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Cosmological models with a variable cosmological term and bulk viscous models
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Recently, Aat variable-A cosmological models have been discussed by Herman. It is shown that these
models are equivalent to perfect Quid models with bulk viscosity which have been presented previously.
The model of Herman, which is free of particle creation and which is claimed to solve the entropy prob-
lem, is shown to be the usual Einstein —de Sitter model. The nonfat variable-A solutions are obtained
and their relationship to bulk viscous solutions is elucidated. Exponentially expanding solutions are also
derived. The question of the stability of the models is briefly addressed.

PACS number(s): 98.80.Hw, 98.80.Cq

I. INTRODUCTION

One of the most important and outstanding problems
in cosmology is the cosmological constant problem (for
excellent reviews see [1,2], which attempt to explain the
small value of the effective cosmological constant at
present (Ao(10 m )}. The theory of the physics of
elementary particles predicts that the vacuum energy
contributions of the quantum fields must have been 10'
times larger in the past [3]. Among the various solutions
proposed is the phenomenologically simple one of endow-
ing the effective cosmological "constant" with a variable
dynamical degree of freedom which allows it to relax to
its present value in an expanding universe [4—11]. The
cosmological term A is then small at the present epoch
simply because the Universe is so old. The problem in
this approach is then to try to determine the right depen-
dence of A upon R or t. Motivated by dimensional
grounds in keeping with quantum cosmology, Chen and
Wu [10] considered A varying as R . Such a depen-
dence alleviates some problems in reconciling observa-
tional data with the inflationary Universe scenario.

A number of authors have instead argued in favor of
the dependence A- t . Berman, Som, and Gomide [12]
found this relation in Brans-Dicke static models, Berman
[13]and Bertolami [14,15] found it in Brans-Dicke theory
as modified by Endo-Fukui and Berman and Som [16],
and Herman [17] considered more general Brans-Dicke
models. Lau [18], Abdel-Rahman [19],Sistero [20], Ber-
man [21], and Kalligas, Wesson, and Everitt [22] aug-
mented a variable A term with a simple variation of
Newton's gravitational constant G. Kalligas, Wesson,
and Everitt have pointed out that if A varies as t, there
is then no dimensional constant associated with A.

Recently Berman [23] has discussed the possibility for
realizing the hypothesis A-t by adding an additional
term to the usual energy-momentum tensor, resulting in a
variable A-type term. The Aat Friedmann-Lemaitre-
Robertson-Walker (FLRW) models were studied in this
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approach by imposing the requirement of a constant de-
celeration parameter [24], and some other postulates.
Carvalho, Lima, and Waga [11]have pointed out that, in
general, variable A-type models involve particle creation.
Berman [23] claimed to have found a variable A model
which does not involve particle creation and which solves
the entropy problem.

In this paper we first review the models of Berman [23]
in Sec. II. We then show in Sec. III that only the require-
ment of a constant deceleration parameter is sufficient to
ensure A-t, and we show that no additional assump-
tions or postulates are necessary. We believe that this ap-
proach is better than that in [23]. Next, in Sec. IV we
show that these models are equivalent to those with bulk
viscosity which have been presented previously. Further-
more, the model of Herman [23], which claims to solve
the entropy and particle creation problems, is shown to
be the usual Einstein —de Sitter model of general relativi-
ty. As is well known this model has A=O and does not
solve the entropy problem. In Sec. V we extend our
method of analysis to the nonfat case and discuss ex-
ponential solutions as well. Finally, we remark upon the
structural stability of the models.

In our approach we assume a particular behavior for
the scale factor by imposing the requirement of a con-
stant deceleration parameter. We then solve for the time
dependence of the energy density p and A. A truly physi-
cal approach actually requires the opposite point of view,
viz. , that physics provides the energy density and/or A
and we than have to solve for the gravitational field con-
sistent with the physics. Thus this work does not claim
to be the complete physical solution to the cosmological
constant problem.

