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We analyze the behavior of radiation-filled, homogeneous, and isotropic cosmological solutions to a
generalized higher order gravity theory which is derived from a gravitational Lagrangian that is an arbi-
trary function of the scalar spacetime curvature f(R). We give necessary and sufficient conditions for
the existence and stability of general relativistic o =+1,0 FRW solutions within this general theory. We
show that under some general conditions any homogeneous and isotropic solution of general relativity is
also an exact solution of the f(R) theory, and every radiation solution (not necessarily isotropic) in gen-
eral relativity is an exact solution in higher order gravity provided there are no nonzero constants and
the Einstein term is present in the gravitational Lagrangian of our theory. We then prove that nonflat
FRW solutions of general relativity are generically unstable and so do not approach the corresponding
ones in higher order gravity for large times. This may be interpreted as an indication that homogeneous
and isotropic solutions of higher order gravity cannot be obtained from the corresponding nonflat FRW
solutions of general relativity via perturbation theory. However, we find a stable regime for flat FRW
solutions of general relativity in higher order gravity. In particular, under fairly general circumstances,
flat FRW solutions of general relativity are stable against homogeneous and isotropic perturbations in
higher order gravity and always approach their corresponding ones in the generalized theory at the large
time limit. The requirements for stability of the flat FRW solutions in higher order gravity coincide with
well-known constraints for the absence of tachyons and the existence of complex instanton solutions in
the theory, and are exactly those needed to produce bouncing, regular solutions on approach to the
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singularity.

PACS number(s): 98.80.Hw, 02.30.Gp, 04.50.+h

I. INTRODUCTION

Hilbert [1] was the first to recognize the fact that the
field equations of general relativity can be obtained from
an action principle of the form (see Sec. II for notation)

Sor=—+[LorV—g d*x , (1)
where
Lsr=R (2)

and R is the Ricci scalar. Since then, there have been
numerous attempts to generalize this action by consider-
ing action functionals that contain curvature invariants
of higher than linear order in (2) (see, for instance, [1,2]).
These works examined the effects of “quadratic Lagrang-
ians” which involve combinations of the four possible
second order curvature invariants R2, R, R%,
R,pcaR %, and e*™R ;R , where £ is the complete-
ly antisymmetric tensor of rank 4. Moreover, on ap-
proach to spacetime singularities, one expects that curva-
ture invariants of all polynomial orders should come into
play and acquire significance. Motivated by such con-
siderations, one is led [3—-5] to consider the effects of an
obviously generalized gravity theory which is obtained
from a Lagrangian that is an analytic function of the sca-
lar curvature alone, for example, a polynomial in R. We
collectively call these theories higher order gravity
theories. This choice is obviously not totally general
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since we exclude contributions from any curvature invari-
ants other than R [to include them would greatly compli-
cate matters because the number of curvature invariants
of dimension exceeding (length) ~2" increases very rapidly
with n (cf. Ref. [3])], but has triggered several studies
which have contributed a lot to the uninvestigated area of
higher order gravity (see Ref. [6] and references therein).

One reason for considering higher order gravity
theories is closely linked with cosmology. Since there is
no a priori physical reason to restrict attention to linear
gravitational Lagrangians (which, of course, produce gen-
eral relativity) (see, however, in this respect, Ref. [5]), one
expects that the inclusion of quadratic or higher order
terms in the gravitational action might produce better
behavior of the theory near singularities where R — oo
and t—0 and also recover the familiar Friedmann-
Robertson-Walker (FRW) solutions of general relativity
when higher order corrections become negligible in the
large ¢ limit. On a more fundamental level, we insist that
such drastic alterations of the action for general relativity
must appear ultimately in the gravitational action and
this is intimately connected with quantum gravity. The
principal hope here is that higher order gravity theories
subject to constraints would create a first approximation
to an as-yet unknown theory of quantum gravitation.
Last but not least, higher order gravity theory can be
viewed as a stochastic gauge theory of gravitation wherein
the basis for the gravitational Lagrangian is a completely
arbitrary function of the scalar curvature [7].

