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B.elating black holes in two and three dixnensions
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The three-dimensional black hole solutions of Banados, Teitelboim, and Zanelli (BTZ) are dimen-
sionally reduced in various difFerent ways. Solutions are obtained to the Jackiw-Teitelboim theory
of two-dimensional gravity for spinless BTZ black holes, and to a simple extension with a nonzero
dilaton potential for black holes of fixed spin. Similar reductions are given for charged black holes.
The resulting two-dimensional solutions are themselves black holes, and are appropriate for inves-
tigating exact "S-wave" scattering in the BTZ metrics. Using a difFerent dimensional reduction to
the string-inspired. model of two-dimensional gravity, the BTZ solutions are related to the famihar
two-dimensional black hole and the linear dilaton vacuum.

PACS number(s): 04.20.Jb, 97.60.Lf

Although examples of black hole solutions abound in
two and four dimensions, it was until recently believed
that no such solutions exist in three spacetime dimen-
sions [1]. However, in a recent paper, Banados, Teitel-
boim, and Zanelli (BTZ) [2,3] found a vacuum solution
to Einstein gravity with a negative cosmological constant
which may be interpreted as a black hole. The solution
has everywhere constant curvature, but the global topol-
ogy is diferent from that of three-dimensional anti —de
Sitter space (AdSs). As a result, the causal structure of
the solution is closer to that of the Schwarzschild solu-
tion. However, the singularity hidden behind the horizon
is of a weaker form than that of Schwarzschild [3,4].

Below we discuss how the BTZ solutions may be
dimensionally reduced to solutions of various two-
dimensional theories of gravity. Our motivation is pro-
vided by the recent evidence that progress may be made
i.n understanding black hole radiation and evaporation
in the context of two dimensions [5]. The solutions we
derive may all be interpreted as two-dimensional black
holes, and some of the corresponding two-dimensional
theories of gravity may in principle be used to exactly
describe the scattering of rotationally symmetric matter
("S waves" ) off the three-dimensional black holes. Since
our present understanding of three-dimensional quantum
gravity coupled to matter indicates that it is nonrenor-
malizable, these models may provide the only route for
understanding the quantum behavior of the BTZ solu-
tions.

First let us review the BTZ solutions [2—4]. They arise
in a three-dimensional theory of gravity

S = d xQ —g (R+ 2A)

with a negative cosmological constant, i.e. , A ) 0. It is
straightforward to check that the Einstein field equations

B„—-Bg„+Ag„= 01

are solved by the metric

ds = N(r)dt +— + r [1V (r)dt+ de, (2)
¹ r

where

N'(r) = Ar' —M+ N (r)=—

dr
d8 = —Ar dt + +r d0.

Ar2

For J = 0, this metric is similar to Schwarzschild. It
has a single horizon at r = gM/A, and a singularity
at r = 0. However there are two important differences.
Firstly, (2) is not asymptotically Bat it is a constant
curvature metric. Secondly, the singularity at r = 0
is much weaker than that of Schwarzschild spacetime.
Whereas the singularity of Schwarzschild is manifested
by the power-law divergence of curvature scalars at small
r, the BTZ solution has at most a b-function singularity
at r = 0, since everywhere else the spacetime is of con-
stant curvature [6]. An interesting special case occurs
when M = 0. In this case the metric takes the form
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This should be regarded as the extremal or vacuum so-
lution of the J = 0 family. The spatial geometry of this
vacuum solution is an infi. nite wormhole, whose radius
shrinks to zero at r = 0 at an infinite spacelike proper
distance from the asymptotic region. Geodesics reach
the end of the wormhole at r = 0 within a Rnite proper
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ds = g„dx"dx = h;~(x')dx'dx' + 4 (x')d8, (3)

where p, v = 0, 1, 2 and i, j = 0, 1. Then it is simple to
see that the action (1) reduces to

S= d x —h4 B+2A (4)

which is precisely the 3T action. It follows that any solu-
tion to the equations following from (1), of the form (3),
yields a solution

time, and it is unclear how they should be continued be-
yond r = 0. However, since this solution is extremal, the
expectation is that a horizon develops before even the
lightest test particle reaches this point.

