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Cosmological models within general tensor-multiscalar theories of gravity are studied. By isolating
an autonomous evolution equation for the scalar fields, one shows that the expansion of the Universe
during the matter-dominated era tends to drive the scalar fields toward a minimum of the function
a(rp) describing their coupling to matter, i.e. , toward a state where the tensor-scalar theory becomes
indistinguishable from general relativity. The two main parameters determining the e%ciency of this
natural attractor mechanism toward general relativity are the redshift at the beginning of the matter
era (or equivalently the present cosmological matter density) and the curvature of the coupling
function a(p). Quantitative estimates for the present level of deviation from general relativity,
as measured by the post-Newtonian parameters p —1, P —1, and G/G, are derived, which give
greater significance to future improvements of solar-system gravitational tests. Another prediction
of many tensor-scalar scenarios (whose consequences, particularly for the formation of structure in
the Universe, remain to be studied in detail) is the existence of strong oscillations of the effective
Newtonian coupling strength during the first few Hubble time scales of the matter era.

PACS number(s): 04.80.+z, 04.50.+h, 98.80.Cq, 98.80.Hw

I. INTRODUCTION

From the theoretical point of view, tensor-scalar the-
ories of gravitation, in which gravity is mediated by
one or several long-range scalar fields in addition to the
usual tensor field present in Einstein's theory, are the
most natural alternatives to general relativity. Indeed,
most attempts at unifying gravity with the other in-
teractions predict the existence of massless scalar fields
with gravitational-strength couplings. The Jordan-Fierz-
Brans-Dicke theory [1—3], which is the simplest tensor-
scalar theory of gravitation, originated from taking se-
riously the scalar field arising in the Kaluza-Klein com-
pactification of a fifth dimension. The more recent unifi-
cation models based on supergravity or superstrings nat-
urally associate long-range scalar partners to the usual
tensor gravity of Einstein (see, e.g. , [4]). An indepen-
dent motivation for scalar fields is furnished by infIation-
ary cosmology models which found in the framework of
generic tensor-scalar theories of gravitation a technically
natural (non-fine-tuned) way of terminating inflationary
eras [5—8].

If we turn our attention to the experimental tests of the
gravitational interaction [9, 10], the situation is two sided.
On the one hand, the most precise gravitational tests
(Hughes-Drever experiments and tests of the weak equiv-
alence principle) are perfectly compatible with the exis-
tence of a scalar admixture to gravity, as long as the cou-

pling of the scalars to matter is "metric, " which means,
in field theory language, a coupling to the trace of the
energy-momentum tensor. [Actually, it seems that the
only consistent field theories (without causality problems,
negative-energy modes, etc.), satisfying exactly the weak
equivalence principle, are the tensor-multiscalar metric
theories; see Ref. [10].] On the other hand, the tests in-

vestigating relativistic effects in the solar system (notably
the delay of radar signals passing near the Sun [11],and
the bound on a possible violation of the strong equiva-
lence principle in the Earth-Moon system [12, 13]) have
set rather tight limits on the admixture of scalars to grav-
ity. In field-theory language (see below), the solar-system
experiments indicate that the maximum fractional contri-
bution of scalars to the (Newtonian and post-Newtonian)
gravitational interaction is

o., &, ,„,t ( 0.001 (lo confidence level) . (1.1)

As one expects a fundamental tensor-scalar theory to
exhibit a ratio of order unity between the couplings to
matter of scalar and tensor fields, the limit (1.1) seems
to argue against the existence of long-range scalars. We
believe such a pessimistic conclusion is premature.

In this paper we study the general features of the cos-
mological evolution of tensor-scalar gravitational models
and show that these models generically exhibit an at-
tractive mechanism by which the observable predictions
of tensor-scalar theories evolve toward those of Einstein's
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theory [14]. (Our main results were briefly presented in
a previous communication [15].) The possibility of such
a mechanism has been previously suggested in particular
cases [16,6—8], but without giving any general argument
that general relativity is indeed a generic attractor of
tensor-scalar theories. (As discussed below, the conclu-
sion of Ref. [7] that the time evolution of the Jordan-
Fierz-Brans-Dicke field 4 is always monotonic is actually
incorrect. ) Moreover, we give quantitative estimates of
the efBciency of the relaxation toward general relativity.
Because of the large but finite redshift factor separat-
ing us from the end of the radiation era, we find that the
present observable total coupling strength of scalars n is
generically expected to be small [in accord with Eq. (1.1)]
but not unmeasurably so. The present numerical value
of n is indeed found to be a number of rich cosmologi-
cal significance, being very sensitive to the present total
mass density.