In 1970, Ruzmaikin and Ruzmaikina [2] analyzed the
singularity behavior and stability of the o =0, radiation-
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filled FRW solutions to quadratic Lagrangian theories of
gravity. This was partly motivated by the well-known
fact that these solutions in the framework of general rela-
tivity are geodesically incomplete to the past and future.
Their results pointed to the fact that these solutions may
avoid the initial singularity, but if they did, they failed to
approach the FRW solution of general relativity, a ~¢172)
when the quadratic quantum corrections become negligi-
ble as t— . Also, in the case when their solutions ap-
proached the FRW solution of general relativity, they
also had an initial singularity and, in addition, R — « as
t — oo. These results, if true—see comments at the end
of Sec. IV—show that, at least for the case of quadratic
Lagrangians they considered, higher order theories of
gravity are not completely satisfactory.

In the years following 1970, several consequent direc-
tions were taken up by many researchers in the field as
follows: It is possible to show [8] that the analytic choice
L,=R +R*" leads to some bouncing FRW solutions
which approach the general relativity FRW solutions at
late times. However, one can prove [9] that the regulari-
ty of these solutions is unstable with respect to metric
perturbations corresponding to rotational waves, except
for some unphysical cases. Adding to L, a term propor-
tional to some hypergeometric function of R leads to
some bouncing, regular solutions [10], but the question of
stability with respect to metric perturbations is still an
open one. Another attempt along these lines was that of
Ref. [11] wherein “exotic” actions with terms proportion-
al to InR were considered. In this case the action be-
comes nonanalytic and one loses much of the aesthetic
appeal of the theory.

More recently, a more complete analysis was undertak-
en by Barrow and Ottewill [3] who considered theories
with a Lagrangian proportional to an analytic function of
the scalar curvature, f(R). Their results reinforced
those of Ruzmaikina and Ruzmaikin and pointed to the
fact that the pathologies unraveled in [2] are in a sense
universal and hold also for this more general case.

In this paper we search for the existence and stability
against homogeneous, isotropic perturbations of the
o =0,=1 FRW solutions to a higher order gravity theory
that is described by a Lagrangian which is an analytic
function of the scalar curvature (see below). Our main re-
sults are as follows. We first prove that nonflat,
radiation-filled FRW solutions and also some homogene-
ous and anisotropic solutions exist in the generalized
framework of higher order gravity theories. The FRW
solutions are generically unstable with respect to pertur-
bations in higher order gravity theory, but there is a sec-
tor of the theory which includes stable solutions with
respect to homogeneous, isotropic perturbations at the
large ¢ limit. This last result was not appreciated before,
and it is interesting that the stable solutions are also those
that become nonsingular on approach to the singularity.
This, we believe, sheds new light onto the question of the
viability of higher order gravity.

The organization of the paper is as follows. In Sec. II
we mainly establish notation. In Sec. III we discuss ex-
istence conditions for nonflat, radiation-filled FRW solu-
tions and also of some anisotropic solutions in the frame-
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work of higher order gravity theory. In Sec. IV we ana-
lyze the stability of FRW solutions with respect to per-
turbations into higher order gravity. In Sec. V we discuss
our results. Additional mathematical details and ex-
planation of our asymptotic analysis are presented in the
Appendix.

II. FIELD EQUATIONS

We consider a higher order gravity theory given by a
generally covariant Lagrangian density of the form

Lyoc=[f(R)+«kL,, 1(—g)'"?, (3)

where f(R) is assumed to be an analytic (differentiable as
many times as necessary) function of the scalar curvature
and L,, represents possible matter couplings.

By varying Lo With respect to the metric tensor g,
one obtains the field equations

BLyoc =/f'(R)(—g)'?8R +1f (R)(—g)'’g**6g,,,
2 8V —gL,)

—k = (—8)'"%8g, » @
4 —8 8gab & Ba
where OR can be expressed as
8R=P?% —R“%8g,, , (5)
with
Pa:(gacgbd_gadgbc')agcb;d (6)

(we use a semicolon and V indistinguishably). Subtract-
ing a total divergence, the field equations for our theory
become [4-6]

S'Rap = 3/8ap = Va VoS +8ap TS +KT =0, @

where O0=g,,V,V,,V, is the usual covariant differential
operator, (')=d/0R, and we identify the stress-
energy tensor T, with the variational derivative
(2/V'—g )8V —gL, )/8g°®. Our analysis will be fo-
cused on o0 =11,0 FRW solutions to the field equation
(7). The standard FRW metric in polar coordinates is

dr?