If J g 0, (2) has two horizons, and its causal structure
is similar to the Reissner-Nordstrom spacetime. When
M = v A~ J~, the two horizons coincide, and this should
be regarded as the vacuum solution for fixed J. As be-
fore, the spacetimes are of constant curvature and have
a singularity at r = 0 with distributional curvature and
torsion [3,4]. Solutions with M ( ~A~ J[ have no hori-
zon. It has been conjectured in [2] that these should be
discarded since they contain a naked singularity, except
when M = —1, J = 0, when the spacetime is AdS3.

The thermodynamics of the BTZ black holes suggest
that evaporation of the black holes should take place.
Since the temperature decreases with decreasing mass,
and is zero for the extremal solutions, these seem to be
the natural end points of evaporation [2,7].

Let us now discuss the possible dimensional reductions
of the BTZ black holes. We begin with the straightfor-
ward dimensional reduction from Einstein gravity with a
cosmological constant in three dimensions to the Jackiw-
Teitelboim (JT) theory [8] in two. Suppose that the grav-
itational field in three dimensions is independent of a sin-
gle coordinate, which we shall call 0, and that the metric
may be written in the form

and the maximally extended spacetime is the whole of
two-dimensional anti —de Sitter spacetime (AdS2),

ds = —cosh pd~ + A dp,

—oo ( 7) p ( oo)

which of course has no horizons. The dilaton in these
coordinates takes the form

M
C = —cosh psin A~

A

which vanishes when ~A7 = n7r. The embeddings of (5)
into (6) are shown in Fig. 1. It is clear from the figure
that t and r are Rindler type coordinates on AdS2.

In order to interpret the two-dimensional solution we
must look at the behavior of the dilaton. Recall that
the dilaton is the 00 component of the three-dimensional
metric, and that the three-dimensional solution is singu-
lar where it vanishes. It is therefore natural to cut the
two-dimensional spacetime off at this point, which we call
the "strong coupling" region (although this name should
not be taken too literally), if we wish to use the 3T theory
to model three-dimensional physics. In this case, (5) can
represent a black hole, whose Penrose diagram, shown in
Fig. 2, is identical to that of its three-dimensional coun-
terpart.

The two-dimensional version of the extremal solution
is also not geodesically complete unless it is extended

h, , (x'), 4(x'),

of the equations following from (4). We shall henceforth
refer to the field 4 as the dilaton.

The BTZ solutions with J = 0 are of the form (3), and
they therefore yield a solution to the JT model [9]:

ds = (Ar —M) d—t (5)

It is important to note that the dimensional reduction,
although trivial in appearance, ha.s radically changed the
properties of the metric. In three dimensions, the point
r = 0 is singular. The two-dimensional metric is perfectly
well behaved at r = 0. This is a result of the weak nature
of the singularity in the three-dimensional solution. The
metric (5) may be analytically extended beyond r = 0,
using the coordinate transformation

2 arctanp+ )1/2

tanh AMt

M—cosll p slil WA7
A

)

tanh p

cos A7

FIG. 1. Regions of the two-dimensional spacetime with
J=O covered by the coordinates r, t, embedded in anti —de Sit-
ter space. The diagonal and dashed lines have no special
significance Here rH = .gM/A.
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N=r=0 to end where the dilaton vanishes is both a blessing and
a curse. On the one hand, there is no singular region to
worry about, but on the other we must specify boundary
conditions at r = 0 in some fashion. In principle, how-
ever, by coupling matter to (4) in the natural way for a
dimensionally reduced theory,

d xg h4 —(R+ 2A+ h*'O, fO, f),

FIG. 2. The Penrose diagram for the region of the J = 0
spacetime for which C & 0. The diagonal lines now represent
event horizons, and the dashed line the "strong coupling"
region.

