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Nonsingnlar scalar-tensor cosmologies
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We present a class of scalar-tensor gravity theories which admit simple Friedmann cosmological mod-
els in the vacuum and radiation-dominated cases. A subclass of these theories yields a one-parameter
family of cosmological models displaying either expansion from an initial singularity or a bounce follow-

ing contraction from an infinitely extended initial state.

PACS number(s): 98.80.Hw, 04.50.+h, 04.60.+n, 12.10.Gq

I. SCALAR- TENSOR GRAVITATION THEORIES

Scalar-tensor gravity theories have been formulated in
two diFerent ways. Steinhardt and Accetta [1] express
the Lagrangian of the theory in the form

Le, = f(N)R +—
—,'c), @c)'&0+16mL~,

where N is a scalar field f (4) with coupling to the four-
curvature and I. is the Lagrangian of the remaining
matter fields. If we define a new scalar field P=f(4)
with a coupling

co(P)= —,'f (f')
then (1) becomes

II. FRIEDMANN UNIVERSES

We shall confine our attention to zero-curvature Fried-
mann models with metric (c =1),

ds =dt a(t)I dr—+r dg +r sin gd$2], (7)

where a (t) is the expansion scale factor. We shall assume
that the material content of the universe is blackbody ra-
diation with the equation of the state relating the pres-
sure p to the density p as

for the prescribed matter content. We shall study a class
of exact cosmological solutions in which P is not con-
stant, using the methods introduced in Ref. [6].

L~ = PR +P '—co(P)d, Pd'P+16srL (3)
3p =p

Equations (6) and (7) then reduce to

(8)

The theory proposed by Brans and Dicke [2] arises in the
special case that co=const and f(N) ~@ . The relative
merits of adopting (1), as do La and Steinhardt [3], or (3)
as do Barrow and Maeda [4], have been discussed by Lid-
dle and Wands [5].

By varying the action associated with (3) with respect
to the space-time metric and the scalar field P we obtain
the generalized Einstein equations and the wave equation
for P as follows:

R,b ,'g, bR = —8'—g —'T,
b co(P)P—

p+3aa '(p+p)=0 .

Hence, with (8) we have

8~p ——3I a (10)

where I ~0 is a constant. The case I =0 will define the
vacuum model in which p =p=0.

The metric (7) reduces (4)—(6) to the two equations

a I + a co(P) P
Pa 6

't 4.;b g.b—
I 3+2co(P) I $=8' T co'(P )(h; P', —
Tab 0;b

(4)

(6)

3a . P co'(P)
a 3+Zco(P )

where an overdot denotes d /dt.
If we introduce a conformal time g through

adg=dt

(12)

(13)
where T' is the energy-momentum tensor of the matter
content of the theory.

Clearly, if T, the trace of the energy momentum tensor,
vanishes, and P is a constant, then (4)—(6) reduce to the
standard Einstein equations with a gravitational constant
G =P '. Hence, any exact solution of Einstein's equa-
tions with a trace-free matter source will also be a partic-
ular exact solution of the scalar-tensor theory with P, and
hence co(P), constant. However, these particular solu-
tions will not necessarily constitute the general solution

then, denoting d /d i) by a prime, (12) becomes

2a'
~,

(5' co'(P)
a 3+2co(P)

This integrates to give

y'a2=3''2A(2co+3) 'r'; A =const .

If we introduce the variable employed by Lorenz-Petzold
[7] in the more specialized context of the Brans-Dicke
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theory (where co=const), then the conformal relationship
between general relativity and scalar-tensor theories [4] is
fully exploited:

(16)

This then transforms the generalized Friedmann equation
(11) into the form

y' =4Iy+P' a (3+2co),

which, upon using the integral (15), becomes

y' =4Iy+ 2

(17)

(18)

In the vacuum and radiation cases we have [6] (for y'WO),

y (g) = A (g+go), in vacuum,

y(g)=I (r1+g ) A /4—I, p =p/3 .

(19)

(20)

To complete the solution of the problem after the
specification of co(P), we integrate (18) to obtain y(q),
divide (15) by y to obtain P'/P, integrate to obtain P(g),
hence, a (q ) from (16) and a ( t) from (13). This procedure
requires the solution of the following equation to deter-
mine P(r) ):

(2~+3)'"
dP =&3 ln(g+ go), in vacuum, (21)

These relations allow us to express x (rt) explicitly in all
the cases where —,'a is an integer or a half integer. Hence,
knowing y(g) from (19) and (20), it is possible to deduce a
relation between a and g. However, in general, this rela-
tion is not invertible because of the mixture of logarithms
and powers in the expressions for the I . There are three
simple examples where this is not the case. One is the
Brans-Dicke theory, which arises when a =0, solutions of
which were given in Ref. [8]. Another is when a= 1, as
in the theory of Barker [9], solutions of which were given
in Ref. [6]. The third is the case where a=2. We shall
study this previously unexplored case in detail because it
is representative of the behavior of other cases with a&2
at early times as x —+1 and g+ gp~0.

Consider first the a =2 vacuum case. We have

(2P)' ln[x '(1 —x)] =&31n[g+go] .

Hence,

4, (a+no)'
1+(g+r)o)

(29)

(30)

and all the I with half-integral values of —,'a are easily
derived using the recursion relations

I +ii2 —2(2m —1) x' i ' +I~ (ii2) .