II. SOLUTIONS OF HERMAN

In this section we review the solutions of Berman [23].
The usual energy-momentum tensor is modified by the
addition of a term

T,'b"'= A(t)g, b, —

where A(t) is the cosmological term and g,b is the metric
tensor. Thus the new energy-momentum tensor is
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T b =(p+p)u, ut, +pg, b
—A(t)g, i, , (2)

where p and p are, respectively, the energy and pressure
of the cosmic Quid, and u, is the Quid four-velocity. The
Robertson-Walker metric is

8T
ds = dt +—R (t) +r (d8 +sin Hdqrs )

1 —kr

(3)
where units and being used such that c=8m.G=1, and
k =0, +1 is the curvature constant.

For the energy-momentum tensor (2) and the
Robertson-Walker metric (3), Einstein's field equations
yield, for k =0, the Friedmann-type equation

R =( 'Dt)—
2 (17)

This appears to be in contrast to the models of Ozer and
Taha [4,5] and Chen and Wu [10], which involve the
creation of matter.

The entropy problem which exists in general relativity
is also claimed to be solved by the above-mentioned mod-
el [23]. The usual entropy law in general relativity reads

TdS—:d(pV)+p dV=O . (18)

Berman [23] then points out that in order to have no
creation of particles, simply take

m =—', (or q= —,'),
which yields the familiar result

3H —p+A, (4)

where H =R /R is the Hubble parameter, and an
energy-conservation-type equation

In the present case, law (18) gets modified to

T = —yR =2y(mDt)dS 3dA 8
dt dt t3 ' (19)

p+3H(p+p) = —A, (5) where

where the overdot denotes a derivative with respect to
time. The equation of state is taken to be of the usual
form, viz. ,

Exp —p

V=yR', y=const .

Now

m@1 and B )0:. &0dS
dt

(20)

(21)

where —1 ~ a 1, a =const. Equation (5) then becomes

p+3H(1+a)p= —A . (7)

Equations (4) and (7) will be the basic equations of the
analysis. The deceleration parameter q is de6ned by

and hence it is claimed that, since m =
—,
' for the model

under discussion, the entropy problem is solved.

III. BERMAN'S MQDEL REVISITED

RR
R

Berman [23] then assumes that q is constant, viz. ,

q =const=m —1,
which leads to [24]

(9)

We note that Eqs. (4) and (7) contain three unknowns.
Hence one more relation is necessary for a unique solu-
tion. Only the additional assumption (9) of a constant de-
celeration parameter is sufficient for a solution. We be-
lieve that this approach is better than that of Berman
[23]. Equations (4), (7), and (9) lead to the unique solu-
tion

R =(mDt)', mAO, (10)
1 1

(1+a)m t2 (22)

where D =const. The following are then postulated [23]:

p= A/t

A=B/t', (12)

where A, B =const. Solutions are obtained by imposing
[23]

3++—2m 1A=
(1+a)m t

(23)

Hence assumptions (11) and (12) are unnecessary, but
they are a consequence of Eqs. (4), (7), and (9).

[If desired we may also proceed from the reverse direc-
tion, i.e., starting from Eqs. (4) and (7) we impose

=—(A +B),1

3

2B =(1+3a)A .

(13)

(14)

A =8/t
We may derive a Raychaudhuri-type equation

(12)

pR 3 —t 2+3/~ (15)

We note at this stage that Eq. (14), which is Eq. (15) of
Berman [23], is incorrect as it does not follow from Eq.
(7). The correct form will be given in the next section.

As pointed out in the Introduction, variable A models
invariably involve creation of matter. For the present
matter-dominated Universe, a =0, and from Eqs. (10) and
(11),this leads to

2H+ (1+a)3H (1+a)—=0 . —
t2

(24)

This Riccati-type equation admits only power-law solu-
tions for R of the type (10). This time dependence of the
energy density turns out to be of the type (11).]

We already indicated that Eq. (14), which is Eq. (15) of
Herman [23], is incorrect. The correct form of this rela-
tion, which can easily be derived from Eqs. (22) and (23),
1s
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28 = A [ —2+(3/m)(1+a)],
where

(25) with bulk viscosity [45], we replace p by

p' =p —3gH, (34)
2

(1+a)m
3+3' —2m

(1+a)m

(26)

(27)

Berman's no-creation model has m =
—,
' and ex=0. If we

substitute these into Eq. (27) we find, surprisingly, that

go~0, const . (35)

Hence (34) becomes

where p is now the perfect Quid contribution and g is the
coefficient of viscosity, usually taken by most authors to
have a power-law form

B=0,
which means, from Eq. (23), that

A=O .