(see also Ref. [10] for a discussion of this spacetime).
The extended version of the spacetime is also identical
to anti —de Sitter spacetime, but for our purposes, we
should again restrict our attention to the region where
the dilaton is greater than zero. In this extremal case
the spacetime

dp
d8 = —Ar dt +

has a "naked singularity" at r = 0 in the sense that the
region where 4 = 0 is not hidden behind a horizon. How-
ever, this is of no consequence: In both two and three-
dimensions (as discussed above) we expect that no matter
can probe this region of spacetime without a horizon de-
veloping. A Penrose diagram of the restricted extremal
solution is shown in Fig. 3, which again is identical to the
three-dimensional Penrose diagram. Incidentally, this re-
gion is the steady-state universe solution [11], but with
timelike and spacelike directions interchanged.

The two-dimensional reduction outlined above yields
a two-dimensional theory which can be used to model
S-wave scattering oK a spinless BTZ black hole. That
solutions in two dimensions must be restricted by hand

and imposing an appropriate boundary condition at C =
0, it may be possible to model the evaporation of a spin-
less BTZ black hole.

It is also possible to construct an effective two-
dimensional theory which arises from the dimensional re-
duction of the J g 0 solutions of BTZ, and which can be
used to study S-wave scattering for the spinning black
holes. We begin by considering the reduction of a metric
of the form

ds = h, , (x') dx*dx' + C (x') d0 + A; (x*)dx'] . (7)

The corresponding two-dimensional theory involves the
three fields h, ;~, A;, and C. If we wish to consider space-
times of fixed spin, however, we can use the identity

43m'~0;A~ = const,—6

which follows from the field equation for A;. The con-
stant is precisely the spin J of the metric (7), since it
is equal to the charge corresponding to asymptotic rota-
tional invariance [12]. Using this identity, the action (1)
for spacetimes of spin J may be dimensionally reduced
to

S= d xQ h4~ R+—2A-
2e &

(9)

This is an appropriate effective action for looking at S-
wave scattering off' a spinning BTZ black hole (interac-
tion with rotationally symmetric matter will of course
keep the black hole in the spin J sector). Again, any
solution h;~, 4 to (9) corresponds to a solution to (1) of
spin J, of the form (7). In particular, the r, t section of
the BTZ black hole of spin J,

r

8

dr2ds' = —
~

Ar' —M+,
~

dt'+4"q

(10)

is a solution to (9), with 4 = r. However, in this case,
the equation for the scalar curvature is

B+2A+
3J

244
=0

FIG. 3. The Penrose diagram for the region of the extremal
two-dimensional spacetime with M = J = 0, for which C & 0.
The dashed line represents the "strong coupling" region.

so that B need not be constant. Indeed the two-
dimensional spinnmg black hole (10) and extremal so-
lution have power-law singularities in R at r = 0. The
Penrose diagram for each of these spacetimes is identical
to that of the three-dimensional metric, and is shown in
Fig. 4.
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In addition to the BTZ solutions described above, it
was also shown in [2] that charged black hole solutions
similar to (2) exist. These are solutions following &om
the action

and the J g 0 sectors, provided that we assume that F,t
is independent of 0 and that the other two components
F„g vanish. The resulting two-dimensional action is

d2xg h4—
~
R+ 2A — + 47rGF„„F""

~

.
2@4

and take the form (2), but with

N (r) = Ar —M —S~GQ ln(r/ro) + 4r2

and

These solutions have a power-law curvature singularity at
r = 0, where R ~ 87rGQ /r . They can have two, one,
or no horizons, depending on the relative values of A, J,
GQ, and M' = M —87rGQ jn(~Are). In the simplest
case J = 0, these possibilities depend on whether

The solution in two dimensions corresponding to the
BTZ solution is the obvious analogue of (5) and (10)
for Q g 0. The electromagnetic field has F„t —— Q/r-
as before. This two-dimensional spacetime has a cur-
vature singularity at r=O, even for J=O, since B
—2A —87rGQ /r —3J /2r . As in three dimensions,
this may be a naked singularity or may be shielded by
one or two horizons.

