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We present a detailed discussion of the elastic scattering of a supersymmetric neutralino off a nucleon
or nucleus, with emphasis on the spin-independent interaction. We carefully treat QCD effects on the
squark exchange contribution. In particular, we identify a class of terms that survive even in the absence
of mixing in both the neutralino and squark sectors; the corresponding quark and gluon operators also
appear in analyses of deep-inelastic lepton-nucleon scattering ("twist-2 operators"), so their hadronic
matrix elements are well known. We also reemphasize the importance of mixing between the super-
partners of left- and right-handed quarks, and of the contribution from the heavier scalar Higgs boson.
We use our refined calculation of the scattering amplitude to update predictions of signal rates for cos-
mic relic neutralino searches with germanium detectors. In general the counting rate varies strongly
with the values (even the signs) of model parameters; typical results lie between a few times 10 and a
few times 10 ' events/(kg day).

PACS number(s): 14.80.Ly, 12.10.Dm, 95.30.Cq, 98.80.Cq

I. INTRODUCTION

The lightest supersymmetric particle (LSP) is one of
the most attractive candidates for the dark rnatter (DM)
in the Universe [I]. It is theoretically well motivated,
since all supersymmetric models [2] with exact "R pari-
ty" predict the LSP to be stable. Note that supersym-
metry at the weak scale was originally introduced as a
solution [3] of the gauge hierarchy problem [4], which
has no direct connection to the dark matter problem. It
is also worth mentioning that grand unification of the
gauge couplings of the standard model (SM) is only com-
patible [5] with recent precision measurements if addi-
tional "light" particles (beyond those present in the SM)
exist; the minimal supersymmetric version of the stan-
dard model, the MSSM [2], introduces just the right de-
grees of freedom to allow for grand unification.

In most models, the LSP is the lightest neutralino y;
they therefore automatically satisfy the tight constraints
on the cosmic density of stable charged or colored parti-
cles that can be derived from unsuccessful searches [6]
for exotic isotopes. Moreover, model calculations [7]
show that for a wide region of parameter space, the relic
density of LSP's left over from the big bang is just large
enough to account for the "observed" dark matter or
even to allow for a Aat universe as favored by inflationary
models [I].

Nevertheless, one would like to prove experimentally
that some or all of the dark matter is indeed made up
from the lightest neutralino y. Note that even the
discovery of some superparticle in a collider experiment
will not provide this proof; as far as collider experiments
are concerned, the LSP is "stable" if its lifetime exceeds
about 10 sec, while it can only contribute to DM if its
lifetime is longer than about 10' yr.

Two methods have been proposed to search for relic
neutralinos (or similar particles such as heavy neutrinos).
The most direct way is to look for the scattering of am-
bient DM particles off the nuclei in a detector; experi-
ments using silicon and germanium counters have already
reached sufficient sensitivity to exclude massive Dirac
neutrinos or sneutrinos as main ingredients of the DM
halo of our Galaxy [8]. Alternatively, one can search for
energetic neutrinos emerging from the center of the
Earth or Sun. The idea here is that a DM particle can
lose energy in collisions with nuclei and can then be
trapped by the gravitational field of celestial bodies.
Eventually, they will become concentrated in the center
of these bodies where they will annihilate. Some fraction
of these annihilation events will produce energetic
(anti)muon neutrinos that can be detected in under-
ground experiments. Currently, the best bounds of this
kind come from the Kamiokande group [9]; in the mass
range beyond 45 GeV, they are more sensitive to Dirac
neutrinos than the counter experiments and even start to
impose meaningful bounds on Majorana neutrinos or the
lightest neutralino dark matter.

A crucial ingredient in the analysis of both kinds of ex-
periments is a good knowledge of the elastic LSP-nucleus
scattering cross section. The counting rate in a direction
detection experiment is obviously proportional to this
cross section. Since these cross sections determine the
rate at which LSP's are captured by the Earth or Sun,
they also affect the signal rate in experiments looking for
yy annihilation; in the limiting case where LSP capture
by and annihilation in a given celestial body are in equi-
librium, the observable neutrino Aux is again directly pro-
portional to the LSP-nucleus scattering cross sections.

There are two different kinds of interactions between a
neutralino and a nucleon: those that are proportional to
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the spin of the nucleus and coherent interactions that are
proportional to the nucleon number (or, approximately,
mass) of the nucleus. It is important to realize that spin-
dependent interactions are not coherent; i.e., the scatter-
ing matrix element for heavy nuclei is not enhanced com-
pared to that of single nucleons (apart from trivial phase
space factors) and might even be suppressed by nuclear
form factors. Nevertheless, the spin-dependent terms are
important, since the coherent interactions are often
suppressed dynamically, as we will see below. Indeed,
early estimates of neutralino nucleus scattering cross sec-
tions [10,11] only included the spin-dependent contribu-
tions.

However, already Ref. [10] pointed out that a scalar
(spin-independent) LSP-quark effective interaction does
exist if the quarks are massive. This was first studied
quantitatively by Griest [12], using an effective Lagrang-
ian approach in the limit of negligible mixing between the
superpartners of left- and right-handed quarks; in this
case, a nonzero interaction results only if the LSP is a
mixture of gaugino and Higgsino states. Srednicki and
Watkins then pointed out [13] that squark mixing intro-
duces additional terms that are generally of the same or-
der as those considered by Griest; these terms survive
even if the LSP is a pure gaugino or Higgsino state. Fi-
nally, Giudice and Roulet [14] pointed out that Higgs bo-
son exchange also contributes to the coherent LSP-
nucleus interactions if the LSP is not a pure state.

The effective interactions studied in Refs. [12—14] all
involve massive quarks. In the case of c, b, and t quarks,
a coupling to nucleons and nuclei emerges through heavy
quark loops coupled to two gluons [15] (see Fig. 1). How-
ever, in the case of the squark exchange contribution, this
entails the computation of a loop diagram with a (squark)
propagator contracted to a point; it is a priori not clear
under which circumstances this treatment produces a re-
liable estimate.

In a previous publication [16],we therefore presented a
complete one-loop calculation of the neutralino-gluon in-
teraction in the relevant limit of small momentum
transfer. We did indeed find contributions that are pro-
portional to the mass of the quark in the loop. We will
demonstrate in this paper explicitly that these terms
reduce to the results of Refs. [12,13] only if the quark
mass is small compared to both the squark and LSP
masses, which is frequently not the case for the top
quark. We also identified a second class of contributions
which are proportional to the LSP mass, not the quark
mass; these terms survive even in the absence of mixing
in both the neutralino and squark sectors. This is not
surprising once one realizes that a coherent interaction is
induced by the chiral symmetry breaking of the theory.
We also demonstrated that these new terms can be nu-
merically as important as those discussed in Refs.
[12—14].

Two problems prevented us from fully exploiting our
results in Ref. [16]. On the one hand, we found that the
new terms suffered from logarithmic infrared divergences
in the limit of vanishing quark mass. On the other hand,
our calculation produced terms with gluonic operators
different from those encountered in Ref. [15]. We have

realized since then that these two seemingly distinct
problems actually have a common solution. The new
gluonic operator is nothing but a special case of the lead-
ing twist gluonic operators encountered in analyses of
deep-inelastic lepton-nucleon scattering [17];the relevant
matrix element can be deduced from experimental re-
sults. Furthermore, the logarithmic divergence is a
consequence of mixing between leading twist quark and
gluon operators at the one-loop level. We identified the
corresponding quark operators in an expansion of the
effective LSP-quark interaction to order m . We could
then use standard renormalization group techniques to
sum the leading logarithms, which are intimately related
to "scaling violations" observed in deep-inelastic scatter-
ing. This enables us to write down the effective scalar
(spin-independent) LSP nucleon interaction including all
terms up to order a,m, as well as terms of order m

including all leading logarithmic QCD corrections and
some nonlogarithmic ("finite" ) corrections.

The rest of this paper is organized as follows. In Sec.
II we present the effective LSP-quark interaction at the
tree level, including terms up to order m, for the
squark exchange contribution. We identify the leading
twist quark operator that appears in this order. In Sec.
III we discuss QCD effects. We compare the results of
Refs. [12,13] with the corresponding results from our full
one-loop calculation. We also carefully treat the new
terms which survive in the limit of vanishing quark mass,
including the twist-2 operators, in a leading logarithmic
approximation as well as nonlogarithmic "trace terms. "
In Sec. IV we present some numerical results for the
spin-independent LSP nucleon matrix element. We find
that, as anticipated in Ref. [13],squark mixing is usually
quite important; however, the treatment of Refs. [12,13]
fails in case of the t-quark contribution. We also show
some predictions of the counting rate in germanium
detectors, where we include the spin-dependent contribu-
tion when it is appropriate. Section V is devoted to a
brief summary of our main results. Expressions for cou-
plings are listed in Appendix A, while Appendix B con-
tains some loop integrals.

II. EFFECTIVE
NEUTRALINO-QUARK INTERACTION

In this section we discuss the effective Lagrangian
describing neutralino-quark interactions at the tree level;
QCD effects will be discussed in the next section.