21 q+2I g —A
dg=&3 ln

2I g+2I go+ A

when p =p/3 .

where

A, = (3/2P)'

(22) so

(31)

We shall investigate solutions of scalar-tensor theories
specified by choosing to(P) to be of the form

A (r1+r1o)[1+(g+go) ]a2
0,(a+no)'

(32)

2'(P)+3=2P(1 P/P, )— (23)

where a, p) 0, and p, are constants. This representation
has been introduced by Garcia-Bellido and Quiros [10].
The case n =0 corresponds to Brans-Dicke theory.
Barker's theory [9] is obtained when a= 1 and P= —

—,'.
For the class of theories defined by (23) the integral on
the left of (21) and (22) reduces to

a'(r1)=A/, 'g' ~[1+g~], 0&A, &1,

4(n) =4,n'[1+v']

(33)

(34)

If we choose go=0, then a (0)=0 so long as 0 & A, & 1 and
the full solution has the form

I = (2 P)'i—'f x i'(x —1) 'dx,

where

x=1—PIP, .

(24)

(25)

Hence, at large q, the asymptotic form is

a ~g ~t, /~const .

As g —+0 we have

(1—A, )/2 ~ t(1—A, )/(3 —A, ) ~ ~ A, ~ t2A, /(3 —A, )

(35)

(36)
The family of integrals in (24) can be evaluated in a con-
venient closed form for a variety of values of 0;. We shall
present solutions for the cases in which —,a is integer
valued or half-integer valued. If we put —,'u= E:Z+, then
we have a ~g~t'/3, (37)

The particular case A, =1 requires separate treatment.
We can pick g0= —1 so that a =0 at g=0. Thus, we
have at all times

m —1I =(2P)'i g (m —k) 'x" +ln
k=1 x

If —,'a= —m HZ, then we have

m —1i =(2P)' g (m —k) 'x +ln~x —li
k=0

(26)

(27)

(38)

Thus we see that P(t) changes sign at t =—', ( A /P, )' on
approach to the singularity at t =0.

When 3&X& 1, the large q behavior is the same but
a (g) has a minimum when
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and

When g&g~, we have

(39)

(40)

(41)

where f (ri) is given by

71+go
—A /21

'9+go+ A /2I

Hence,

a =I p, 'I(il+rjo) —2 /4I I I 1+f~}f (44)

This is a decreasing function of time so long as 3 & A, & 1.
The form of the solution a (il ) is shown in Fig. l.

When A, =3 there is no singularity. There is an expan-
sion minimum at g=2'; the small g time behavior is
a (71 ) ~ g

' ~ exp( ct), a—nd p ~ exp(3ct), with c a posi-
tive constant, as t~ —~.

For A, )3 we see that a(g) ~ il ' "/ and
t ~ —2(A, —3) 'g( ' so t~ —~ as g~0 and there is
no singularity. As t ~—oo, we have p ~ il ~0.

This concludes our analysis of the vacuum solutions
for all values of X & 0. We have found that there is an ini-
tial singularity for models with 0& A, ~ 1 but a "bounce"
at an expansion minimum in all cases with A, & 1, al-
though none of the bouncing solutions are oscillatory in
either g or in t time.

Now we consider the behavior of the radiation-
dominated models when a=2. We And

As in the vacuum case, a =0 at finite g if 0 & k & 1. We
pick go= —,

' A I ' so that a =0 at g =0 and

a =I P, 'IiI +Al 'i)I I 1+f I,
with

(45)

I

g+ A/I

Asg —+~ wehave

a ~g~t'; /~const .

(46)

(47)

Thus the solution approaches the usual radiation-
dominated Friedmann model of general relativity. This is
to be expected since /~const ensures that co(P) —const.

As i)—+0, f~I 3 'il, and (0&A, &1), we have the
solutions

fi(1+fA) i (42)
(4g)

(49)

l(
Q

(50)

Hence, at late times there will be an approach to the ob-
servational requirements of general relativity if a )—,, and
this includes the a =2 theory we have studied here.

For all values of A, &0, the behavior of the radiation-
dorninated solution approaches that of the vacuum solu-
tion studies above for g~0.

We see that all the solutions in this theory approach
the general relativistic Friedmann radiation solution at
late times since P tends to a constant value as t —+ ~.
This ensures co(P)~ ~, but this is insufficient to guaran-
tee that the scalar-tensor gravity theory specified by cu(P)
will be in accord with solar-system tests of gravitation.
This requires, as co~ oo, that co (P)co —+0 in this limit
also [11,12]. For the class of theories specified by (23) we
see that at large co, when P~P„ this condition requires

(1—PIP, ) '~0 .

FICx. 1. The variation of a(g) and a(t) for the Aat vacuum
models in the singular and nonsingular cases where 0&A, ~1
and A. & 1, respectively. (a) 0& A, ~ 1: the expansion begins at a
singularity located at g=t =0. (b) k) 1: there is an expansion
minimum at g =g;„corresponding to t =t;„.As t ~—~ the
conformal time g ~0 and a ~~ .

III. SUMMARY

In this paper we have found exact Friedmann cosmo-
logical solutions to a class of scalar-tensor theories of
gravitation. This class contains some previously studied
theories of gravitation as well as providing a simple exact
description of a range of behaviors to be found in more
complicated scalar-tensor theories. A subclass of the
cosmological models provides simple examples,
parametrized by a single constant A, of vacuum, and
radiation-filled cosmological models which can reach a
singularity or bounce in the past according to the value of
A, . These theories produce solar-system observations that
converge upon those predicted by general relativity. This
collection of simple solutions provides a testing ground
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for a variety of ideas and physical processes in the very
early Universe. They allow us to investigate whether the
presence of an expansion minimum leaves any trace in
the subsequent structure of the Universe.
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