From a technical point of view, the newest result of this
paper will be to exhibit an autonomous evolution equa-
tion for the scalar fields, independent of the equations
describing the evolution of the scale factor of the cos-
mological models we consider. This isolation of a scalar
evolution equation (which is crucial to our demonstration
of the generic "attractor" features of general relativity)
was facilitated by our use of the framework in which the
kinetic terms of the tensor and scalar fields do not mix
("Einstein conforrnal frame").

The plan of this paper is as follows. Section II presents
the general formulation of tensor-scalar theories in the
"Einstein" conformal frame. The system of equations
describing cosmological models in tensor-multiscalar the-
ories is given in Sec. III, ending with the autonomous evo-
lution equation for the scalars. The implications of the
latter equation in the simplest case of spatially flat cos-
mologies are explored in Sec. IV, while Sec. V discusses
the observable consequences of generic tensor-scalar cos-
mological models.

II. TENSOR-SCALAR THEORIES IN THE
EINSTEIN CONFORMAL FRAME

The simplest tensor-scalar theory, due to Jordan [1],
Fierz [2], and Brans and Dicke [3], is usually formu-
lated by using as the basic metric tensor the physi-
cal tensor g~ to which matter is universally coupled
("Jordan-Fierz" conformal frame). This Jordan-Fierz-
Brans-Dicke (JFBD) theory contains only one free di-
mensionless parameter (denoted g by Jordan and Fierz,
and u by Brans and Dicke), and its predictions tend to
those of general relativity when this parameter tends to
infinity. Bergmann [17], Nordtvedt [18], and Wagoner
[19]generalized the JFBD theory by considering the most
general metric theory of gravity containing one tensor
and one scalar. This general tensor-monoscalar theory
can be described in the Jordan-Fierz kame by replacing
the parameter u by an arbitrary function of the JFBD
field C', and by adding an arbitrary potential V(4) for
the scalar. In this paper we explore the simplest class
of exactly massless tensor-scalar theories, i.e., the case of
the vanishing potential V(C') = 0 [20]. The action de-

V.T~ =0, (2.2)

where V'~ denotes the covariant derivative defined by the
physical metric g„, and where

2 bS [ill, g„„]
vg

(2.3)

denotes the physical stress-energy tensor of the matter.
On the other hand, this frame has the disadvantage of
featuring complicated evolution equations for the gravi-
tational fields g„„and 4:

Rp ~ Rgp gg
—8%4 Tp ~

+C ~(4) 0„48 4 —2g„g ~0 @clpC

+C '[V„V'.C —g„„a;4], (2.4a)

og4 =
~

8~T — g" 8„48 4
~

1 ( — d(u

2 C +3 E dC " )
(2.4b)

In Eqs. (2.4a) and (2.4b) all index operations are per-
formed with the metric g„, e.g. , Cl~ = g" V'~V', T„
g„g pT ~. The presence of second-order derivatives on
the right-hand side of Eq. (2.4a) shows that the propaga-
tion modes of g~ and 4 are mixed together. [Physically
this means that the g~ waves contain both helicity-2 and
helicity-0 excitations, and mathematically this implies
that the variables (g~„, 4) are inconvenient variables for
formulating a Cauchy problem. ] The other disadvantages
of the formulation (2.4a) and (2.4b) are (i) the fact that
the points in field space where w(C) = oo enter the the-
ory as mathematically singular boundary points, while
we shall show that they are physically regular and (ii)
the awkwardness of the action (2.1) as a starting point
for generalizing the theory to the case where there are
several scalar fields.