(28)

(29)

p'=ap —3gys"H .

Substituting Eq. (36) into Eq. (33) we obtain

p, +3H (1+ a)p =9'(gc "H

(36)

(37)

Thus the no-creation model of Herman [23] is simply the
usual Einstein —de Sitter model of general relativity with
zero cosmological term.

It is well known that in standard general relativity the
entropy is constant. Indeed from relations (29) and (19)
we see that

We now see a resemblance between the equations with
bulk viscosity and those with constant deceleration pa-
rameter. Equations (4) and (7) are similar to Eqs. (32) and
(37). To make this similarity more transparent, and guid-
ed by Eqs. (4) and (32), we let

dS
dt

which implies that

S =const .

(30)

(31)

p=p+A .

Equation (7) then becomes

p+3H(1+a)p=3(1+a)AH . (39)

IV. RELATIONSHIP TO BULK VISCOUS SOLUTIONS

3H —p

p+ 3H (p+p) =0,
(32)

(33)

where we have used the above symbols for reasons that
will become clear as we proceed. To obtain the equations

The role of viscosity in cosmology has been studied by
a nuinber of authors (for an excellent review article we
refer to Gron [25]). It was initially hoped that neutrino
viscosity could smooth out initial anisotropies and lead to
the isotropic Universe that we observe today [26—33].
Suggestions have been made that heating by viscous
effects could explain the observed high photon to baryon
ratio [34—38]. Bulk viscosity associated with the grand
unified theory (GUT) phase transition can lead to an
inflationary universe scenario [3,39,40]. It is known that
the introduction of bulk viscosity [45] can avoid the big-
bang singularity [34,41,42]. Bulk viscosity can provide a
phenomenological description of quantum particle
creation in a strong gravitational field. The back-reaction
effects of string creation can be modeled by means of a
bulk viscous model [43]. Further interesting models that
arise when bulk viscosity is introduced are eternally oscil-
lating models, in which the entropy increases with each
cycle [44], and closed models, which do not always col-
lapse to a big crunch [43]. Qther workers have studied
formation of galaxies [33].

The equations with bulk viscosity can be obtained from
the general relativistic field equations as follows. If we let
p denote the energy density, then the general relativistic
Friedmann and conservation equations are, respectively,

Comparing Eqs. (37) and (39) we see that they will be the
same if we can find some n such that

3'(ys"H =(1+a)A . (40)

Now the solutions to Eqs. (32) and (37) have been studied
by several authors [42,43,46]. In particular, for n =

—,
' it is

found that

2t3('+~ —&0+')]R-t (41)

From this solution we can find p via Eq. (32) and thereby
A via Eq. (40). It turns out that the solutions of Herman
[23] are equivalent to those in [41]. To see this, all we
have to do is to let

2m =3(1+a—go&3) . (42)

It may readily be identified from Eq. (40) that A has the
dependence. We have thus shown that the constant q

solutions of Herman [23] can equally well be bulk viscous
solutions for n =

—,
' which have been given previously

[42,43,46].
There is also another parallel we can draw with bulk

viscous solutions. In addition to the linear dependence of
the viscosity coefficient upon the expansion 3H as in Eq.
(34), some workers [47—50] have considered a quadratic
dependence upon the expansion, i.e., instead of (34) we
now have

p' =p —9' (43)

The g =const models analyzed by Romero [50] are
equivalent to the models of Berman [23], as may easily be
verified.
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V. NONFLAT AND EXPONENTIALLY
EXPANDING SOLUTIONS

Herman [23] only investigated the FLRW models with
k =0 and m&0. We first investigate the existence of
power-law solutions of the type (10) for the nonflat cases
k =+1. The relevant equations are now

3H —p+A —3
k

R

p+ 3H (1+a)p = —A,
R =(mDt)', mAO .

(44)

(7)

(10)

Substituting R and its derivative from Eq. (10) into Eqs.
(44) and (7), we find the solution

2 1 2k 1p= +(1+a)m t (1+a)(mD) ~ t ~

3+3a—2m 1 k(1+3a) 1

(1+a)m t (1+a)(mD) t

(45)

(46)

An obvious requirement that must be imposed is p + 0,
which can be achieved by taking k =0, + 1.