Finally, let us describe a third dimensional reduction
of the uncharged BTZ black holes. This involves the re-
duction introduced in [13] from the three-dimensional ac-
tion (1) to the string-inspired action for two-dimensional
gravity [5,14],

M' —4vr GQ (1 —ln I4vr GQ ] )

is greater than, equal to, or less than zero, respectively.
The action (ll) may be dimensionally reduced in a

similar way to that described above, in both the J = 0

or, rather, to the action [15]

d xQ —h(CR+2A),

Ci
II II

CD

CD
II

which is obtained from the string-inspired action by
means of the identification h,.z

——h, ;~e &, C = e @. To
get the action (12) from (1), consider the usual Kaluza-
Klein dimensional reduction used above to obtain the JT
action (4) [or the equivalent action obtained from spin-
ning metrics (7)] followed by a shift of C' by a constant:

4m4+—
A

(13)

(this procedure is in fact equivalent to implementing the
shift (13) on the action (1) and then reducing [13]). It
yields a two-parameter family of actions which include
the string-inspired action in the limit A ~ 0. Notice
that the potentially divergent term

CD
II

CD
II

CD
II

FIG. 4. The Penrose diagram for the two-dimensional
spacetimes with J+0. (a) has M) v A~ J~ and r~

(M + VM —AJ ) /2A and (b) is the extremal solution

with M = ~A~ JI and r~ = gM/2A.

d x —B
A

is proportional to the Euler characteristic of the two-
dimensional manifold and, being a topological invariant,
it does not aR'ect the equations of motion. Also, note that
the e8'ect of the shift as seen from the three-dimensional
point of view is to push all points in the "extra" 0 dimen-
sion an infinite distance away, making the proper length
of a 0 orbit diverge.

Unlike the JT reductions, this procedure gives the
same result irrespective of the value of J. This is best un-
derstood in the first-order formalism, where the dreibein
e and the spin connection u are the dynamical variables
(the action (1) is then replaced by the Chem-Simons ac-
tion for the anti —de Sitter group SO(2,2) [16]). Inserting
the condition that all fields be independent of 0 into the
vacuum equations of motion, we obtain two first inte-
grals:
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2c g(dag Ae geag + ~ gulag

(a = 0, 1, 2). The flrst of these is precisely (8), and is
equal to the angular momentum of the spacetime. The
second quantity is the Grst integral of the tt component
of Einstein's equations, and may be identified with the
mass of the spacetime [17]. A metric such as (7) has
e g ——4 and, in the gauge e g ——e g ——0,

N „= lim
A~O

—N = lim
AmO

24QJ2g = J) A4 +~ g(ug ——M.

The BTZ black hole (2) has

e = Ndt, e N' e = 4'(N dt+ de),

= ' ——CNN „—C „NN dt —4 „Ndo,

(14)

(15)

The dependence on J disappears when the limit is taken,
and the solutions depend only on the parameter m.

Following Ref. [13],the two-dimensional metric, deter-
mined in this case only by N, is ds = Ndt—+dr /N .
This is flat, since dr/N = dN/A. The familiar black hole
solution, with a mass m = M —A /A, appears when we
consider the "string" metric 4 h,.~,

—CNg „dr
2N

2AI + N2
dN+ (17)

NN„+ —C N N „dt+ -C (16)

J J
N

@3 &3

and in that case, given that C = r, the form of the func-
tions N and N follow from Eq. (14):

and can be brought to a more familiar form by the coor-
dinate change AT = ¹inh(At), AX = Ncosh(At). Note
that the shift relates two-dimensional black holes with 6-
nite mass m to three-dimensional ones with infinite mass
M, for which the horizon has been pushed to infinity and
all that remains is the black hole interior, and vice versa.
(17) has been extensively studied in [5,14,15] and we shall
not discuss it further, except to say that the linear dilaton
vacuum solution occurs when m = 0 or M = Az/A.

up to an irrelevant integration constant.
The effect of the shift (13) on N and N may be com-

puted immediately from (14) in a similar way, by replac-
ing 4 by O+A/A, taking the limit A —+ 0 and then setting
4 = r [18]. It follows that
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