For many purposes tensor-scalar theories are better
formulated by using as basic gravitational variables the
pure-helicity propagation modes present in the theory
("Einstein" conformal frame). In this formulation, the
generalization to the case where there are several scalar
fields is quite straightforward [22]. Considering first the
one-scalar case, the action [difl'ering only by a surface

scribing a general massless tensor-monoscalar theory in
the Jordan-Fierz frame reads

S = d x+g CB — g""0„40„4
16' 4
+S [4,g„„], (2.1)

where R = g~ R„denotes the curvature scalar of the
physical metric g~„[21]. The last term in Eq. (2.1) de-
notes the action of the matter, which is a functional of
the matter variables, collectively denoted by 4, and of
the metric g~, but which does not depend on the JFBD
field C.

The advantage of the Jordan-Fierz frame is that the
laws of evolution of the matter (i.e. , nongravitational)
fields take the same form as in general relativity. For
instance, the energy-momentum conservation equation
reads
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term from the Jordan-Fierz action (2.1)] which describes
a general (massless) tensor-scalar theory in the Einstein
frame reads

parameter w, see Eq. (2.13b)].
The Geld equations in the Einstein conformal frame

read

d x~g„[R, —2g." B„rpB rp]

(2.5)

R„*„=20„pO p+ 8~G, (T„* —', T.-g„*„)),

ag. (p = 4~—G, or(rp) T„,
where

(2.9a)
(2.9b)

Here G, denotes a "bare" gravitational coupling con-
stant, g„* the "Einstein" metric tensor conformally re-
lated to the physical ("Jordan-Fierz") one via

gr ~ = A ('p)gg u ~ (2.6)

a(rp)
—= ln A(p) (2.7)

plays a central role in discussing the observable conse-
quences of tensor-scalar theories [22]. It is convenient to
introduce a special notation for the Grst two gradients of
the coupling function a(rp): namely,

Ba(rp) 0 ln A

Bo(rp) 02a
r(rp) =

(2.8a)

(2.8b)

and R, = g," R* the curvature scalar of g„* . One
should carefully distinguish the basic scalar Geld y of
the Einstein-frame formulation from the JFBD one, C

[see Eq. (2.13a) below for the connection between the
two]. Note that the kinetic terms in Eq. (2.5) have a
universal structure and do not contain an arbitrary func-
tion [such as the w(4) of Eq. (2.1)]. In the approx-
imation of linearized waves around a Hat background
f„*„=diag (—1, +1,+1,+1), h„*„—:g„* —f* represents
a pure massless helicity-2 excitation decoupled from the
massless helicity-0 one described by p. It is only in the
coupling to matter that an arbitrary function A(rp) ap-
pears.

In field theory the kinetic terms play the basic role
of defining a "metric" (i.e., a quadratic form) in field
space. In that sense the variables (g„rp) of the Ein-
stein frame are Beld analogues of "Cartesian coordinates"
which reduce an intrinsically simple metric in field space
to its simplest forin [kinetic terms (Bg, ) + (Brp) ],
by contrast with the variables (g, 4) of the Jordan-Fierz
frame which are analogues of "curved coordinates" in a
flat space [kinetic terms 4(Og) + w(4)(04) ]. As we
find below the "curved coordinates" (g, C') introduce fic-
titious coordinate singularities in field space [w(4) = oo]
at points which are perfectly regular when described in
the "Einstein" coordinates (g„rp).

The "coupling function" A(rp), or more precisely its
natural logarithm

(2.10)

denotes the g' stress-energy tensor. The tensorial oper-
ations appearing in Eqs. (2.9a) and (2.9b) are all per-
forrned by using the g* metric: T* = g„* g*&T,

Civita connection of g*„. It is clear from Eq. (2.9b) that
the quantity n(p), Eq. (2.8a), plays the role of the basic
(field-dependent) coupling strength between the scalar
field and matter. Its square n appears in all quantities
where a scalar interaction mediates between two material
bodies (in the same way as e appears in all the electro-
magnetic interactions) .

The g*-frame energy tensor (2.10) is related to the
physical energy tensor through

T," =A T"
T," =A T".

(2.11a)

(2.11b)

[Note that the indices in Eq. (2.lib) are moved by dif-

ferent metrics on each side. ] In contrast with T"" which
satisFies the simple conservation law (2.2), T, is acted
upon by a scalar-gradient force:

V'*T,"„=n(p)T, V'„*rp . (2.12)

[On the other hand it is clear from Eq. (2.9a) that the sum
of T„* and the energy tensor of p, (4vrG„) (O„rpB„rp-
ig„* (V'„Ip)2), is conserved with respect to V'„.]