These solutions have some interesting consequences.
Only for m = 1 can we have a A- t dependence.
Second, if we calculate pR, we get

R 3 ~(3—2m)/m+
~

1/m (47)

H =const=D, (49)

which means exponentially expanding solutions of the
type

R =CeD' (50)

where C,D =const. Substituting Eqs. (49) and (50) into
Eqs. (44) and (7) we obtain, for p and A,

2k
e

(1+a)C
k (1+3a) pg),e
(1+a)C

(51)

(52)

In order for p ~ 0 we require k =0, + 1.
We notice that for k =0, we recover the familiar empty

which implies particle creation for all m. Finally, if we
compare with the bulk viscous solutions, we may again
identify the two sets of solutions. However, only for some
special values of m can we write A in the form (40) for
some n. For example, the case m =1 corresponds to
solutions studied by Barrow [43]. An alternative
viewpoint would be to write the pressure in the form of
Eq. (34), assume some form for R or H, and see whether

g obeys certain general conditions, without requiring it to
be of the form of (35) (see, for instance, Ref. [51]). If we
accept the latter viewpoint, then all our solutions are
equally well bulk viscous solutions.

In solving Eqs. (8) and (9), Berman [23] only considered
m %0. However, if m =0, then

q= —1

and we get

de Sitter model of general relativity. Also we have ex-
ponentially expanding solutions without p being constant
for k =+1. Finally,

pR
2kC Dt

1+a (53)

which implies particle creation for k =+1.
Other exponentially expanding solutions may also be

found, for instance, if we search for constant energy den-
sity solutions for k =0. If we set p=po=const in Eqs. (4)
and (7) we get

3H =po+ A,
3H (1+a)po+A=0 .

The solution is then

(54)

(55)

—(1+a)pot /4+ Gt
R =Fe (56)

where F and G are const. Depending upon the constant
G we can have a solution that initially expands, attains a
maximum, and then contracts asymptotically to 0.

VI. CONCLUSIONS

We have rederived the models of Herman [23] by al-
lowing for a variable cosmological term and imposing
only the requirement of a constant deceleration parame-
ter. Remarkably, the A term was found to vary as the in-
verse square of time which matches its natural units, and
means that there is then no dimensional constant associ-
ated with A. It was shown that the A term leads to
matter creation. The only model of this kind without
matter creation is just the Einstein —de Sitter model. The
variable-A solutions were shown to be equivalent to bulk
viscous solutions with a viscosity coefticient q-p' . lt
is interesting to note that Golda, Heller, and Szydlowski
[42] have examined the stability of the bulk viscous solu-
tions in which g-p". They found that only the n =

—,
'

solutions were structurally stable, which means that the
models which we have been examining are endowed with
a special property.

The models of Berman [23] in which A- t and those
of Chen and Wu in which A-R have nonempty inter-
sections. An example belonging to both is the m =1 [see
Eq. (10)] model, as R -t and A-t implies A-R

We have extended the solutions of Berman [23] to the
nonfat case and found that A does not always vary with
the inverse square of time in contrast with the Oat ones.
Furthermore, these nonfat solutions all involve particle
creation. Exponentially expanding solutions were found
for nonconstant energy density for k =+1. In the k =0
case, a constant energy density solution was found.

If we allow more general forms of behavior for A(t)
then we notice that a much richer class of cosmological
models may be obtained. In this connection we wish to
draw attention to the very interesting papers by Jones
[52] and Belinskii and Khalatnikov [36]. Jones examined
qualitatively the set of Eqs. (7) and (44) without imposing
any specific form for the proposed modification, except
that A =A(H, p). The resulting plane autonomous sys-
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tern exhibits all the features one expects from such a sys-
tem. In addition to the familiar expanding FLRW solu-
tions, periodic solutions, and solutions without an initial
singularity are also possible. Belinskii and Khalatnikov
[36] analyzed the corresponding bulk viscous system.

A variable G can also be incorporated into a simple
framework in which A varies as well, while still retaining
the usual energy conservation law [18—22]. A power-law
variation for G leads naturally to a A-t dependence
[22]. Interesting solutions can be found, for example, one
in which the vacuum energy density is exponentially
suppressed and which has zero total energy initially [22].
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