Three classes of diagrams contribute to LSP-quark
scattering: the exchange of a Z or Higgs boson in the t
channel and squark exchange in the s or t channel. As al-

ready mentioned in the Introduction, LSP interactions
with matter can naturally be separated into spin-
dependent and spin-independent parts. Z and squark ex-
change contribute to the former, and squark and Higgs
exchange to the latter. The main interest of this paper is
the spin-independent interactions, but for completeness
we also list the spin-dependent contribution:

where we have defined
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The second term in Eqs. (2) describes the Z exchange
contribution in the notation of Haber and Kane [2]; g is

the SU(2) gauge coupling, Oii, the weak mixing angle, T3q
(=+—,') and eq the weak isospin and electric charge of
quark q, and 0" describes the ZXX coupling [2].

The first term in Eqs. (2) is due to the exchange of the
two squarks q; with a given Aavor in the notation of Ref.
[16]. The couplings a and b describe scalar and pseu-

1

doscalar LSP-quark-squark interactions:

where mlz denotes the (1,2) element of the correspond-
ing mass matrix (4). In the same notation the masses of
the squark eigenstates are

m =
—,'[mLL +m~~+Q(mlL —m~~ ) +4m'~ ];

in our convention, m & m

The couplings a, b can now be expressed in terms of
the squark mixing angles O and the couplings of squark
current eigenstates,

a =
—,'[cos9 (X o+Z o)+sinO ( Y o+Z o)],

1

b =
—,'[cos8 (X o

—Z o)+sinO (Z o
—Y~o)],2

where we have used the notation of Ref. [22]:

2

q(a +b y, )Xq;+H. c.
i=1

(3)
X,o=—— 2g[T3q&oz —tan6'w(»q —eq»oi]
I' o=&2g tanO~e Xo, ,

(9a)

It is important to realize that
~
a

~

=
~
b in the chiral

q,. q,.

limit. In general, these couplings contain both gauge and
Yukawa contributions and are sensitive to mixing in both
the neutralino and squark sectors. Neutralino mixing has
been included in all recent analyses of LSP-nucleus
scattering [11—14,18,19], and so we do not describe it
again. However, squark mixing has only been taken into
account in Ref. [13], and so it might be useful to brieily
describe it here.

The mixing between the superpartners of left- and
right-handed squarks [20] is determined by the mass ma-
trices [21]

m +m„+0.35Dz —m„(A„+P cotP)
ql

—m„(A„+PcotP) m +m„+0.16Dz
(4a)

m +m„—0.42D —md( Ad+p tanp)

—md( Ad+ @tanp) md + mb —0.08Dz
R

(4b)

Here Dz =Mzcos2p, with tanp being the usual ratio of
vacuum expectation values of the two Higgs doublets,
m d are soft breaking masses, A„and Ad are soft

breaking parameters describing the strength of trilinear
scalar interactions, and p is the supersymmetric Higgs
boson (Higgsino) mass parameter that also appears in the
neutralino mass matrix. Once squark mixing is included,
the mass eigenstates q, become superpositions of the
current eigenstates qL, qz.

r

gm. +„zo
&2sinPm ~

gmd&o3
Zdo = ——— — . (9c)

V 2cosPm iir

In terms of the parameters a, b, c of Griest [12], one has
X o= &2gb—, Y' o=&2gc, and Z o= —&2ga. The cou-
plings a, b of the heavier squark eigenstate can be ob-

tained from Eqs. (8) by the transformation sin0q ~cosOq,
cos6) —+ —sin8 [see Eq. (5)].

Recall that g is a Majorana particle; the vertices one
reads off the eAective Lagrangian (1) thus have to be mul-
tiplied by 2. Note that we have included the LSP and
quark masses in our quark propagator; this propagator
therefore accurately describes the scattering of a massive
LSP oA a massive quark in the limit where the momen-
tum transfer is negligible. Since ambient LSP s are ex-
pected [1] to have velocities U =10 c, this approxima-
tion is justified.

Except for our refined propagator, our effective La-
grangian (1) agrees with Griest's [12] up to a factor 2 in
the limit O ~0. In the same limit we agree with Ellis
and Flores [18]except for the relative sign between the Z
and q exchange terms. In the limit of small but nonzero
squark mixing, we reproduce the result of Ref. [13] for
the squark exchange contribution in the limit
m )&(m +mz) .

q/

We flIlally IIleIlt1oIl that the contribution fI OIIl the
quark vector current, described by c, to the LSP-nucleon
scattering matrix element is suppressed by a factor of the
LSP velocity U and is therefore negligible in practice, we
have included it here to allow comparison with results in
the literature [12,13,18]. We have, however, omitted
squark exchange contributions

cosOq s1nOq

—sinO cosO

qz

~We agree with his expression for the cross section.
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We thus conclude that q
—b is very small for the light

~l ~l

quarks that are abundant in nucleons. Heavy quarks
couple to nucleons only through a loop; this will be dis-
cussed in the next section. Since the O(m ) term is

suppressed, the contribution from gq can be important,
even though it is O(m ). For the interesting case of a
b-ino-like LSP, a +b is of the order of the squared

l l

U(1) gauge coupling, without any suppression from small
mixing angles. If the LSP is Higgsino-like, the coupling
to light quarks is suppressed, but this scenario is cosmo-
logically not very interesting, since the relic density of
Higgsino-like states is very small [7,22,24].

In order to compute LSP-nucleus scattering cross sec-
tions from Eq. (10), we have to know the nucleonic ma-
trix elements of the relevant quark operators. For light
(u, d, s) quarks the matrix elements (N ~mqqq ~N ) have to
be taken from calculations that attempt to describe
strong interactions at long distances. Following Refs.
[19,23], we will use results from chiral perturbation
theory as a guideline [25]. The matrix elements
( N

~
m & QQ ~

N ) for heavy (c,b, t) quarks can be computed
as in Ref. [15] (see Sec. 3). Finally, the second term in the
eff'ective Lagrangian (10) can be expressed in terms of
twist-2 quark operators that appear in analyses of deep-
inelastic lepton-nucleon scattering [17]. This can be seen
using the tensor identity

-(a —b )/[m —(m +mz) ]

since they are doubly suppressed compared to the leading
terms given in Eqs. (2): The coupling is nonzero only due
to chirality violation, which is generally weak; moreover,
this contribution is of higher order in an expansion in in-
verse powers of the squark mass.

We now turn to the spin-independent neutralino-quark
interactions. They receive contributions from the ex-
change of squarks and scalar Higgs bosons:

=f XXqq+g X'V r) X(qr„r) q r) qr„q) .

(10)

Here we have introduced

2 2
aq.

—
q. 2 C ~C J

4;=i m —(mz+m ) 1=i mH
l J

(1 la)

a +b
gq=

4 [m —(mz+m ) ]
(1 lb)

Q L"'=(Q„——,'g„,Q )L"'+ ,'Q Lp~, — (12)

as well as the equation of motion for the "trace terms"
qy"B„q and yy 0 g, to rewrite the second term in Eq.
(10) as

.=g, -[ »@,"—„'.Xr"~'X ,'m, —m,—qqXX]

Here we have introduced the n =2 twist-2 quark operator
[17]

0,"„'.=
2 [qr„~w+qr. ~„q ,'q~.r q—g,—.] . (14)

Note that 0' ' is traceless, which is necessary for opera-
tors with fixed spin or "twist. "

The characteristic energy scale for the effective La-
grangian (10) is given by the Higgs boson and squark
propagators. In order to describe physics at lower scales,
QCD renormalization effects must be included. These
are the subject of the following section.

III. QCD EFFECTS
ON LSP-NUCLEON SCATTERING

In this section we discuss the role QCD plays in calcu-
lating the LSP-nucleon scattering matrix element. Two
independent effects have to be considered. On the one
hand, perturbative QCD predicts a nonzero matrix ele-
ment (N~m&QQ ~N ) for heavy quarks [15]. On the oth-
er hand, QCD also changes the coe%cient g of the
twist-2 operator appearing in the effective Lagrangian
(10).

We start with a discussion of the heavy quark contri-
bution. It has been realized more than 15 years ago that

2The expression for the H, XX coupling in Ref. [19] contains a
sign mistake; M. Karnionkowski (private communication).

The couplings a, b entering the squark exchange con-
l l

tributions are again given by Eqs. (8). The coefficients czj'
and c' ' determine the couplings of the jth scalar Higgs
boson to the LSP and to the quark q, respectively [16];
for the convenience of the reader, explicit expression are
given in Appendix A.

Only the term ~f has been discussed in the existing
literature. In the' limit 8 ~0, our expression (1 la) agrees
with Ellis and Flores [18] (up to an overall sign). The
Higgs boson exchange contribution to f agrees with Ref.
[14], where the importance of this term was first pointed
out; however, here as well as in Refs. [18] and [23] only
the contribution from the light Higgs boson H2 has been
taken into account. As first pointed out in Ref. [19],the
contribution of the heavier Higgs boson H& can also be
very important, since its coupling to quarks can be
enhanced. However, the squark exchange contribution
in Ref. [19] is too large by a factor of 2. Moreover, un-
like in Refs. [19] and [23], the relative sign between the
Higgs boson and squark exchange terms should not de-
pend on the sign of the eigenvalue nz& of the neutralino
mass matrix. Finally, our squark exchange contribution
(lla) agrees with Ref. [13] in the limit of small but
nonzero squark mixing.

Note that the squark exchange contribution to Eq.
(lla) is proportional to the difFerence a b, which-

ql l

vanishes in the limit of a chiral LSP-quark-squark in-
teraction. Indeed, Eqs. (4)—(9) imply that this coefficient
vanishes for massless quarks: From Eqs. (8) and (9), we
see that a b~ sin28 for m—assless quarks (Z c=0); on

l l

the other hand, from Eq. (6) one has sin28~ ~ m~/m&.
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a scalar heavy quark current couples to nucleons with
strength —1/m& via the loop diagram depicted in Fig. 1.
The result is [15,25]

(X~m&QQ~N) =
—,', mdiv 1 —g fT (Q=c, b, t) .

