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Relic gravitational waves and limits on inHation
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It is shown that only a narrow class of in8ationary models can possibly agree with the available
observational data on the anisotropy of the cosmic microwave background radiation. These models
may be governed by "matter" with the effective equation of state —1.2 & p/e & —0.6.
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The recent discovery of the angular variations in the
cosmic microwave background radiation (CMBR) [1] has
strongly sharpened the issue of the origin and nature
of the long-wavelength cosmological perturbations. The
consequences of inHationary models are under active in-
vestigation (see, for instance, a recent paper [2] and ref-
erences therein). It seems to me that only a narrow class
of the inQationary models, discussed below, can possibly
avoid theoretical and observational inconsistencies.

I am considering here relic gravitational waves. The
variable gravitational Geld of all cosmological models
[unless the cosmological scale factor a(rl) is such that
a" = 0], and inflationary models as a particular case, in-
evitably generate gravitational waves [3]. [The graviton
creation in Friedmann-Robertson-Walker (FRW) fields
was denied in the past and anisotropic models were
claimed to be the only way to get a nonzero result, but

I

now they are no longer considered as a necessary condi-
tion. ] The generating mechanism is quantum mechanical
in its nature, and the generated perturbations are always
placed in squeezed vacuum quantum states (see [4] and
references therein). This means that different modes of
the created field are not totally independent, as is of-
ten assumed in the literature on inBation, but, on the
contrary, some of them are highly correlated which leads
to the picture of standing waves and modulated spectra.
The generated gravitational waves inescapably produce
the angular anisotropy in the CMBR. The angular cor-
relation function for bT/T variations caused by squeezed
gravitational waves has been derived recently [4]. We will
use it here in our analysis.

The dimensionless gravity-wave Geld, with all the nor-
malization factors taken into account, can be written as

OO

h,s(rl, x) = 4~7r d n) P,'.(n) c'(q)e' ' + c' (ri)e

c„(rl) = u„(rl)c„(0) + v„(rl)c „(0),

ct (rl) = u* (rl)ct (0) + v*(rl)c (0),
(2)

where c (0), ct (0), are the initial values of the operators
taken at some g = go long before the interaction became
effective. The complex functions u (rl), v (rl) satisfy the
equations

where the scale factor a(rl), ds2 = a2(q) (drl2 —dx2 —dy2-
dz ), has the dimension of length, lp~ = (Gh/c ) 1 is the
Planck length, and all other quantities are dimension-
less. The two "transverse-traceless" polarization tensors
p,' (n) (s = 1, 2) satisfy the conditions p,' (n)p' 's(n) =
2b„, p,'. . (—n) = p,

' (n). The time-dependent annihila-

tion and creation operators c' (rl), c' (rl) can be written
(for each s) as

I

the classical complex p, amplitude [3] of the gravity-wave
field.

The (Bogoliubov) transformation (2) can be written in
a form involving the two-mode squeeze operator which
demonstrates the inevitable appearance of squeezing in
this kind of problem. In the Schrodinger picture, the ini-
tial vacuum state i0), c (0) ~0) = 0, evolves into a strongly
squeezed vacuum state.

The angular correlation function for bT/T (see
Eqs. (12) and (13) in Ref. [4]) can be rearranged by using
the "summation theorem" [5] and the formulas relating
the Gegenbauer polynomials to the associated Legendre
polynomials [6] and cast into an elegant exact form which
directly involves the Legendre polynomials Pt(cos h):

(4)

iu' = nu + i(a'/a)v*, iv' = nv + i(a'/a)u*, (3)

where a prime denotes d/de, ~u
~

—~v
~

= 1 and u (0) =
1, v (0) = 0. It follows Rom these equations that the
function p, (rl) = u (rl) + v*(q) obeys the equation p" +
(n2 —a"/a) p = 0 which is precisely the equation for

where K~ = (2l + 1)l(l + 1)[l(l + 1) —2]I"~,

~~ J,~ ~ (nm)
f„(rlR —vu) dm dn (5)
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The two unit vectors ez, e& point out in the directions
of observation and b is the angle between them. The
photons of CMBR are assumed to be emitted at g = g@
and received at (present) time g

= gR —rl~ (the Sachs-Wolfe effect [7]). Note that
the correlation function, with no additional assumptions
made whatsoever, is rotationally symmetric and its mul-
tipole expansion begins from l = 2.

The derived formula is universal and can be used with
arbitrary a(r/). We will apply this formula to simple mod-
els consisting of three consecutive stages of expansion:
inflationary (i stage), radiation dominated (e stage) and
matter dominated (m stage) [8].