By taking into account the eKect of the conformal
transformation (2.6) on the action (2.5) one finds that
the Einstein-frame variables are related to the Jordan-
Fierz ones through

(2.13a)
(2.13b)

It is straightforward to generalize the framework (2.5)—
(2.12) to the case where there are several massless scalar
fields, say (rp) = (rp ) where a = 1, . . . , n labels the
scalars [22]. The kinetic terms of the scalars become

2g„" (B~rp, 8 &p) where —angular brackets denote a gen-
eral field-dependent quadratic form (i.e., a metric) in the
space of the scalar fields:

[Note that the quantity K, which measures the curvature
of the potential a(rp), was denoted p (p b in the multi-
scalar case) in Ref. [22]. We change the notation here to
avoid any confusion with the post-Newtonian parameter

The original JFBD theory is defined by a linear cou-
pling function: a(rp) = nrp, i.e., or(rp) = n = const, and
K(p) = 0 [with n2 = 1/(2w + 3) in terms of the usual

(2.14)

[general nonlinear a model]. Equation (2.6) still holds in
the multiscalar case, with A(rp) = exp[a(~)] an arbitrary
function of the n scalar Belds. The natural extensions of
the definitions (2.8a) and (2.8b) give a vector n (rp) =
D a(rp) and a tensor r b(rp) = D Dba(rp) where D de-
notes the covariant derivative in the space of the scalars
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endowed with the metric (2.14). The right-hand side
of Eq, (2.9a) now contains the contraction 2(B„~,B ~).
Similarly the right-hand of Eq. (2.12) contains (n, V'* ~)
where cx = n = p o.g, where p is the inverse of
p b .On the other hand Eq. (2.9b) is slightly modified
by the appearance of a scalar-field-space Christoffel sym-
bol [ps = 'p -"(Bp,d/By + Byes/B(p' —Bpg, /Brp )]

Gp —G, [A'(1+ 'o)]~, ,

0.'
7 —1 ——2

1 + Ck - Po

1 0,'Ko.'

2 (1+n')'

(2.16a)

(2.16b)

(2.16c)

(The same formulas hold in the multiscalar case with
the understanding that n denotes (cx, n) = p go. n,
and n~n the matrix product n r. bn )In Eqs. .(2.16a)—
(2.16c) the subscript &pp denotes the asymptotic (r ~ oo),
cosmologically determined, values of the scalar fields
around the considered local gravitating system (e.g. , the
solar system at the present cosmological epoch). The
derivation of Eq. (2.16a) illustrates that in the (1 + n )
factor the 1 represents the exchange of spin-2 excitations,
while the o. results Rom the exchange of spin-0 excita-
tions (the A factor comes from the rescaling of units
between the Einstein and the Jordan-Fierz frames). One
sees from Eq. (2.16b) that the parameter p —1 gives a
direct measure of the amount of scalar admixture in grav-
ity. The lo limit ~p

—1~ & 2 x 10 obtained from the
analysis of the Shapiro time delay in the Viking data [11]
gives the upper bound (1.1) quoted in the Introduction.
The Lunar Laser Ranging test of the strong equivalence
principle yields on the other hand a direct bound on the
combination

(2.17)

&s.p + g.""pi„(p)B„&pB p' = 4~G—,n (p)T, .

(2.15)

If we consider the presently observable predictions
of tensor-scalar theories in the quasistationary weak-
field conditions (first post-Newtonian limit) of the so-
lar system they can be completely described in terms
of one dimensional coupling strength (the effective New-

tonian "constant" Gp) and two dimensionless post-
Newtonian parameters p and P [23—25]. (The most gen-
eral "parametrized post-Newtonian" formalism is dis-
cussed in detail in Ref. [9]; for a streamlined formulation

of the simple G —p —P formalism see Sec. 3 of Ref. [22].)
The calculation of G, p, and P in terms of the general

scalar functionals appearing in tensor-scalar theories can
be performed either in the Jordan-Fierz frame [26, 18] or
in the Einstein one [22]. The latter derivation exhibits
more clearly the theoretical significance of these quanti-
ties, and generalizes straightforwardly to the multiscalar
case. Its results are

pleted solar-system tests give weaker limits on tensor-
scalar theories. (See below for the limits coming from
the time-variation of G.)