Q, d, s

(15)

LSP gluon interaction [16]:

Xrg=gyF„'g'" [ —T +BD+Bs]
—(B»+B»)ga„a„yF'~~F;.

+B sg (i B„y +ic) y„)yF'"t'F'" . (17)

Here fT denotes the fraction of the nucleon mass m&
that is due to light quark q:

( I1I
~ m& qq ~

K ) =m&fT ( q =u, d, s ) . (16)

The numerical values of the fT have to be taken from
model calculations [25], as mentioned earlier.

Equation (15) describes the Higgs boson exchange con-
tribution exactly (up to corrections of order of the
momentum transfer divided by m&); indeed, it has first

been derived [15] in a calculation of the Higgs-
boson-nucleon coupling. However, when applying Eq.
(15) to the squark exchange contribution, one effectively
replaces a box diagram with one squark and three quark
propagators by a triangle diagram that only contains
quark propagators. This procedure cannot be expected
to yield accurate results unless m ))(m +mr ) . This is

frequently not the case for top squarks and can also be
problematic for the bottom squark, as we will see later.

In Ref. [16] we therefore presented a full one-loop cal-
culation of the contribution from heavy quarks and their
superpartners. This also includes the contributions of
box and triangle diagrams with two or three squark prop-
agators; indeed, these diagrams are necessary to guaran-
tee gauge invariance to all orders in m /m&. As men-

tioned above, the Higgs boson coupling to nucleons via a
heavy quark loop is given exactly by Eq. (15); however,
there is also a contribution involving only the super-
partners of heavy quarks. The total contribution involv-
ing squarks can be described by the following effective

Here T is the Higgs contribution via squark loops, while
q

all other contributions come from box and triangle dia-
grams involving quarks and squarks. All coefficients with
a subscript D are proportional to the difference a

~l ~l

(summed over quarks and squarks), while a subscript S
indicates a contribution proportional to q +b

t t

BD = —g (a b)m—~I, (m, m~, mz),
4m 8

q, l

(18a)

Bs = —mr g (a +b )I2(m, m, mz),
4m 8

q, i

(18b)

4m 3
(18c)

B,s= —mr g(a +b )I4(m, m, m ), (18d)X q,. q,. 4
q, i

B2s= g(a& +b )I5(m, m, m ),
4m 12

q, i

(j)c(~) c

ql

(18e)

(18f)

Expressions for the couplings appearing in Eq. (18f) are
given in Appendix A, while the loop integrals in Eqs.
(18a)—(18e) are listed in Appendix B.

The effective Lagrangian (17) contains terms with

different tensor structure. The matrix element (15) is re-
lated to the "trace term" F„'g'", while the terms
~F'"PF' are related to the twist-2 operator. We willP
discuss these two kinds of terms in the following subsec-
tions.

l H A. Trace part

l q

We start with the contribution ~ F'g '"', which cor-
responds to the contribution described by Eq. (15). It is
important to realize that we have to include the trace
part of the terms ~ B, and B2 here; i.e., we have to apply
the tensor identity (12) to these terms. The total "trace
term" then becomes

FIG. 1. On the left we depict the Feynman diagrams that
contribute to spin-independent LSP-quark interactions. In the
low-energy limit and after a Fierz rearrangement of the q ex-
change contribution, these give rise to the e6'ective interaction
depicted in the center. In previous work the contribution in-
volving c,b, t quarks has been estimated closing the quark line as
shown in the diagram at the right.

Pg ~
4 (B1D+B1s ) (19)

Note that the signs of the terms proportional to T~, T, B&z,
and B» were incorrect in our original calculation.
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In order to compare Eq. (19) with the result one ob-
tains from using Eq. (15) on a/I terms —m&QQ in the
effectiv Lagrangian (10), we use the identity [15,25]

Moreover, we need the expansion of the loop integrals
Ii ~ in powers of inverse squark mass, i.e., for the case
mq ((fly Pl ~.

2 2 2.

relevant loop integral is dominated by the perturbative
region of large momenta, which is not included in the
matrix elements of m qq. Another way to see that these
two contributions are indeed independent and can thus
safely be added is the observation that in Eq. (13) chirali-
ty is violated by the quark mass, while in Bs

( mr /2)82' the LSP IIlaSS provides tllC SOUI CC Of
chirality breaking.

8. Contributions from est-2 operators

2 1

3m (m —m~) I

I3,I4 ——0

tBq
2

' rn'
q

(21a)

(21b)

Wc now tulI'1 to a dlscllssloI1 of @CD effect oil tllc
twist-2 quark operator (14) in the efFective Lagrangian
(13). As mentioned at the end of Sec. II, the effective La-
grangian describes physics at the energy scale given by
the squark propagator. In more formal language we have
to know the matrix element (%

~

0'„' E ) at the renor-
malizaiion point po= Qm —mz in order to directly use
Eq. (13). This matrix element is closely related to the
second moment of the quark distribution functions [17]:

We see that Eqs. (18)—(21a) give the same result to lead-
ing order in I as the squark exchange contribution

q
(1 la) to the effective Lagrangian (10) when used together
with Eq. (15). However, Eq. (21b) gives a 2 times larger
result than Eqs. (11b) and (13) when used together with
Eq. (15). This illustrates the perils of using effectiv La-
grangians in loop calculations. Such a procedure can
only be expected to give the correct answer if the loop in-
tegration is dominated by momenta small compared to
the squark mass. In the limit m &&m, this is true for
I„hwi hchas a quadratic infrared (IR) singularity as
rn ~0. We will see below that this is also true for I, and
I5 separately, which show logarithmic IR divergences as
fBq ~0. However, these singularities cancel in the
relevant combination I2 —

—,'I~. In other words, in this
particular combination loop momenta of the order of the
squark mass make significant contributions. The eItective
Lagrangian approach corresponds to introducing a cutoA
of the order of the squark mass on the loop integration; it
is clear that this cannot yield reliable results if loop mo-
menta close to the cutoA contribute significantly.

We thus conclude that the eItective Lagrangian ap-
proach that has been used in the literature to estimate the
heavy (c,b, t) quark contribution to LSP-nucleon scatter-
ing from the first term in Eq. (10) should give approxi-
mately the correct result if m (&I —I&. However,
the heavy quark contribution from the second term in
Eq. (10) cannot be estimated in this fashion; one has to
use the results of the full one-loop calculation.

The contributions from 8D and 8& diA'er also where
light (u, d, s) quarks are concerned. As discussed earlier,
their contribution from the eff'ective Lagrangians (10) and
(13) has to be estimated using model calculations [25] for
(X~mqqq ~X). It does not make sense to include the
light quark contribution to BD, since the corresponding
loop integral I2 is dominated by the nonperturbative re-
gion of small momenta; this effect should be included in
the nonperturbative nucleonic matrix lements. On the
other hand, the light quark contribution to .8&—(mr!2)B2z can safely be included, since here the

1

(p„p„——,'m~g„) dx x [q(x,po)+ q(x, po)],

where p is the nucleon momentum.
In principle, we could use Eq. (22) directly. However,

this has the practical disadvantage that the hadronic ma-
trix elements would depend on supersymmetric (SUSY)
parameters via the scale dependence of the parton distri-
bution functions (these are the famous scaling violations
of @CD). We therefore choose to express our results in
terms of matrix elements of twist-2 operators at the fixed
(low) scale go=5 GCV (=mI, ). The moments of parton
densities at high momentum scales are related to those at
a lower scale via the renorrnalization group equations
[17]

d
d lllg
—q(n, Q )= —[y„"-~(n)q(n, g )+y~vv(n)G(n, Q )],

(23a)

yFvF(n) yq(n g )+yvvv(n)G(n, g')

where we have introduced

q(n, g )—:J dxx" 'q(x, g ) (24)

and similarly for G(n, g ). Note that the sum in Eq.
(23b) runs over all quarks and antiquarks whose mass is
(much) smaller than Q. The y', (n ) are components of a
2 X 2 matrix of anomalous dimensions [17].

~Recall that we assume negligible momentum transfer, so that
the initial and final rnornenta are identical.
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6+(2,Q )=—"&(2,Q') —
—,", G(2, Q'),

8 (2, Q )= —,", [&(2,Q )+G(2, Q )],
while the relevant anomalous dimensions are

(25a)

(25b)

16as 31&vs
y~p(2)=, y+(2)=, y (2)=0 .