‘_‘0'?‘2

ds2=_dt2+a2(t) +r2(d02+8in29d¢2) s

(8)

where the values 0=+1,0, and —1 correspond to
closed, flat, open three-surfaces (and a,8=1,2,3), respec-
tively. Below, we follow the sign conventions of [12].

For this metric,

i
Ryp=3%
00 a’ 9)
Ry=— G429 150
ap 2 22 22 8ap > (10)
.e .2
R=—6|"+5+2 (11
a a? a?

Note that OR = —[R +(3d /a)R ).
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Then the only necessary field equation is the (00) com-
ponent of the field equation (7). This reads

f’ROO+%f+3f”%R + Ty =0 (12)
or, using (9)-(11),
f"a%da+aa’d —24*—24%0 ]
+1ifadi+Lfat+La*Ty=0. (13)

Also note that the trace of the field equation (7) is given
by the equation

Rf'—2f+3f" R’+3%R +3f"R*+T=0, (14)

where T =gT,, and we shall make the assumption that
T,, represents the stress-energy tensor of a perfect fluid

with density p and pressure p. Thus p =yp=yTy and
s0 p=To=poa >7*Y, with p, constant.

III. EXISTENCE

We start by giving an existence condition for the FRW
solutions within the framework of higher order gravity
theories.

Proposition 1. Any homogeneous and isotropic solution
of general relativity is also an exact solution of the f(R)
theory provided (a) the energy-momentum tensor associ-
ated with this solution is trace-free (i.e., it is a radiation
solution), (b) f(R =0)=0 (i.e., no nonzero constants in
Lyog ), (©) f'(R =0)70 (Einstein term present in Lyog )

Proof. See Ref. [3].

The result is that the FRW solutions to the f (R) radi-
ation models differ from those of general relativity only in
the definition of a numerical constant.

We can now generalize proposition (1) to include non-
FRW solutions of general relativity, for example, homo-
geneous and anisotropic solutions. This is not difficult
because conditions (b) and (c) above greatly simplify the
structure of the (00) component of the field equation (7).
Thus we have [6] the following generalized form of pro-
position (1).

Proposition 2. Any radiation solution of general rela-
tivity is also an exact solution of the f(R) theory provid-
ed that conditions (b) and (c) in proposition 1 are valid.

Proof. From the Einstein equations we know that when
T =0 the Ricci scalar also vanishes, R =0. Thus the (00)
component of the f(R) field equation (7) becomes

f'Rop+if=—Tg . (15)

In the case of radiation, Ty, =pea ~*; assuming condi-
tions (b) and (c), this equation gives

Roo=—poa “*[f(0)] 7" . (16)

This equation is identical to the dynamical equation in
general relativity for a general radiation-filled universe up
to a numerical constant [ £'(0)]™ L.
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IV. STABILITY

We now begin our analysis of the solution space of the
field equations of our theory described by (3) by writing
down the general stability equation for solutions of equa-
tion (7). Let a, be a particular exact solution of (7). We
then look for solutions of the form

a()=ay()[1+e(t)], le(n)] <<1. (17)

By substituting the perturbed solution (17) in the (00)
component of the field equations, Eq. (13), and linearizing
about the exact solution a,, we obtain a differential equa-
tion for the perturbation &(¢) which now reads [3]

A€+Be+Ce+De=0, (18)

where the coefficients 4, B, C, and D are functions of a,,
Ro=R(aqy), fo=Sf(Ry), fo=f'(Ry), etc. It is clear
then that when we take f(R) to be analytic we assume
that f(R) can be expanded in a Taylor series in