The scale factor of the model can be written at the
three stages as follows.

i stage:

e stage:

a(rl) = lpa, (rl —g, ), gi & q & q2,

where a, = —(1+P) ~qi ~/, il, =

m stage:

a(g) = lpa (rl —g ), q2 & g,

where a = [a, /4(il2 —il, )], rl = —il2 + 2q, . The func-
tions a(g), a'(q) are continuous at g = gi and q = g2.
All expanding models with 1+P & 0 (g must be negative
if 1+P & 0) are inflationary in the sense that the length
scale equal to the Hubble radius at some early time of ex-
pansion can grow at all three stages up to, at least, the
size of the present day Hubble radius l~ = a /a', g = gR.
The case P = —2 corresponds to the de Sitter expansion,
the cases P & —2 correspond to the so-called power-law
inflation [a(t) t, m ) 1] and the cases —2 & P & —1
(apparently, not having been analyzed before) correspond
to the law of expansion a(t) ~t~, m & —1, t & 0. The i
stage is governed by "matter" with the effective equation
of state p = q(/3)e, where q(/3) = (1 —P)/3(1 + P) and

q(P) varies from —1/3 to —oo for —oo & P & —1. Ex-
pansion is accompanied by the growth of energy density
and curvature if —2 & P & —1.

Jn realistic cosmological models one has a(i1@)/a(rl~) =
10 2, a(q2)/a(ilR) 10 4. Also, one has 3 x 10
a(gi)/a(g~) & 3 x 10 if one wants to commence the
e stage at densities not lower than the nuclear (- 10
g/cm ) and not higher than the Planckian density (=
10 g/cm. ), or, in other words, if one wants the Hubble
radius l, at the end of inflation, l; = —lp(1+P) ~qi~ +/,
to be in the interval 1 & I; /l p~ & 10

To define the numerical values of g it is convenient
to choose qR —g~ = 1. Then, ~ili

~

— 5 /~ 1 +
P // (lp/lH) // and (lp&/lp) = (25/p(/lII) +/ 1 +
P f +~l(l;/lp~)/ . The wavelength A = 27ra/n equal to
lH has the wave number nH ——47t, and the wavelength
equal to the Hubble radius at g = g2 corresponds to
n 4vr10 . The minimally sufBcient inBation should
begin no later than at g5 = (1+P)/2; it generates waves
with wavelengths up to l~. InQation that started earlier
inevitably generates the longer waves also.

The gravity-wave equation using the scale factor of the
form a(7l) = a il +~ has been solved and the relation be-
tween the initial and Anal amplitudes has been derived
earlier [3]. The waves start oscillating with the ampli-
tude B(n) which is related to the initial amplitude A(n)
by B (n) A (n)(ngi) f +/ l (one can use formula (5b)
f'rom the second Ref. [3] in which the interpretation of the
participating amplitudes should be reversed because, for
1+p & 0, the condition (nrem) )) 1 is satisfied initially
and gets violated later on). Since the initial (vacuum)
spectrum goes as A(n) n this leads to B(n) n/+
and B(n) n for P = —2, that is, in the case P = —2,
all waves start oscillating with the same amplitude (the
Harrison-Zeldovich spectrum). In case of P & —2 the
spectrum gets "tilted" by increasing the relative contri-
bution of longer waves, and in case the P ) —2, by in-
creasing the relative contribution of shorter waves.

The exact solution to Eq. (3) for the complex function
p (rl) satisfying the required initial data and continuous
with its first time derivative at the joining points gi, g2
has the following form.

i stage:

p„(q) = (nil)' '[Ai Jp+, /2(nq) + A, J (p+, /2)(nrem)]

(for a technical simplification we work solely with the
Bessel functions and exclude the half-integer P's but the
final result will be free of this limitation), where

cos
e' ' ~, A2 ——iAie ' ~, and xp = nqp, n(gyp) )) 27r[1+ P).

e stage:

p„(rI) = Bi e '"
,+ B2 e'", (

P~ A, 'Yt Z
[+1J5/2(Z) +21—5/2(Z)]

G 0 2

where y—:n(g —g ).
m stage:

7rZ
& (&) =

2
[t i Js/2( ) + 2 —2/2(z)]

where z = n(g —q ). Note that J 2/2(z) represents the
so-called decaying solution which is necessarily present.

The coeKcients Bq, B2, C~, C2 are determined by the
continuous joining of the solutions. In particular,
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+1 +1(o2 + p2) + +2(~2 + p2)
—i&2 = &i(~2 —p2) —&2(~2 —p2),

where cx2 ——e'"'(8y22 —1 + i4y2)/8y22, P2 ———e's"'/8y22,

y2 = n(q2 —g, ). We are only interested in modes that
have interacted with the barrier U(il) = a"/a and have
been generated quantum mechanically. Their wave num-
bers obey the condition nlgil « 2mll + Pl and, for them,

1 '-.&i = —&2 = -e'*'(P+1)@(P)(n~i)
2

where
- —1

e' ~ cosPvr 2~+ ~ I'(P+ 3/2)

l@(P)l = 1 for P = —2.
@(p) =

The values of C~, C2 depend on whether y2 )) 1 or
y2 « 1. For relatively short waves, n )) n, one
has approximately Cq = —2iB sin y2, C~ = 2iB cos y2.
For longer waves, n « n, one has Cq = —2'By2
C2 —45By2, C2 « Cq. The additional large factor

y2 in Cq reflects additional amplification of waves at
the m stage.