9m 9m
(26)

Note that the second moment of a parton density is noth-
ing but the fraction of the total nucleon momentum car-
ried by that species of partons. The sum over all quarks
and gluons X(2)+G(2) must therefore be equal to 1 at all
momentum scales. This explains why y (2) vanishes.
We thus succeeded in reducing the system of coupled
equations (23) to decoupled equations of the form

In order to solve Eqs. (23), we first observe that fiavor
nonsinglet operators q; (n, Q ) —

q (n, Q ), where i,j are
flavor indices, renormalize multiplicatively, since the
gluonic contribution in Eq. (23a) cancels out. It is always
possible to express I independent quark densities in terms
of l —1 differences and the total sum X(n, Q )
—=g„„„k,q(n, Q ). Finally, in order to treat the mixing
between X(n) and G(n), one introduces orthogonal com-
binations 6+(n) and 8 (n), which again renormalize
multiplicatively with anomalous dimensions y+(n) and
y (n) F. or the relevant case n =2 and Nf =5 light
fiavors of quarks, these operators are given by [17]

8(Q') = — y8(Q'), (27)

which has the solution [17] (for Nf = 5 fiavors)

( 2) 6y/23

6(Q') =8(Qo )
as(QO )

(28)

Here we have used the standard expression for the run-
ning QCD coupling constant:

( 2) 12'
231n(Q /A )

(29)

In order to apply Eqs. (23)—(29) to our problem, we
first observe that we can safely ignore the Yukawa contri-
butions to the combinations of couplings a +b for u,

l l

d, s, and c (s)quarks. If we further assume that squarks of
the first two generations are degenerate in mass, as sug-
gested by the analysis of SUSY contributions to meson
mixing in the K and 8 systems [26], we find that the
coefticients g are equal for u and c quarks and for d and
s quarks. On the other hand, for large tang the bottom
Yukawa coupling can be sizable; moreover, if tanP
and/or p are large, Eq. (4b) leads to non-negligible mass
splitting between bottom squarks. In general, gb can
therefore differ significantly from gd =g, . Altogether, we
therefore need three independent combinations of quark
densities for five quarks (the contribution of the top
quark will be discussed later):

g g, q(Q') =-,'(2g„+2gd+gb)[6+(Q')+8 (Q')]+-,'(g„—gd )[8„(Q')—8d(Q')]
quarks

+-,'(g. +g —2g )[—,'&(Q') —5b(Q')] (30)

Here we have used Eqs. (25) to replace the sum over quark densities X by the orthogonal combinations 8+ and 8
Moreover, we have made the usual assumption that q(x) =q(x) for the s, c, and b quark densities in nucleons and have
introduced

6„=u+u+2c, 8d=d+d+2s . (31)

Equation (30) holds at any scale Q . As discussed earlier, we have to evaluate it at the high scale po =m —m z, but
we want to express the result in terms of parton densities at fixed scale Qo =25 GeV =mb, this scale has been chosen
such that b(QO ) =0. Using Eqs. (26)—(28), we have

62/69
15 as(no)r g q(P0)= —(2g +2gd+gb) +8+(Qo)

quarks 31 as(Qo)
32/69

+ [ 2(g~ gd )I 6u(QO) 8d(Qo)]+ ~'q(gu+gd 2gb)&(QO)]
2 2 as(uo)

as(Qo) .
(32)

where we have used momentum conservation, which im-
plies 6 (2)= —,", as discussed above. The other necessary
combinations of moments of parton densities at scale Qo
can easily be obtained by integrating standard parame-

5Nevertheless, the last term in Eq. (30) renormalizes multipli-
catively, like any other nonsinglet quark density, since b(Q ) is

nonzero for Q )Qo~.

trizations of these densities. Results for four recent
representative parametrizations [27,28] are collected in
Table I.

Equation (32) describes our results in terms of constant
parameters g of the effective Lagrangian and scale-
dependent hadronic matrix elements. Equivalently, we
could have used running couplings and constant matrix
elements. The crucial observation here is that the prod-
uct g~ (Q )q(Q ) is independent of the scale Q .
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TABLE I. Numerical values of the second moments of the combinations of parton densities appear-

ing in Eq. (32). "MTLO", "MTB1",and "MTB2" refer to the leading-order parametrization and two

next-to-leading-order parametrizations of Morfin and Tung [27], where we have set b (Qo) =0 exactly,

while "Owens" refers to the parametrization of Ref. [28]. Columns 2—5 refer to scale Qo —-mb, while

column 6 gives the gluon density at scale Q =2 X 10 GeV =m, . The superscripts in columns 3 and 4

refer to the proton and neutron; the other eritries are identical for both kinds of nucleon.

Os gu

MTB1
MTB2
MTLO
Owens

0.025
0.056
0.019
0.018

0.115
0.102
0.113
0.109

—0.181
—0.190
—0.181
—0.171

0.509
0.540
0.503
0.502

0.492
0.471
0.480
0.514

(p "p —m~g" )G(2) .1
(33)

Moreover, in the limit mq —+0, the coefficient B2s con-
tains a logarithmic divergence:

~s 1B2s=
4 6

q, i

a +b

(m —m )x

2 2m —
m&

+finite terms
2

mq

as Po
ln

3& mq
gq i (34)

in the second step, we have assumed squarks to be (essen-
tially) degenerate, as for the discussion leading to Eq.
(32). The renormalization group analysis thus exactly
reproduces the leading logarithmic contribution to the
full one-loop amplitude if we identify Qo with the quark
mass m . This is no surprise; in the given case, the loop
integral is again dominated by small loop momenta, lead-
ing to an IR divergence as m —+0, and so we expect the
effective Lagrangian approach to (approximately) repro-
duce the one-loop result.

For the case of light (u, d, s) quarks, we cannot trust the
one-loop calculation, since their masses are so small that
perturbative QCD is no longer trustworthy at scales
Q =m~. Nonperturbative effects become important,
which are included in the (measured) parton distribution

Note that Eq. (32) depends on the gluon density at
scale Qo. This dependence is entirely due to the scale
dependence of the parton densities, which in turn is in-
duced by QCD loops. If we expand Eq. (32) in as, keep-
ing only terms linear in as, the coefficient of G(Qo) on
the right-hand side of Eq. (32) is (as/3~)ln(po/Qo) gg~.
On the other hand, the traceless part of the combination
of gluon field strength in the second and third terms in
the efFective Lagrangian (17) is nothing but the n =2
twist-2 gluon operator:

(N~F'"i'F" + 'g"'F' F'—~~N )p 4 aP

functions. The light quarks therefore have to be treated
using the effective Lagrangians (13) and (32).

On the other hand, for heavy (c,b, t) quarks the pertur-
bative result of Eqs. (17) and (18) should be reliable to the
given (one-loop) order. Nevertheless, the use of the re-
normalization group equation (RGE) approach [Eq. (32)]
might be advantageous, since it automatically sums lead-
ing logarithmic QCD corrections to all orders [17], i.e.,
all terms —[a+in(po/m~ ) ]"are included. For the case of
c quarks, we find that the logarithmic term does indeed
dominate the loop integral I5. Summing higher powers
of this logarithm is therefore quite important; we thus de-
cided to treat c quarks in the RGE approach. In case of
the top quark, the logarithmic term in I5 dominates only
if the top squark is very heavy, in which case the total
contribution -g, is very small anyway. It therefore ap-
pears more important to include nonlogarithrnic terms
rather than resumrning higher powers of the logarithm.
We thus treat the t-quark contribution in exact one-loop
order using Eqs. (17), (18), and (33), where we take the
gluon density at scale Q =2 X 10 GeV =m, .

The case of the (s)bottom contribution is somewhat
more ambiguous. For small tanP, b squarks are usually
degenerate with the other squarks, and I5 is dominated
by the logarithmic term. However, for large tanP the
lighter bottom squark eigenstate can be much lighter
than the other squarks and can even be close in mass to
the LSP. In this case the exact one-loop treatment seems
more appropriate. In particular, I5 remains finite as

b mx mb my+ mb while th coefficient gb
1 1

diverges in this limit. We therefore decided to treat the
(small) contribution from the heavier bottom squark bz
together with the squarks of the first two generations via
Eq. (32). In order to include the contribution from b, ex-
change, we introduce a new scale p&

=mb
—m&, as dis-

1

cussed above, this scale can be significantly smaller than
p~. We then compare the b, exchange contribution ac-
cording to Eqs. (17) and (18) with the prediction from the
RGB approach and adopt the smaller of the two results
as our best estimate. Since the terms of higher order in

Recall that the twist-2 quark operators appear with coefficient—2 in the efFective Lagrangian {13),while the term ~ B2~ in Eq.
(17) gets a factor of 2 since we have used the explicitly sym-
metric form of the LSP tensor following the notation of Ref.
[16].

7At high momentum scale G(n, Q2) depends only very weakly
on Q2. The use of a fixed Q2 is therefore justified for top quark
mass in the allowed range between 100 and 200 GeV.
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1n(pb/Qo) tend to reduce the one-loop result, this pro-
cedure implies that we treat the b, contribution via the
RGE method if b, is heavy. However, close to the spuri-
ous pole in gb the RGB prediction diverges, and our pro-
cedure automatically chooses the one-loop result.

This completes our treatment of QCD effects. We now
turn to a discussion of the numerical importance of the
various contributions to LSP-nucleon scattering.

IV. NUMERICAL RESULTS

A. LSP-nucleon scattering amplitude

Before we can give numerical results for LSP-nucleon
scattering amplitudes, we have to specify the values of
some parameters. As already mentioned in the previous
section, recent predictions [27,28] for the second mo-
ments of the relevant combination of parton densities are
listed in Table I. We see that existing data on deep-
inelastic lepton-nucleon scattering and related data which
enter the fits of Refs. [27,28] are sufficient to pin down
these parameters to better than 10% accuracy.

We also need to specify the values of fz.z= (N ~mqqq ~N ) /mz for light (u, d, s) quarks. The con-
tributions from u and d quarks is quite small, but we in-
clude them for completeness. The combination
(m„+md )/2(N~uu+dd ~N ) is determined from the AN
"sigma term. " However, since u and d quarks couple
differently, we have to know the individual contributions,
which are more model dependent. Following Cheng [25],
we take

f '~'=0. 023, f~~~=0.034,

f'"„'=0.019, f'"„'=0.041,
(35)

fz; =0.14; (36)

it should be kept in mind that this value is uncertain to
about a factor of 2, however.

