standard cosmological conundra. In particular,
they contain regions where evidence of the initial inho-
mogeneity would not be locally observable. We have thus
demonstrated the viability of inflation with inhomogene-
ous initial conditions.
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