Summarizing: all empirical knowledge of gravity in the
solar system is compatible with a generic tensor-scalar
theory of gravity if it satisfies (lo level)

solar system

[(1+~)o'],.&, „„.& 0.0025 .

(2.18a)

(2.18b)

Given the first inequality (2.18a), the second one seems
theoretically natural in the sense that one might a priori
expect the theory parameter r [defined by Eq. (2.8b)]
to be of order unity. The fundamental question is to
understand why the coupling strength o. [Eq. (2.8a)] is
found to be so small when measured in the solar system
at this epoch. If one assumes that the underlying theory
of gravity is the original Jordan-Fierz-Brans-Dicke one
(n = const, K = 0) the limit (2.18a) casts doubt on
the plausibility of the theory. The situation turns out to
be entirely difFerent if one considers general tensor-scalar
theories.

III. TENSOR-MULTISCALAR COSMOLOGIES

We consider homogeneous cosmological models with
perfect-fluid matter distributions. Let k (= +1,0, or —1)
denote the sign of the spatial curvature and

dp
dE = +r (de +sin ed(p )1 —kr2 (3.1)

the metric on a three-space of constant curvature k.
Homogeneous cosmological spacetimes can be repre-

sented in either the Einstein frame

ds.'= dt.'+ R.'(t„)—dE',

or in the Jordan-Fierz frame

(3.2a)

ds = dt + R (—t)dE (3.2b)

In either case, the set of scalar fields depends only on
time, e.g. , ~ = &p(t„) in the g, frame.

The matter distribution admits a perfect-Quid repre-
sentation in either conformal frame:

T." = (S. + p*)u".u: + p*g."",
T" = (p+ p)u"u + pg"",

(3.3a)

(3.3b)

with g„* u, u, = —1 = g~„u"u". From Eq. (2.11b) one
has

pal=A p,
p, =A p.

(3.4a)

(3.4b)

For reasons explained above it is more convenient to work
with the Einstein-frame field equations. The Jordan-
Fierz variables t (physical cosmic time) and R (phys-
ical cosmic scale factor) are then obtained by using
ds = A (~)ds„Eq. (2.6), i.e. ,

namely, ~il~ & 5 x 10 (lo) [12, 13]. All the other com-

dt = A[~(t.)]dt. ,

R(t) = A[~(t.)]R.(t.) .

(3.5a)

(3.5b)
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~ ~

—3 * = 4vrG„(p. + 3p. ) + 2((p)',B, (3.6a)

3 I + 3 = 87rGgpg + ((p)(R, ) R2

while the scalar field equation (2.9b) yields

(3.6b)

The Einstein equations (2.9a) (considered in the general
multiscalar case) give

d[pR'] = —p(p) dR' (3.11)

[equivalent to Eq. (3.7)] to obtain p as a function of R:

(3.9a) and (3.9b) whose coefficients depend only on the
ratios p, /p, and k/(R, p, ), and one can use Eqs. (3.4a)
and (3.4b), (3.7), and (3.8) to express these ratios as
functions of the parameter p of Eqs. (3.9a) and (3.9b).
To replace the above system of coupled cosmological evo-
lution equations by one decoupled equation we erst inte-
grate the physical energy-conservation law

P +~~.(V )~'~'+3 *~' = —4~G*~ (V )(» *—3S *) . p=E(R) . (3.12a)

d(p. R, ) + Ji, dR, = (p, —3p, )R,da(~) . (3.7)

Since all quantities in Eq. (3.7) depend only on one (time)
variable, it was convenient to write this equation in differ-
ential form by multiplying both sides by dt, . To complete
the set of dynamical equations one needs an equation of
state for the cosmic matter. Because of the universal cou-
pling of matter to the physical metric g„„ this equation
of state will hold (as a scalar-field independent relation)
only between the physical matter variables:

I =f(») . (3.8)