In order to estimate the contribution from the spin-
dependent interactions of Eqs. (1) and (2), we have to
know the matrix elements

& N
I q y„y,q IN & =»„&q . (37)

Here s„ is the spin vector of the nucleon and Aq denotes
the second moment of the polarized quark density [31].
Just like the unpolarized parton densities, the Aq can be
extracted from analyses of deep-inelastic lepton-nucleon
scattering. However, in this case both probe and target
have to be polarized, which complicates the experiments
significantly. Analyses of old SLAC data [32] and of
more recent data from the European Muon Collaboration
(EMC) [33] suggest [31]

where the superscripts denote protons p and neutrons n.
The strange quark contribution is expected to be larger

than that from u and d quarks, but the exact value is
quite uncertain. Values as small as 71 MeV [29] and as
high as 430 MeV [25] have been given for the matrix ele-
ment (N~m, ssN). Here we follow the recent analysis of
Gasser, Leutwyler, and Sainio [30]:

hu =0.77, Ad = —0.49, As = —0. 15 (38)

&s,h, =fYXq'x'P~ (39)

where %'& denotes the nucleon N. In the treatment of
Refs. [12,13], the squark exchange contribution to the
coefficient f is

eff f(g)

fD ™~& fT+ frG &
mq 27

& & mq
(40)

where fTG= 1 g„d,fT —. The coefficients f'~' are the
squark exchange contributions to Eq. (11a), and the sub-
script D indicates that we are only including terms pro-
portional to the difference of couplings a —b here. In
contrast, we treat the contribution from heavy quarks in
exact one-loop approximation as described in Sec. III:

(q) 2
fq 8'

fD=m~ g fT, — fTG +g) 4 +iD
m exp

(41)

Predictions from Eqs. (40) and (41) are compared in
Fig. 2. Here and in the following figures, we have chosen
a common soft breaking mass m for all squarks, but we

include squark mass splitting due to "D terms" as well as
I. Rsquark mixing [se-e Eqs. (4)]. We also assume the
usual unification relation [2] M, = —',tan Oii, M2 between

the SUSY-breaking U(1) and SU(2) gaugino masses. Fi-
nally, in this "global SUSY" scenario we assume that m,
M2, the Higgs boson (Higgsino) mass parameter p, the
ratio of vacuum expectation values (VEV'S) tanP, the tri-
linear soft breaking parameter A (which we also assume
to be the same for all squarks), the pseudoscalar Higgs
boson mass m~, and the top mass m, can all be varied in-

dependently. In Fig. 2 we have chosen m =M2=200
GeV, m&=500 GeV, m, =140 GeV, A =0, and tanP
= 10.

The solid curves show the predictions of our "exact"

sRecall that f /m~ is finite as m~ ~0.

for the polarized quark densities in the proton; in case of
the neutron, the u and d quark densities have to be inter-
changed as usual. The errors of the quantities (38) are
about +0.08. Very recently, data on polarized lepton-
neutron scattering have become available [34]. A recent
analysis [35] of these data gives values for the b,q very
close to those in Eq. (38), but with somewhat reduced er-
rors.

We are now in a position to present numerical results
for LSP-nucleon scattering. We begin with a discussion
of the squark exchange contributions to the spin-
independent interaction via the f~ term in Eq. (11)as well
as via the B~ terms in Eq. (17). As mentioned in the In-
troduction, this was the first spin-independent contribu-
tion to be studied quantitatively [12,13] using effective
Lagrangian techniques. We write the scalar contribution
to the effective LSP-nucleon interaction as
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"iO-9

ip-ip

ip —ii

ip i2
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I:Global SUSY: m~ ——200 GeV, mp=300 GeV, A=O

mt= 140 GeV, M~=200 GeV

ftotal

fD r

fD(mLR=O)

mq

P+M2
2

mL.z
yL yg tang~

Finally, Fig. 2 shows that the inclusion of squark mix-
ing reduces the dependence of fD on p. From Eqs. (8),
(9) and (1 la~( ), we see that f gets contributions from(g)

Higgsino-gaugino mixing (~X uZ 0, Y OZ 0), as well as
from squark mixing (o-sin28 X OY 0). The former con-
tribution decreases with increasing ~p~, while the latter
increases. Altogether, one can write schematically, for a
b-ino-like LSP and small squark mixing angle 0

2
g tan8ii, yL +y~

2(m —m )x

-500 0

p, [GeV]

500
(42)

FIG. 2G. 2. Squark exchange contributions ~a —b to the
~ ~

q. q.

spin-independent effective coupling f of Eq. (39). The solid and
xac reatment (41)long- as ed lines show results from our "exa t" t t (4

and the traditional approach (40), respectively; the upper
(lower) set of curves is for the total (top-quark —top-squark) con-

ow e predictiontri ution. The long-short-dashed lines sh th d
rom Eq. (40) if squark mixing is neglected. The dotted curves
epict the total result for f, including terms ~ a +b audaq; q;

an

Higgs boson exchange contributions. The curves are not ex-
tended into the experimentally excluded region of

~ p~.

treatment (41); the upper curves show the total contribu-
tion, while the lower curves show the top (s)quark contri-
bution alone. The long-dashed curves have been obtained
from Eq. (40) including squark mixing in the approximate
treatment of Ref. [13],while the long-short-dashed curves
correspond to the treatment of Ref. [12] where squark
mixing was ignored. Finally, the dotted curves show the
total spin-independent contribution, as discussed in more
detail below.

We observe that the effect of squark mixing is quite im-
portant everywhere, except at small values of

~ p ~
where X

is Higgsino-like and the expected relic density Qh very
small. The importance of squark mixing grows with

~

since the off-diagonal entries of the squark mass matrices
4 are ~p. On the other hand, the approximate treat-

rnent of Ref. [13] can be brought into good agreement
with our "exact" result for the total fD. To achieve such
a good agreement, we have modi6ed the squark propaga-
tors in fq [Eq. (1 la)] slightly, setting m =0 for all
quarks; moreover, in order to avoid a spurious pole in the
top contribution, we have replaced the stop propagators
simply by 1/m-, . This treatment is rather ad hoc, of
course, but neither omitting m in all squarkquar propagaiors
(as in the original treatment of Ref. [13])nor including it
everywhere gives nearly as good an approximation to the
full result. The lower curves show that this treatment
still overestimates the top (top squark) contribution
significantly, since the loop integral Il is strongly
suppressed for m )m&,

' this effect cannot be treated
properly in the framework of Refs. [12] and [13]. Never-
theless, it affects the total f~ only in the comparatively
uninteresting case of a Higgsino-like LSP.

10-8
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FIG. 3. Hi s &'gg boson exchange contributions to the eftective
coupling f of Eq. (39) [see Eq. (43)]. The solid curve shows the
total Higgs boson exchange contribution, the long-dashed and
long —short-dashed curves show the light Higgs boson exchange
contributions involving light (u, d, s) and heavy (c,b, t} quarks, re-
spectively, and the short-dashed and dot —long-dashed curves
depict the corresponding heavy Higgs boson exchange contribu-
tions. The dot —short-dashed curve shows the contribution from
the last term in Eq. (43), while the dotted curve again depicts
the total result for f.

where mLL, etc. , are again elements of the squark mass
matrices (4), yL ~ are hypercharges, and c, and cz are
numbers of order 1.

In Fi . 3'g. we show various Higgs boson exchange con-
tributions to the parameter f of Eq. (39):

f (H) (H)

H= X '
fT, + 27fTG &m 27, b, m

8m.

9 fTGmN+q (43)

Here ~' ' Is the Higgs boson exchange contribution to
the coefficient f of Eq. (lla) and T appears in the
effective Lagrangian (17). In Fig. 3 we have fixed
m = —p=300 GeV, mp=500 GeV, m, =140 GeV, and
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4 M2+P
2

—2I 3
1

c4(tang)+——
2Pl.0

where c3 and c4 are again numerical factors of order 1

and the exponent in the second term describes the
enhancement (suppression) of the XII coupling to up
(down) quarks.

In Fig. 4 we show contributions to the gX interaction
parameter f of Eq. (39) that are proportional to the sum
of couplings a +b; none of these contributions have

been taken into account in the existing literature. In or-
der to write these contributions in the form of Eq. (39),
we use Eqs. (22) and (33) as well as the identities

yy„h y= —- k„k yy,
Pl~

(45a)

2 =3 2 2(p„p —,m~g„„)k„k =
—,
—m~m

A =0 and var1cd tanp. Tllc lcadlllg radlatlvc corrections
from the top-quark —top-squark sector to the masses and
mixing angle of the scalar Higgs bosons [36] have been
taken into account.