We next describe the necessary conditions for the
FRW radiation solutions to be stable solutions of the
f(R) theory. To examine the behavior of perturbations
to the Friedmann solutions within the context of higher
order gravity theories, one simply substitutes the unper-
turbed Friedmann radiation solutions

ay(t)=(t —ot?)1”? (19)
into Eq. (17). To simplify the calculation, we set [6]

u=t —ot? (20)
and

v=1—20t . (21)

Then, substituting the unperturbed FRW radiation solu-
tion (19) into the perturbation equation (18) and after
some manipulation, we find the perturbation equation [6]

v o u 2p
4o |3V fo v
2 o ur] 35 4
’ 9![/
S P I R LA L
3o v wu BV o u
4
Po_le=0. @
9fouv

Equation (22) describes the behavior of homogeneous,
isotropic perturbations to the radiation solution (19) in
closed (o =+1), flat (0 =0), and open (0 =—1) FRW
universes in the context of higher order gravity theories
derived from the gravitational Lagrangian (3). By solving
this equation for the perturbation €, we can decide
whether or not the 0 =0,+1 FRW radiation solutions of
general relativity are stable against homogeneous and iso-
tropic perturbations in the context of the £ (R) theory.
We divide our analysis into three parts according to
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whether o =0, +1,0or —1.
Let us first assume that o =—1 (open FRW model).
Then Eq. (22) takes the form

13,5 485" 1, fo |,
et | ——5+ |E— Py sl (2
t t o t 3fo
' 2 3611
+ | Lo L) 2P f° —2|le=0. (@3
3fo t ¢ 9f¢ 0

We see that terms that involve cubic pieces of f(R) are
coupled to terms that die off like t ~* or ¢ ~3 for large t.
Neglecting such terms asymptotically as z— «, we get
the equation

e+ %@:—)&HAZ%FO : 24

where we have set A2=f( /3. We first note that a spe-
cial solution of (24) is [6]

Ep=1 - (25)
We set
e(t)=tu(t), u(t)=y(1), (26)

and the perturbation equation (24) becomes
t% 48ty + (10— A% 2)y =0 . 27)

This is a Lommel equation (cf. Ref. [13]). Assuming
A?>0, i.e., A>0, without loss of generality, the general
solution can be written in terms of two linearly indepen-
dent cylinder functions (see the Appendix for the full
derivation) as

y(O=t777[c\I,,(At)+c,K5,,(AD)], A2>0, (28)

where I, ,(At) and K ; ,(At) are the modified Bessel func-
tions of the first and second kind, respectively. Substitut-
ing (28) in (26), we obtain

e)=c,t [t770, ,(Ar)dt
+eyt [ 177K, (A)dt +eyt, A2>0. (29)

This is the general analytic solution for the perturbation
€ with three (as required) arbitrary constants ¢;,¢,,c3.

Now, if A2<0, we set k?=—2A2, where k >0 without
loss of generality, and the general solution for £(¢) is al-
tered. The general solution of the perturbation equation
(27) becomes

Y@=t c\Js5(kt)+cyd 55 (kD)] ,
A2<0, k>0, (30

wherein J;,(kt) denote the standard Bessel functions.
Therefore the general solution for the perturbation e(t)
now reads

e()=c,t [ 17772, ,(k)dt
+C2tft_7/2j_3/2(kt)dt +C3t N
A?<0, k>0. (31)
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To find the asymptotic behavior of €(z) as t — o, we con-
sider solutions (29) and (31) separately (see the Appendix
for the full derivation). Equation (29) yields the asymptot-
ic form

e(t)~eM, A?>0, t—o , (32)
and (31) gives the form
e(t)~t, A?<0, t— oo . (33)

It is clearly seen from Egs. (32) and (33) that the pertur-
bation €(¢) is unbounded as z— «. This means that the
corresponding homogeneous and isotropic FRW o= —1
solutions are unstable in higher order gravity irrespective
of the sign of A%

The analysis of the 0=+1 case is completely analo-
gous to the 0 = —1 case discussed above, and so we sim-
ply quote the results (see the Appendix). Equation (22)
with o = +1 yields, for t — o,

e _i_.éﬂz.s_kz%szo i (34)

Under the transformation (26), Eq. (34) yields the
Lommel-type equation

t3 —2tp +(A%2—10)y =0 . (35)

Solving this, we obtain the asymptotic form for the per-
turbation as follows:

e(t)~t4, A?>0, t—> o . (36)
The case with A2 <0 gives
e(t)~e*, A2<0, t—> o , (37)

where we have again set k2= —A\2 (k >0). The net result
is that the o = +1 solutions are unstable in our theory.