In the form given above the time evolutions of the scale
factor R, (t, ) and the scalar fields &p(t, ) are intimately
coupled. However, we found that the two evolutions can
be conveniently unmixed by introducing a new evolution
parameter [27], namely,

p =—lnB, + const, (3.9a)

such that

dp = II,dt, , (3.9b)

where II, = R, /R„ is the Einstein-frame Hubble param-
eter. (One should take care to distinguish the evolution
parameter p from the fluid pressures p, and p. ) Using

dp
Gp

d2~G dpG
(p =H, +H,

p p
~ ~

02

(3.10a)

(3.10b)

(3.10c)

we obtain &om the field equations (3.6a)—(3.6c) an evo-
lution equation for the scalars as function of the "p time"

(3.6c)

The overdots denote Einstein-time derivatives, d/dt, „
(~) is the square with respect to the o-model metric
(2.14), i.e. , (ip, rp) = p i, (rp)Ip &p, while a = p ni, . We
recall that p&, (ip) denote the o-model ChristofFel symbols
[which are absent in the one-scalar case, and in the sirn-
plest multiscalar case where p g(~) = b t,]. As usual
the field equations (3.6a)—(3.6c) are not independent,
being related by a Bianchi identity, or equivalently by
an energy-conservation law which reads, in the Einstein-
fraine [time component of Eq. (2.12)],

For instance, if the equation of state has the simple form
p = Pop with a constant Ao, the integration of Eq. (3.11)
yields

P= ~~—3(1+AD) (3.i2b)

with C being a constant of integration. Then, using
Eq. (3.5b) and the definition R, = exp(p —const) &om
Eqs. (3.9a) and (3.9b) we express R in terms of p and ip

R = exp/ + a(&p) —const] . (3.13)

From Eqs. (3.8), (3.12a), and (3.13), we have p and p as
functions of p and ~, and consequently the functions

A(p, (p):——,—p
P

3k
8~G.P~4(&)R: '

(3.14a)

(3.14b)

which enter the decoupled equation for the p evolution
of the scalars: namely,

2(1 —~) D t'd~) t' 4 'l d~
3 —(~')'dJ «p) E 3 ) d&

= —(1 —3A)n((p) . (3.i5)

dt

dp

8~G,p(1 —e)A2
2 (3.i6)

the right-hand side of which is at this point a known
function of p. In the following sections we discuss the
general features of the solutions of Eq. (3.15), starting

In Eq. (3.15) (rp') denotes p i, (ip) p' p'~ with p'
dy /de, and D/dp denotes the conariant derivative of
the scalar field "velocity vector" &p'—:dip/dp [i.e. ,
p" + pP, (~)p'~Ip" as in Eq. (3.6c)]. The key feature
of Eq. (3.15), thanks to the functions of Eqs. (3.14a) and
(3.14b), is that this p-time evolution equation gives an
ordinary second-order difFerential equation for ~(p), in-
dependent of the evolution of the cosmic scale factor.

After integration of the decoupled scalar equation
(3.15) we can produce &om Eqs. (3.9a) and (3.9b),
(3.12a), (3.12b), and (3.13) the p-evolution of R, , R, and
the matter variables. All that remains to determine is the
link between the p-time-scale and the Einstein time t„or
better the physical proper time t. This is done as a Anal
step by a simple quadrature. Indeed, we obtain, &om
Eq. (3.6b),
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with the simplest case in which the cosmic three-space is
flat (k = 0).

IV. EVOLUTION OF SCALAR FIELDS IN
SPATIALLY FLAT COSMOLOGIES

A. Mechanical analogue of the
scalar-Beld evolution equation

With k = 0, the quantity e, Eq. (3.14b), vanishes and
Eq. (3.15) simplifies to [~' = d~/dp]

„(~")--+(1 —A) V' = -(1 —3A)~(~)3 —Q
(4.1)

where A(p, ~):—p/p as in Eq. (3.14a).
It is useful to think of ~ = (rp ) as representing

the position of a "particlelike dynamical variable" liv-
ing in an n-dimensional Riemannian manifold endowed
with the metric (2.14) ("cr manifold" ), and of p as sim-
ply being the "time": ~':—(d&p /dp) and (&p"), „
[dp' /dp + pb, (&p)p' y"] are the velocity and accelera-
tion, respectively, of the "particle. " The right-hand side
of Eq. (4.1) represents a "force term" proportional to
(minus) the gradient of a potential:

It is well known that the inHationary scenario creates
a postinHation universe of negligible spatial curvature.
We first consider the spatially 8at case (k = 0) of the
scalar field evolution, and then later consider the im-
portant difFerences that arise if the universe is "open"
(A: = —1,0 ( 1) as is in fact suggested by present ob-
servational data. There are some exact properties of the
scalar-field evolution equation (3.15) in the k = 0 case
which are worth discussing.

that the second term in Eq. (4.1) always represents damp-
ing rather than antidamping. The sign of the coeKcient
(1 —3A) in front of the force term is strictly positive if
we consider an inflationary era (A = —1), or a matter-
dominated one (A = 0), and nearly vanishes during a
radiation-dominated era (A 1/3). If we were to con-
sider an era where A & 1/3 (for instance, with A 1,
i.e., p +p as suggested long ago [28]) the sign of the
force term would change. The particle would then tend
to go up the potential a(rp) rather than down it. Keeping
in mind this nonstandard possibility (to which we shall
return later) we first consider the standard cases A = —1,
1/3, and 0 and the transitional cases between them.

We qualitatively describe the general features of the
p-time evolution of the scalar fields as follows. The cou-
pling function a(~) = ln A(~) defines a potential on the
Riemannian manifold in which the scalar fields live (o'
manifold). Then, except during the radiation era dur-
ing which the particle ~ does not feel the potential a(~)
but has a damped inertial motion, the particle ~ moves
under the combined inHuence of the gradient of the po-
tential a(rp) and a damping linear in the velocity ~'. We
therefore expect (in the long term) the particle to end up
being caught near a minimum of a(rp) [and therefore near
where the gradient n(rp) = 7'&a(~) vanishes], if such
points exist. Remembering from Sec. II that the magni-
tude of cx(~0) [&po is the present cosmological value of ~]
measures the total admixture of the scalars in the gravita-
tional interaction, i.e., the deviation from general relativ-
ity, we see that Eq. (4.1) [and more generally (3.15)] nat-
urally suggests an attractor mechanism towards general
relativity. Before studying in quantitative detail the efFi-

ciency of this attractor mechanism it is useful to discuss
some exact properties of the evolution equation (4.1).

a
( )

ab ~a(p)
b (4.2)

B. Energy evolution equat ion,
Lagrangian, and momentum

As Eq. (3.6b) can be expressed in the k = 0 case as

II, (3 —rp' ) = 87rG, p, = 8irG, A p,
the local positivity of the energy density implies that the
velocity ~' is constrained by the inequality

(V')' & 3. (4 3)

Equation (4.1) can be thought of as describing a kind of
"relativistic dynamics" for a particle moving in a curved
space, with a limiting speed equal to i/3, a velocity-
dependent mass term

Let us define the kinetic energy of the ~ particle as
—ln(1 —&p' /3) and its potential energy as (1 —3A)a(|p),
and consider the total energy

E(p, (p, (p'):——ln(1 —(p" /3) + [1 —3A(p, p)]a(p) .

(4.5)

Note that the kinetic energy is positive and tends to in-
finity when the velocity tends to its limiting value (4.3).
Taking the p-time (covariant) derivative of Eq. (4.5) and
using Eq. (4.1) yields the total time derivative

2
m((p') = (4 4)

d
E(p) = —(1 —A—)~' —3a((p) —A(p) .

dp dp
(4.6)

(diverging to infinity when ~rp'~ -+ ~3), a friction term
proportional to the velocity and a force term proportional
to the gradient of the potential a(~)—:lnA(rp). Note
that it seems physically reasonable to assume that the
physical energy density p is positive and that the ratio
A = p/p is between —1 and +1 (dominant energy condi-
tions; they are satisfied in all the cosmological eras that
are usually considered, including inflation). This implies