For a qualitative description of amplitudes and spec-
tral slopes we introduce the "characteristic" spectral
components of the field: h(n) = /@inly„l/a, and its
first time derivative h, '(n) = /p~ ( l

p,
l /a) '. We have

h(n) ~n~+
l
sin[n(g —77,)]l, h'(n) ~n~+

l
cos[n(77—

g, )] l
for n )) n, and h(n) ~n~

l
cos[n(g

)] l, h'(n) - '-P n~
l
sin[n(g —g )] l

for nH ))
n )) n . For n « nH one can use the ap-
proximation z &( 1 in Eqs. (6) and (7) and obtain

I

h(n) = —"ly(P)]n~+', h'(n) = "lq(P)lzn~+'.
lp 5lp

We will now start deriving restrictions on inflationary
models. Astrophysically interesting and consistent values
of h require h(nH) to be not much larger or much smaller
than 10 . The mean square value of the field diverges in
the limit of small n (i.e. , wavelengths much longer than
lH) for all P & —2: (h2) = (lp~/lo)2]@(P)l2 j "n2~—+4.
This does not allow the duration of inflation to be ar-
bitrarily long. In the case of P = —2 the divergence is
logarithmic and the restriction on duration is very mild
but it becomes increasingly more severe for P ( —2. For
p = —7, even the minimally sufficient duration of infla-
tion does not help as h(n~) strongly exceeds 10 4 even
if the largest allowed l, , l; —10 lp~, is chosen. On
the other hand, for p ) —2 there is no problem with
the long-wavelength divergence but the amplitudes very
quickly become too small. For P = —1.8, h(n~) becomes
smaller than the required level even if the smallest al-
lowed l;, I, lpi, is chosen. (One may argue that the
values l, « lp~ do not necessarily invalidate the analysis
and can also be allowed, although they imply the over-
Planckian densities, since the wavelengths of our interest
are much longer than lp~ all the way up from the be-
ginning of inflation. However, we will confine ourselves
in this paper to the requirement l, ) lp~ which leads to
P & —1.8.)

Additional restrictions come from the bT/T consider-
ations. We will be interested in the lower multipoles l,
l & 30, to which the waves n )) n give a negligibly small
contributioii. Neglecting the second term in Eq. (7) one
can write Eq. (5) as

Fi = 4l21&(P)l'
0

2@+3
""' Ji+iy2(~) Js(2(n —&)

dx d7l )x'~' (n —x)'~'

where m~ = 1 —3 x 10 . In the limit of long waves one
can use the small argument approximation for the Bessel
functions and write

F( — l@(P)l P (l) n ~+ '+ dn,
4l,'

correspondingly. The multipole distributions normalized
to K2, that is Ki/K2, are independent of lo. They are
shown in Fig. 1. For completeness we have included also
the extreme cases P = —1.6, —1.1, though they would
imply the strongly over-Planckian densities at the end of
inflation, as was explained above. It is worth noting that

where P(l) = [15~n2 I'(l + 1/2)l(l —1)] . The
quadrupole component K2 is divergent in the limit of
small n for all p ( —4, so these values of p should be ex-
cluded unless the duration of inflation is precisely tuned.
(Interestingly enough, the minimally sufficient inflation
may be a likely outcome of certain quantum-cosmological
models [9].)

The multipole distributions K~ for some models have
been numerically computed by Wiseman [10]. For each /,

the main contribution to E~ comes, as one might expect,
&om the interval of n between n l and n 2l. In par-
ticular, K2 is dominated by waves which are somewhat
longer than /~ [11]. The absolute values of K~ depend
on P and lp. For instance, the quadrupole component
10 (lp/lp~) K2 has the following numerical values: 9.7,
7.3, 5.6, 7.4, if one takes P = —1.8, —2.0, —2.4, —3.0,
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PIC. 1. The normalized multipole distributions.



3516 L. P. GRISHCHUK 48

the quadrupole component exceeds other multipoles and
Ks/K2 & 0.6 for all models with p & —1.8. The results
for the P = —2 case are in qualitative agreement with
those in Ref. [12] and improve the limits, derived by Ab-
bott and Wise, on the expansion indices of the power-law
inflation. It remains to be seen which of these distribu-
tions can survive after comparison with the detailed Cos-
mic Background Explorer- (COBE-) type observations.
One should bear in mind, of course, that predictions for
Ki are statistical and should be augmented with vari-
ances based on the statistics of squeezed quantum states.

In conclusion, the inBationary models governed by
"matter" with the effective equation of state —1.2
p/e & —0.6 seemingly avoid theoretical diKculties and

some of them can possibly withstand comparison with
the observations. Taking the density and rotational per-
turbations into account can only make this interval nar-
rower.

Note added. I am grateful to M. Gasperini for calling
my attention to the interesting papers [M. Gasperini and
M. Giovanni, Phys. Lett. B 282, 36 (1992); Phys. Rev. D
47, 1519 (1993)] where the case —2 & p & —1 has been
considered in some detail.

I would like to thank Alan Wiseman for his help. This
work was supported in part by NASA Grant No. NAGW
2902 and NSF Grant No. 89-22140.
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