Last, we analyze the case of a flat FRW metric [0 =0
in Eq. (8)]. Here the perturbation equation (22) takes the
form, for t — o,

2

ey S 1 A
2 o
8+_2t8— A +_t2 8—-—t £=0. (38)

In contrast with the previous cases, we note that this
equation has a special solution of the form

1
Ep=" - (39)

If we thus set

s(t)—‘-%u(t), u(t)=y(e), (40)

we obtain the Lommel equation
FH—= 5= (=0 1)

If A2>0, ie., A >0, without loss of generality, then this
equation has the general solution
Y (=03 AL ,,(At)+BI _, ,(A1)] , (42)

where I.;,(At) stands for the usual modified Bessel
functions. On the other hand, if we take A% <0, we put
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A?=—k?, k >0, and the general solution reads
y()=t4 AJ5,4(kt)+BJ _; ,(kt)],
A2<0, k>0, (43)

and J 3 4(kt) are again the standard Bessel functions.
The general solution for the perturbation is obtained

by using the transformation (40). Thus from (40) and (42)

we obtain the general exact solution for &(¢) in the form

[4 A
s(t)=7+7ft3/413/4(kt)dt

+ & [or1, nd, >0, (44)

whereas (43) yields

A

C
e(r)=—=+-=" [ 1340, 4 k)dt

+~’t5ft3/41,3/4(kt)dt, A2<0, k>0. (45)

Then, as t — o0, the asymptotic behavior of the perturba-
tion €(t) obtained from the two exact solutions for £(¢) in
(44) and (45) (see the Appendix for the full derivation) is
governed by the following forms. From (44) we have

¢c a,A+pB

e(t)~—

At 2
; A e A0, (46)

whereas Eq. (45) gives

¢ A +BB

s(t)~7+—'—t3/4—,

A*<o0, 47)
with a,,;,a,,8, constants. The conclusion is that, if
A%>0, the FRW solution of general relativity is unstable
in higher order gravity, whereas, if A% <0, it is stable with
respect to homogeneous, isotropic perturbations [14]. As
an example to the o =0 case, we consider the quadratic
Lagrangian theory

L,=f(R)=R—1aR? a=const . (48)

In this case A>=—a ! and so if a <0 the Friedmann

solution is unstable and will be approached by all solu-
tions at late times. If a >0, then A?<0 and the Fried-
mann solution is stable with respect to homogeneous, iso-
tropic perturbations. We thus note the interesting cir-
cumstance, not appreciated before, that higher order
gravity theories have the advantage of producing stable
and nonsingular (i.e., bouncing) FRW solutions in the
sector 0 =0 and A%2<0. (These bouncing solutions were
first discussed in Ref. [2].) The behavior of the nonflat
FRW solutions on approach to the singularity at ¢t =0
will be considered in a future paper [15].

V. DISCUSSION

We have described the extent to which homogeneous
and isotropic cosmological solutions of the higher order
gravity theory which is derived from a Lagrangian that is
an analytic function of the scalar curvature resemble
those of general relativity, i.e., are stable with respect to
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homogeneous, isotropic perturbations. Of course, it is an
open question whether the stable solutions found here
remain stable with respect to any other of the infinite
modes available to the system.

We found necessary and sufficient conditions for the
existence of Friedmann cosmological models and also of
some homogeneous but anisotropic solutions in the gen-
eralized framework of higher order gravity theory.