For the given choice of parameters, squarks are quite
heavy, and hence the contribution from squark loops
(dot —short-dashed line) is very small; we found previous-
ly [16] that it can become sizable only for nonvanishing

In Fig. 3 the heavy scalar Higgs boson JI, is approxi-
mately degenerate with the pseudoscalar and hence is
even heavier than the squarks. Nevertheless, H l ex-
change dominates the total Higgs boson contribution for
tanP~ 5. There are two reasons for this: First, the A1+g
coupling (A2b) goes through zero at tang=6 as a result
of a canccllat1on betwccn two terms. Second, 1n the
relevant limit mz »rnz, the coupling of H2 to quarks are
almost identical to that of the SM Higgs boson, indepen-
dent of tanp. On the other hand, the couplings of III to
down-type quarks are enhanced at large tanP. Finally,
we note that for our choice (36) for the strange quark ma-
trix element fz.. the light quark contribution is actually
larger than the one from heavy quark loops. This is espe-
cially true for Hl exchange, since here cAectively only
down-type quarks contribute once tanP) 3 or so. Wc
have to keep in mind, however, that the contribution
from light quarks is uncertain to a factor of 2 or so, while
the heavy quark contribution depends only weakly on

TS

As already emphasized in the Introduction, Higgs bo-
sons can only couple to the LSP if it has both Higgsino
and gaugino components. These couplings will therefore
be suppressed for large ~p~ and/or ~M2 ~, since in this lim-
it the LSP becomes an almost pure state [7,22]. The
overall order of magnitude of the Higgs boson exchange
contribution for a b-ino-like LSP can be estimated as

Global SUSY:

6"i-
1 1 ~~ I t I ~ ~ ~ ~ I t ~ ~t I

100 150 POO 250
rn- [GeV]

I I I l I I

300 350 400

FICJ. 4. Squark exchange contributions ~ a +b to theq. q.

efFective coupling f of Eq. (39) [see Eq. (46)]. The solid line
shows the total fs, while the dot —long-dashed, long —short-
dashed, and long-dashed curves show the contributions from
the first, second, and fourth terms in Eq. (46). The short-dashed
curve shows the contribution from the third term in Eq. |'46),
where we have also included b, exchange as described in the
text. The dot —short-dashed and dotted curves show the total
squark exchange contribution to f and the total result for f, in-
cluding Higgs boson exchange, respectively.

+s = I™r m Jv X gq fTq
Q, d, S

2"'x ~x+- 8s — 8zs —— 8ls fTGmx9o~ 2 4

m~ 2+ —8'ls+ - -(8Is+8ID) m~mrG(m, )
2 2

k, d, S, C, A

gq g(/Lc)m~m~

The first term comes from the trace over the twist-2
quark operators [see Eq. (13)]. The second term origi-
nates from the trace of the twist-2 gluon operator, as dis-
cussed in Sec. IIIA. The third term is the top-quark
(top-squark) contribution to the gluonic twist-2 operator;
as discussed in Sec. IIIB, we always treat this contribu-
tion in an exact one-loop approximation. The last term
in Eq. (46) gives the light quark contribution to twist-2
operators, evaluated according to Eq. (32). Recall that
for small mass diA'erence m&

—mz the contribution from

the lighter bottom squark eigenstate is also treated in ex-
act one-loop order, as discussed in detail at the end of
Sec. III 8. In Fig. 4 we therefore show the 6, contribu-
tion together with t contribution. We see from Fig. 4
that the last term in Eq. (46) dominates, followed by the
second term. The other two contributions are usually
negligible. The overall order of magnitude of fs for a II
ino-like LSP is

where p and k are the momenta of the nucleus X and LSP
g, respectively, and we have omitted terms proportional
to the LSP velocity U. The total result is

g tan 6~ gq
lj(2)m m~{m'—m' )'

q

(47)
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Comparison with Eq. (42) shows that fs falls off faster
with increasing squark mass than the contribution
~ a —5 . This is also demonstrated by the dot —short-

q,. q,.
'

dashed curve in Fig. 4, which shows the total contribu-
tion from squark exchange. At small m the contribu-

q

tions are compatible; moreover, since here f '~' is dom-
inated by the second term in Eq. (42), the curves also
have similar slopes. However, for heavier squarks the
first term dominates Eq. (42), and the total squark ex-
change contribution drops less rapidly with increasing
m than fz does.

B. Counting rate in a germanium detector

Q
X

320 (km/sec)
(48)

Here m~ is the mass of the nucleus under consideration,

p& is the local LSP mass density, and u& the average or
efFective LSP density that results from integrating over
the (assumed) Maxwellian velocity distribution of the
LSP [38]. The elastic LSP-nucleon cross section for the
idealized case of a pointlike nucleon is given by

4m m
[Zf~+( A —Z)f„]

m(mr+I& )

+4k, 'J(J+1) g d bq
Q, d, s

(49)

Here Z and A are the charge and isotope number of the
nucleus; recall that the contribution CC fT„,fTd as well as
the u- and d-quark densities are difFerent for protons and
neutrons. J is the total spin of the nucleus, and k is a nu-
cleonic matrix element that basically describes the frac-
tion of the total spin that is due to the spin (rather than
the orbital angular momentum) of the nucleons. As usual
in the literature [10—12,18,19],we will assume that only a
single "valence" nucleon contributes to the total spin, so
that the sum in the second term of Eq. (49) runs over the
polarized parton densities of either a proton or a neutron.
We refer the interested reader to Ref. [39] for a more
comprehensive treatment of the nuclear physics of LSP-
nucleus scattering. For our case of Ge, we adopt the
value [18] A. J(J+ 1)=0.065.

Finally, the factor g in Eq. (48) describes the suppres-

Having discussed the relative importance of various
contributions to the spin-independent LSP-nucleon
scattering amplitude, we are now in a position to present
numerical results for elastic LSP scattering off heavy tar-
get nuclei. We choose germanium isotopes for this dis-
cussion, since a new class of germanium detectors with
increased sensitivity for DM searches is expected to be-
come operational in the near future [37]. The relevant
quantity for direct search experiments is the interaction
rate which is usually measured in events/(kgday). It is
given by

og 1.8 X 10" GeV Pr
mmmm„(kgday) 0.3 (GeV/cm3)

(50)

where erf is the error function and

2 2
m&m& 8B—= —r U&,

(mz+m~)
(51)

with uz -—uz/1. 2 being the "velocity dispersion" [38].
For the spin-independent interaction, we use
r =r,h„s, = (0.3+0.89 A '

) fm, while for the spin-
dependent interaction of Ge we use a slightly softer
form factor [18]with r, ;„=1.2 5r, h„s, .

In Figs. 5(a) —5(c) we show contours of constant count-
ing rate in the plane (Mz, m ), where M2 is the SU(2) gau-

gino mass and m the SUSY-breaking contribution to
squark masses, which we assume to be identical for all
squarks. We have fixed p=m~ =300 GeV and take a top
mass of 140 GeV. In Figs. 5(a) and 5(b) we have chosen
tanP=2, while Fig. 5(c) is for tanP=8. In all figures the
central region between the dotted lines is excluded by
constraints from unsuccessful sparticle searches at the
CERN e+e collider LEP [40], and the regions below
the dotted lines at large ~Mz ~

and small m& are excluded

by the requirement m& + m-, . Finally, in the hatched re-
1

gions relic LSP's would overclose the universe (Qh 2 ) 1),
while in the shaded region the LSP relic abundance is too
small to account for a significant fraction of the observed
dark matter (Qh & 0.05).

In Figs. 5(a) and 5(b) we observe large differences be-
tween the regions of positive and negative Mz. (More
precisely, only the sign of the product pM2tanP is
relevant here. ) For given ~M2 ~, the LSP is slightly lighter
and has a considerably larger Higgsino component if
M2 )0. This enhances the couplings to Higgs and Z bo-
sons, and increases the first contribution to f'~' in Eq.
(42), which is due to neutralino mixing. Furthermore,
there is a cancellation in the H2gy coupling for M, (0
[22]. As a result, the expected counting rate is generally
larger and the LSP relic density smaller for positive M2.
Unfortunately, this correlation implies that often com-
binations of parameters that lead to a large counting rate
for fixed local LSP density also lead to such a low univer-
sal relic abundance that the LSP does not make a good
DM candidate any more. This is demonstrated by the re-

Our expression of counting rate (48) and {49)is 4 times larger
than the result given in Ref. [18]. As stated earlier, the scatter-

ing amplitudes that one derives from the effective Lagrangians
(1) and (39) have to include a factor of 2 due to the Majorana
nature of the LSP. Our spin-dependent cross section (49) agrees
with Ref. [12].

sion due to nuclear form factors. Ellis and Flores [18]
found that Gaussian form factors describe the total
counting rate adequately. For the standard assumptions
about the LSP velocity distributions, one has [18]

T

0.573 exp[ —B/(1+B)] erf[v'I/(I+B)]
&I+B erf(1)
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tend to cancel (see Fig. 3); this explains why the region
with very small counting rate, below 2X10, is much.
larger in Fig. 5(c) than in Fig. 5(a). On the other hand,
large tan@ also enhances b and s Itquark mixing and re-
duced c squark mixing [see Eqs. (4)]. Since the b and c
contributions tend to cancel for M2 &0, this results in an
increase of fD in Eq. (41), by more than a factor of 5.
This explains the growth of the region with counting rate
~0.02 events/(kgday) in the half-plane with negative
M2. Finally, we remark that at large ~tanP~ the sign of
MAIM tanp is less important than for small ~tanp~; in the
limit

~
tanP

~

~~, this sign becomes irrelevant.
So far, we have only considered "global SUSY" models

where m, mt„M2, IM, tanp, A, and m, can all be varied
independently. From the theoretical point of view,
"minimal" supergravity (SUGRA) models [2] are more
attractive. These models do not only allow one to de-
scribe potentially realistic sparticle spectra with fewer pa-
rameters, they can also explain (rather than parametrize)
electroweak gauge symmetry breaking in terms of radia-
tive corrections to the Higgs potential. In these models
supersymmetry breaking is described by a common scalar
mass mo, a common gaugino mass m, &2, and a common
A parameter. This degeneracy is assumed to be exact
only at some very-high-energy scale, e.g., the unification
scale M~. At lower scales the masses of different scalars
and different gauginos differ due to quantum corrections,
which can be described by a set of coupled renormaliza-
tion group equations (RGE's) [42]. In the remaining two
figures, we have used simple analytical parametrizations
[21,22] of the exact numerical solutions of these equa-
tions. Moreover, we have required the correct amount of
gauge symmetry breaking, i.e., the correct 8'mass at the
weak scale. This leaves us with altogether five free pa-
rameters, ' which we take to be the SU(2) gaugino mass
M2 at the weak scale, m„A, mo, and tanP. Note that iM

and mz are derived quantities in this scheme.
In Fig. 6 we show contours of constant counting rate in

a Ge detector in the (M2, mo) plane for I,=140 GeV,
A =0, and tanP=2. We immediately see that the count-
ing rate is much smaller than in Fig. 5. One reason is
that now squarks of the first two generations are at least 5
times heavier than the LSP. This is because the RGE's
lead to a positive contribution =8M2 to squared on-shell
squark masses, while we still have

~ mz ~

~ ~MI ~

= ~M2 ~
/2.