Our stability analysis reveals that nonflat radiation-
filled FRW solutions which avoid an initial singularity
are generically unstable with respect to perturbations in
our generalized theory in the large ¢ limit. However, in
the case of a flat FRW universe, there is a region that in-
cludes well behaved, regular, bouncing solutions as ¢t —0
which are also stable with respect to homogeneous, iso-
tropic perturbations in higher order gravity theory. In
the example mentioned above of a quadratic Lagrangian
theory, we know [2] that, when a <0, FRW solutions are
bouncing at t =0. We have shown that in this case the
solutions are also stable with respect to homogeneous,
isotropic perturbations in this theory and this result was
not realized before. Note that a <0 is also needed as a
nontachyonic constraint and also as an existence condi-
tion for complex instanton solutions (wormholes) in this
theory (cf. Ref. [16]). We believe that these singularity-
free well-behaved generalized solutions reflect some of
the interesting features of higher order gravity theories
especially in connection with the fact that these higher
order curvature invariants present in Lyog come up nat-
urally as one considers the low-energy limits of some
quantum gravity models [12] and also superstring theory
[17].

Perhaps the interesting properties of the classical limit
of some theories of gravity with quantum corrections dis-
cussed here will give rise to more detailed investigations
into the field of classical and quantum structure of higher
order gravity theories.
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APPENDIX

In this appendix we present all the necessary details for
the rigorous derivation of the asymptotic behavior for the
perturbation &(¢) as t— o for the three FRW universes
separately.

1. Case 0 =0

Equation (41) is a special case of the general Lommel
equation [13]

_ 2__..2.2
F)+ -1 tz"y(t)+ (bct0—1)2+—“—~t§~"— y(£)=0,
tEC, (a,b,c,p)EC, (Al

with the general solution
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» (=1 AZ,(bt°)+BY,(b1°)] , (A2)

where Z,,Y,, are two linearly independent cylinder func-

P> e o
tions. Ev1dently, here we have 1—2a=—1, c=1,
b*=—A? a’—p*=0. Hence a =%, c=1, p=3, b =k,

with k2= —A2 Clearly, the general exact solution of (41)
reads

y()=13 AJ; ,4(kt)+BJ _, ,,(kt)], kEC, (A3)

J3,4,J _3,4 being the standard Bessel functions.

C((v+u+1]/2) &
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a. A’<0

From (A3) and on taking k >0, obviously without loss
of generality, Eq. (43) readily follows. Owing to the
asymptotic behavior of J 3 ,(7) (cf. [18]), 7=kz, and
172

Ccos

3T T
:F__._._
TR T g

Ji3p4(m)~

T—>w(r=kt, t—>»); (A4)

both integrals in (45) diverge as t —  like ™, m > 0, but
m is not equal to 3 as a crude calculation would suggest
[i.e., insertion of (A4) into (45)], thus leading to the er-
roneous result £(¢)— 0, t — oo,

Now, using [19],

D([v—p+1]/2+n)

-
xHJ (x)dx =1+ +2n +1
/, T v rut1/2) &, VT TR 3 g T () (A3)
[
where v+u+1>0 and I'(z), z ER, denotes the gamma ®
function, and noting that 2a 2 a,+ 2 a, ,
n=0 =0 n>N
7 1
fi3/4(T)=fTs/“JiS/A(T)dT’ fi3,4(0)=0, (A6) . =(~1)n(2n +3(n +3) A1D)
" I'(n+2)
(45) becomes
c A pr For sufficiently large but finite N, we may replace the
e(t)=—+"— f X345 4 (x)dx gamma functions in the infinite sum on the right-hand
tootTo side of (A11) by their asymptotic form [20]
+= f x4 3 (0dx, T=kt . (A7) T(z)~V2mz* "% 72 (A12)

Owing to (AS5) and the asymptotic form

172
cos

T T
-z +)-T
T 2(v+2n ) 4 ] ,

2
J ~ | =
vi2n+1(7) [7r'r

T—o , (A8)

Eq. (A7) finally gives the result quoted in Eq. (47) in the
main text, where

5 1/4
azzz%—F(%)cos kt———ggl
o ,(2n + I (n+1) (A9)
Xngo(_l) L(n+2) ’
VKA 3
B,= (-1 cos |kt 3
® : ,(2n+3)0(n—3) ALO)
XEO( ) I'(n+3) (