As a result, the total squark exchange contribution is
usually just a few % or even less of the Higgs boson ex-
change contribution. Therefore Fig. 6 shows no regions
of large counting rate for large ~M2~ and small mo, al-
though some combinations of parameters are still exclud-
ed by demanding the LSP to be electrically neutral; the
light charged sparticle in this case is the light ~ state,
however, which is much lighter than the lightest squark
[21].

Another reason for the small counting rate is that we
now always have p ~ ~M2 ~, since IM is fixed by the condi-
tion to get correct symmetry breaking. Therefore y is al-

IoUnlike in Ref. [21],we do not assume B(M» ) = A —ma here.

400
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FIG. 6. Contours of constant counting rate in a Ge detector
as predicted in a minimal supergravity model with radiative
symmetry breaking. The notation is as in Fig. 5.

ways an almost pure gaugino state in this figure, usually a
b-ino. The lines of constant counting rate almost coin-
cide with lines of constant M2, large ~M2 ~

implies larger

p and smaller AH couplings [see Eq. (44)]. For the
given choice of m„A, and tanP, IM increases very slowly
with mo. Larger values of mo also imply larger values of
the light Higgs boson mass, because of increasing top-
quark —top-squark loop corrections [36]. These two
effects explain the mo dependence of the counting rate.
Finally, the mass of the pseudoscalar Higgs boson also in-
creases with ~M2~ and mo. As a result, mp is always well
above 2m&, and there is no region of small relic density at
large ~Mz ~. Instead, we find an unacceptably large relic
density at large mo and ~Mz~ ~ 100 GeV, because the
dominant slepton exchange diagrams are suppressed
here; see Ref. [22] for a discussion of the LSP relic densi-
ty in minimal SUGRA.

The results of Fig. 6 do not depend strongly on m„and
A. Larger m, implies larger p and less neutralino mixing
as well as larger Higgs boson masses, leading to smaller
counting rates, but for M2 & 0 the rate only changes by a
factor of 2 or so when m, is increased to 170 GeV or re-
duced to 110 GeV. For M2 &0 the dependence on m, is
stronger, since the Higgsino component of y is not only
larger here, it also increases faster with decreasing p.
Similar remarks also apply for the A dependence. If
AM2) 0, both IM and mH increase with

~ A~, and the
2

counting rate decreases. However, very large values of
~

A~ are excluded because the lighter t squark would be-
come too light.

On the other hand, the counting rate does depend quite
strongly on tanP, as illustrated in Fig. 7. Since the cross
section is always dominated by Higgs boson exchange
contributions, the overall shape of the curves resembles
the square of the solid curve in Fig. 3. However, there
are some important differences. In the region of small
tanP, p increases rapidly with tanP [21], which reduces
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FIG. 7. tauP dependence of the counting rate as predicted in
minimal supergravity. Different curves correspond to different
values of the common scalar mass mo at scale M&, as indicated.
The curves are terminated at high tanP where the rescaled relic
density Ah falls below 0.05. For ma=300 GeV one has
Qh ) 1 for tanP 14.

the Hyy couplings. This partly compensates the reduc-
tion of mH at small tanP. Once tanP~5 or so, p be-

2

comes almost independent of tanP. However, m~ and
hence the mass of the heavier Higgs boson H

&
decrease at

large values of tanP; recall that Hi exchange is much
more important than 82 exchange" once tanp) 15.
Near the end of the curves, squark exchange contributes
about 10—15% of the total scattering amplitude as a re-
sult of enhanced Yukawa couplings and enhanced squark
mixing in the s, b squark sectors. Together with the
reduction of mH, this implies a faster increase of the

1

counting rate than what one would expect from Fig. 3,
where m~ was taken constant. Eventually, m~ is reduced
to a value close to 2m&, and the LSP relic density drops
below 0.05 [22]; we have terminated the curves at this
point. Finally, we see that for large tanP the counting
rate does depend on m0. This is because mH increases

1

with m0. However, this dependence is clearly still much
weaker than the dependence on tanP.

V. SUMMARY AND CONCLUSIONS

In this paper we presented a detailed discussion of elas-
tic LSP-nucleon scattering with emphasis on the role
played by strong interactions. We have little to add to
the present understanding of the spin-dependent contri-
bution to the scattering amplitude, because the operators
qy„ysq that appear in the spin-dependent effect LSP-
quark interaction of Eq. (1) are not renormalized by
strong interactions if m =0. In other words, the quanti-

~~This also implies that the total counting rate in this region of
parameter space strongly depends on the value fT, of the ha-
dronic matrix element ( N

~ m, ss
~
N ), which is uncertain to a fac-

tor of 2 or so.

ties Aq that one introduces to parametrize the hadronic
matrix elements of these operators do not depend on the
renormalization scale.

On the other hand, QCD effects are crucial for the un-
derstanding of spin-independent LSP-nucleon interac-
tions. Such interactions would be absent in a world
where chirality is conserved exactly. In the case at hand,
chirality breaking can enter either via the quark mass or
via the LSP mass. In previous studies [12—15,18] only
terms ~ m were included. Both Higgs boson and squark
exchanges contribute to these terms; the hadronic matrix
elements (N m&QQ ~N ) that relate LSP-quark scattering
to LSP-nucleon scattering were treated using the result of
Ref. [15]. We argued in Sec. IIIA that this is strictly
speaking not correct for the squark exchange contribu-
tion, since it involves the evaluation of a loop integral
with one propagator contracted to a point. We were nev-
ertheless able to find a modification of this "effective"
treatment of Refs. [12,13] that usually reproduces the full
one-loop calculation [16]for the total heavy quark contri-
bution quite accurately. However, this treatment fails for
the top quark contribution. For the cases we checked,
this changed the total squark exchange contribution by
more than -20% only if the total amplitude was dom-
inated by the Higgs boson exchange terms. However, in
models where the top (s)quark contribution is enhanced,
this "effective" treatment may no longer be sufficient. Fi-
nally, we emphasize that mixing between the super-
partners of left- and right-handed quarks is usually im-
portant [13] whenever the squark exchange contribution
is sizable. Squark mixing is as generic a prediction of
SUSY models as LSP mixing is; ignoring it can therefore
give quite misleading results.

The existence of terms where chirality is broken by the
LSP mass rather than the quark mass has previously been
noted by us [16]. In Secs. II and III B of this paper, we
discussed the connection between these terms and the
"twist-2" operators that appear in analyses of deep in-
elastic lepton-nucleon scattering. We used the QCD-
improved parton model which automatically resums lead-
ing logarithmic corrections to all orders in perturbation
theory. This is quite important, reducing the contribu-
tion from b and c (s)quarks to these terms by a factor of 2
or more, compared to the one-loop result. We emphasize
again that this class of contributions survives even in the
limit of no squark mixing and no mixing in the neutralino
sector, unlike the other coherent contributions. On the
other hand, this new contribution is proportional to m
while the previously discussed squark exchange contribu-
tion is m . Within the MSSM this contribution is
therefore only numerically important if squarks are not
much heavier than the LSP.

It should be kept in mind that all squark exchange con-
tributions are usually subdominant if squarks are very
heavy. If we simply multiply all mass parameters in the
neutralino and squark sectors of the theory with a con-
stant factor (keeping mii fixed), all coherent squark ex-
change contributions scale with the inverse third power
of this factor; this can most easily be seen from our ap-
proximate expressions (42) and (47) given in Sec. IVA.
We also find that the spin-dependent amplitude decreases
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as the inverse second power of this overall mass scale.
The Higgs sector behaves differently, because it has to
give the correct symmetry breaking. The heavy Higgs
boson exchange contribution again falls with the third
power of this scale. However, the light Higgs boson ex-
change contribution (44) only decreases linearly as a re-
sult of reduced neutralino mixing. This comes from the
well-known fact [36] that the mass of the light Higgs bo-
son is bounded from above in the MSSM, almost indepen-
dently of the overall sparticle mass scale. Similar bounds
can be derived even if nonminimal models [43]. We thus
find that for sufIiciently heavy sparticles, light Higgs bo-
son exchange will always dominate the total LSP-nucleus
scattering cross section. Of course, increasing all sparti-
cle masses arbitrarily not only leads to fine-tuning prob-
lems; it can also easily lead to an unacceptably large
cosmological relic density [7].

In Sec. IVB we used our LSP-nucleon scattering am-
plitude to compute relic neutralino scattering rates in a
germanium detector. We found that these rates depend
quite strongly on the parameters of the model, as indicat-
ed by the above scaling law. Even the relative sign of pa-
rameters of the neutralino mass matrix was found to be
very important. The proposed detectors [37] aim for a
sensitivity of about 0.1 event/(kg day). We see from Fig.
5 that such a large counting rate can usually only be ex-
pected if either the light Higgs boson or the LSP itself is
quite light; both cases should be testable at the second
phase of the LEP collider. In order to arrive at this con-
clusion, we exclude combinations of parameters that lead
to a very small overall LSP relic density, since in such a
situation the LSP is obviously not a good DM candidate.
We also find that usually, although not always, the spin-
dependent interaction is too small to be detectable.

The situation simplifies somewhat in the more restric-
tive minimal supergravity models. Unfortunately, here
the expected counting rate is usually quite low. Indeed,
we often are in the "asymptotic" region discussed above,
where only the light Higgs boson exchange contribution
survives, unless the ratio of vacuum expectation value
tanP is large, in which case the exchange of the behavior
Higgs boson makes the dominant contribution. The least
favorable situation occurs at intermediate values of tanP
where the counting rate could fall well below 10
event/(kg day) even for an only moderately heavy sparti-
cle spectrum, as seen in Fig. 7, where m& ——100 GeV.

Given that most combinations of parameters give a
counting rate well below 0.1 event/(kgday), should we
pursue this kind of experiment further? We think the
answer to this question is emphatically "yes." First of
all, we do not know how nature chose her parameters.
There are regions in parameter space not excluded by any
experiment that do lead to sizable counting rates. More-
over, as already mentioned in the Introduction, a positive
relic LSP signal would yield information that cannot be
obtained from any collider experiment. For instance, a
positive signal would immediately give a lower bound of
the order of 10' yr on the LSP lifetime, some 25 orders
of magnitude beyond what can be achieved at collider ex-
periments. Moreover, such a signal would obviously
greatly enhance our knowledge of how our galaxy has

formed.
On the other hand, even if these experiments did reach

a sensitivity of 10 or even 10 events/(kg day), they
would not preempt the motivation for SUSY searches at
colliders. This is because the absence of a signal in an
LSP search experiment is difficult to translate into
stringent bounds on model parameters. We already men-
tioned that an unstable but long-lived LSP could never be
detected in this fashion; this could easily be accommodat-
ed by introducing R-parity-breaking interactions at a
strength well below possible experimental limits. Fur-
thermore, one has to realize that the expression (48) for
the counting rate depends on several parameters beyond
those describing the sparticle spectrum. We already
mentioned the sizable uncertainty in the strange quark
matrix element (N~m, ss~N), which can result in as
much as a factor of 4 uncertainty in the counting rate.
Perhaps even more worrisome is the uncertainty in the
local neutralino Aux, p&u& in Eq. (48). Existing studies
[44] conclude that this is known to a factor of 2 or so,
based on current models of galaxy formation. We are no
experts in this field, but to our knowledge no "standard
model of galaxy formation" has emerged yet. It should
be noted here that the currently accepted best guess value
for the local LSP density p& is some five orders of magni-
tude larger than the universal relic density. Similar,
current estimates of the velocity u& are some seven or-
ders of magnitude above the thermal velocity of big bang
relics. Together, this gives a "glactic enhancement fac-
tor" (compared to the average over the Universe) of
—10' . Clearly, LSP detection would be hopeless
without this enhancement, but can present galaxy forma-
tion models really predict this factor up to a factor of 2
or so?

Our conclusion is therefore that sparticle searches at
colliders are complementary to LSP detection experi-
rnents. Each kind of experiment can yield information
not accessible to the other. The results presented in this
paper should allow for the as yet most accurate calcula-
tion of the cross sections relevant for the analysis of ex-
periments searching for cosmic relic neutralinos.
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APPENDIX A

In this appendix we give explicit expressions for the Z
and Higgs boson couplings that enter the effective La-
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gliR 1(N2 N2 )04 03 (Al)

Expressions for the LSP-quark-squark couplings have al-
ready been given in the main text [Eqs. (8) and (9)].

We next turn to the LSP —Higgs-boson couplings ap-
pearing in Eqs. (1 la) and (18f). They are given by [45]

cz" =
—,'(gNp2 —g'Np, )(Np4sina —Np3cosa)

=
2 (gNp2 g 'Np) )(Np& sina+ Npzcosa )

(A2a)

(A2b)

grangians of Eqs. (1) and (10). We use the notation of
Ref. [22], which is very similar to the conventions of
Haber and Kane [2] and Gunion and Haber [45]. In par-
ticular, we denote the four components of the eigenvector
of the 4X4 neutralino mass matrix that corresponds to
the LSP (the lightest neutralino) by Np, ; i = 1 corresponds
to the b-ino component, i =2 the SU(2) gaugino com-
ponent, and i =3 and 4 are the hypercharge Y= —

—,
' and

+ —,
' Higgsino components, respectively. Note that we

take X0, to be real; this means that the sign of the eigen-
value m& has to be kept when evaluating the scattering
amplitudes. However, the kinematical prefactor in the
expression (49) for the cross section only depends on the
kinematical mass, i.e., the absolute value of m&. Mixing
in the Higgs sector is described [45] by the angles p and
a; tanp is the ratio of the VEV's of the F=+—,

' and —
—,
'

neutral Higgs bosons, and a describes the mixing of the
neutral scalar mass eigenstates.

We are now in a position to list the couplings appear-
ing in the main text. We start with the LSP-Z coupling
in Eqs. (2):

sina (&) cosa
r„ = — . , rd

sinp
'

cosp

(2) cosa (2) slna
r„ = — . , rd

sinp
' cosp '

(A3)

here u (d) stands for any charge =+—,
'

( ——,') quark.
Finally, the diagonal Higgs-boson —squark couplings

appearing in Eq. (18f) can be written as (remember that
q, =cos|9qqL +sinOqqz stands for the lighter squark mass
eigenstate)

c ' = s ' (Iz cos 8 —e~sin O~cos28~ )
( ') ( ') 2 . 2

& r(i) & q
( g r(l')+ r (l'))gm . gm sin20

Pl p 2' p
(A4a)

s "(I& sin 0 +e sin 8)i cos28q)
cosO~

(i)+ & q (g „(i)+ „('))gm . gm sin20

NZ gr
rq 2m gr

qrq prq (A4b)

The parameters Aq and p enter the off-diagonal elements
of the squark mass matrices of Eq. (4), m~ and mz are
the masses of the weak gauge bosons, 0~ is the weak
mixing angle, I3 =+—,

' and e are the third component of
the weak isospin and electric charge of quark q, respec-
tively, and the r" have already been defined in Eq. (A3);
finally, s" and r "are given by

s"'= —cos(a+p), s' '=sin(a+p), (A5a)

where g and g' are the SU(2) and U(1)z gauge couplings,
respectively. Recall that the superscript 1 refers to the
heavier scalar Higgs boson.

The Higgs-boson —quark couplings entering Eq. (lla)
can be written as [45] c~"=gr~" /(2m)i, ), with

cosa, (j ) sina
sinp

'
cosp '

,(2) slna, (2) cosa
sinp

' cosp

(A5b)

APPENDIX B: LOOP INTEGRALS

In this appendix we list the loop integrals that appear in Eqs. (18a)—(18e):

x 2x+~
I,(m, m, m ) = dx

D 2

2 2—
Pyz 2 I —

m&

3m
q

——+ 2' ——m I.5 2 2 2

3 0 3 x (B1a)

x(x —2x+ —,
'

)
I2(m, m, mx) = dx

D

m'

1+—
4 2 2 2 2 2 2

——m+ —(m —m) L+ + +-
x x

(8 lb)
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x (1—x)I3(m, m, m&) = dx
0 D3

3(mx —m —m )
+——1+

g2

I4(m, m~, mx ) = dx
x (1—x)

D'
m

2mx m

6m m

1
2 2m mx

(8 lc)

L+— 1—
m4a m4 m'

X X

2m
3m m m2 2

+ 1+ +
Q2 m X

x(1—x)(2—x)I~(m, m, mx)= dx
0 D2

1 m

2m 4 2 g x q
ln —(m —m —m )L

mx mq

L 2(m —m )+3m +
q X 2

X

Here we have introduced the quantities

D=x mx+x(m —m —m )+m
q

6, =2m (m +m ) —m —(m m)—
X q q X

L = arctan, 5 ~O,2

mq+m mxq

m'+m~ —m'+v'Ib,
I

ln Q(P
m,'+ m,

'—m,' —&
I
~

I

'

2 2
mq

2
mx

+ 1

2mx

m —m2 2

3+ q q
2

—m —m L-2 2
X (81d)

(8 le)

(82a)

(82b)

(82c)

Equations (81) are only valid of m &m, which is always true in our case. Note also that I, ~ are finite as either
mx~0 or 4~0. The first case can be treated numerically in a straightforward fashion. The limit A~p can be treate
by expanding Eqs. (Bl) and (82) around the point mx = Im —

m~ I. Alternatively, this limit can be treated numerically

by setting 6 to some (small) constant 5 as b, ~O and taking m 2 =m ~+ m ~ — 4m 2m ~ —g.
q q
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