It is central to our treatment to prove that both infinite
sums in (A9) and (A10) converge. Indeed, the sum in
(A9) can be written

It is interesting to note that Eq. (A12) is valid even for
small z [21]. Hence (A11) now reads

o N w (2n+3)(n+1)ye "1
'ann . n§0 a,+ ng.N( - (n+2)" 7/t =974
(A13)
For large but finite N, (A13) reduces to
§a~§;a+22 s (A14)
n=0 nsn n’

from which it is evident that since

2 (_l)n/n3/4=(21/4_1)§(%) ,

n=1
§(2) being the Riemann zeta function, the sum on the
right-hand side in (A 14) converges. A numerical calcula-
tion 3°_a, ~1.95.

Similarly, one can show that the infinite sum appearing

in B, in Eq. (A10) converges, while numerically we find
that it is equal to —2.77.

b. A’>0
From (A3) with k =iA and since

Ji3alide)=i =D (A,
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I.5,(At) denoting the standard modified Bessel func-
tions, (42) immediately follows.
Because of the asymptotic behavior of I3 ,4(7) [22],

eT
V2rr
it is immediately clear that both integrals in (44) diverge
as t — oo essentially like e?, thus yielding

Ii3,(T)~ , T—> o (T=At, t—>o), (Al5)

e(t)~eM, t-—>o . (A16)

The precise analytic form of €(z) given by (44) for large ¢
can be found by applying a formula similar to (AS5) (cf.
Ref. [19]) and proceeding precisely along the lines of the
A%2<0 case discussed above. The result is Eq. (46) with
a,3; now given by

AAT(S) L 2n+1(n+1)

a==5 3 (= NEEETa. (A17)
g = A1/4 o (—1 ,2n+0(n—3)
=Varen 2 T e D (A18)

We note that since the dominant part of I, ,,(7), 7=At,
A>0,is e” and not e " as 7—> o (t— o), Eq. (4.13) of
Ref. [3] is incorrect. This led the authors of Ref. [3] to
the wrong conclusion that stable solutions are possible in
the A2>0 regime, whereas, if A% <0, FRW solutions are
unstable in higher order gravity. For the sake of com-
pleteness, we note that the correct full asymptotic form
of the modified Bessel function I,(7) can be found in [22].

]

1 = TG+
¢ 2V,

where the infinite sum can be shown to be convergent as
in the case o =0 above.
3. Caseo=+1
This case is completely analogous to the o=0,—1
cases considered previously. We simply quote the results:
If A <0,

e(t)~c t2e ay+cytte (1+By) +est, t—o0 ]

2

(A22)

+cyte Mtcyt
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2, Caseo=—1
a. A’<0
A mere comparison of (27) with (A1) yields a =—1,
=1, p=3, b>=—A% Hence, from Eq. (A2) with

A2=—k?2 k >0, we obtain Eq. (30).
For the rigorous asymptotic treatment of Eq. (31), we
have used repeatedly the formulas (see Ref. [23])

fx'"+121(x)dx (1*—m?) fx “1Z,(x
+x™ 1ZIJrl(x)-Hm —Dx"Z,(x) ,
(A19)

Z,(x) being a cylinder function. By means of Eq. (A19),
we may reduce the integrals appearing in (31) to
[t73727 5 ,(kt)dt, thus making them amenable to
asymptotic investigation. As in the o =0 case, after some
manipulation we get

e(t)~t(c+c,sinkt +c3), (A20)

t— o0 ,
which is essentially Eq. (33) appearing in the main text.
b. A’>0

Since now b =i\, A>0, Eq. (28) follows immediately
from (A2). From computational reasons relevant to the
asymptotic analysis of Eq. (29), we may choose K ,,(At)
instead of I _3 ,,(At). Then the asymptotic analysis of (29)
runs essentially along the same lines as in the A% <0 case
above and yields

t— o ,

(A21)

[
as,B; are defined by relations similar to (A9) and (A10).
Last, if A2> 0, the result is

(t)~ciau®+c, t By —sinAt)+cyt, t—o0

(A23)

where again a,, 3, are similar to a3, 35, respectively.
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