The first term on the right-hand side of Eq. (4.6) can be
thought of as the energy loss due to the damping term
in (4.1), while the last is understood as the effect of an
explicit time dependence A(p)—:A(p, ~(p)) in the energy
functional (4.5). When approximating the cosmological
evolution as a sequence of eras where A is constant (suc-
cessively —1, 1/3, and 0) one can neglect the last term
in Eq. (4.6) and conclude that E(p) is a monotonically
decreasing function of time.
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L(v, v', p) = 11+
I
»11+p' i

v~r
—(1 —»(p))a(V ) (4 8)

the associated "linear momentum" of the (p particle is

In the simple case where there is only one scalar Beld
Eq. (4.1) reads

2 „Oa(y)
,

p" + (1 —3A) = —(1 —A)y' . (4.7)3 —(p

For simplicity we consider that A is either a constant or a
known function of p: A(p) (without explicit dependence
on the position variable Ip). It is then possible to define
a Lagrangian which reproduces the conservative terms in
the equation of motion (4.7), i.e., the left-hand side at
the exclusion of the friction term on the right-hand side.
Vhth

(4.14)

p(p) = p —~3ln[Ke "+(1+K e ")' ], (4.15)

the constant K being the following function of the initial
velocity [yo = p'(p = 0)]:

'po/~3

V 1 'po /3
(4.16)

The total displacement of the particle between p = 0
and p = +oo, under the influence of inertia and friction,
is therefore the function of the initial velocity

It is clear from Eq. (4.14) that in the general case of a
curved o manifold, the trajectory of rp will be a (segment
of a) geodesic of the metric (2.14). The motion along this
geodesic will be damped. To show that the damping is
strong enough to confine ~ to move only a finite amount
as p ~ oo, it is sufBcient to consider the one-scalar case
in which the exact solution of Eq. (4.14) is

OL

t9(p

f1+ p'/~31
~3 (1 —y'/v 3)

(4.9) 1 1 + po/~3+p = &p~ —po = —v 3 ln
1 —y'o/ 3

(4.17)

and

GP
= m(p') p" =— //

,2 V'
P

(4.10)

[The total shift (4.17) is also easily obtained by integrat-
ing Eq. (4.11) between p = 0 and p = +oo.] In the
nonrelativistic limit yo « i/3 one has simply

so that Eq. (4.7) can be rewritten as

BL = —(1 —A)y' . (4.11)

And the energy function canonically associated with the
Lagrangian (4.8) reproduces the definition (4.5) above,

, BI/

B(p
(4.12)

1 p'l 1(') 1 2 li~3rl +3 4li~3)

5 x 6 g~/3r
(4.13)

However the replacement p'2 —+ ~'2 in Eq. (4.13) does
not define a useful Lagrangian in the multiscalar case.

C. Scalar-Beld evolution during
the radiation-dominated era

A "radiation-dominated era" means a period of cos-
mological expansion during which the equation of state
of matter is well approximated by p p/3, i.e. , A 1/3
in Eq. (4.1). In first approximation this suppresses the
force term in Eq. (4.1) and leaves

from which it is straightforward to again derive Eq. (4.6).
One should also note that the expansion of the kinetic
terms of the Lagrangian (4.8) contain only even powers
of the velocity,

+~=~o & (4.18)
as is easily obtained from the nonrelativistic limit of
Eq. (4.14), namely, p" + p' = 0. In other words, except
in a case where, on coming out say of inflation, the par-
ticle (p enters the radiation era with an ultrarelativistic
velocity [large momentum 7r, Eq. (4.9)] it will exponen-
tially come to rest and move forward only by an amount
of order unity.

The previous behavior results by setting equal to zero
the coefficient 1 —3A = 1 —3p/p which multiplies the
potential force. This coefEcient, however, though small,
is never quite zero. Each time the universe, as it cools
down during its expansion, passes through the threshold
kT, m, c for the participation in the total relativistic
gas of a particular species of particles and antiparticles
of mass m, , the quantity 1 —3p/P rises up to a value of
order (m;/kT) and generates a kick on the ~ particle,
which (because of the ever present damping) causes ip
to move by a Bnite amount in the direction of —cx. In-
tegrating Eq. (4.1) over p through such a threshold kick
one obtains, for the total displacement of ~,

A*'" ""
(p = —— dp ', ,

*
cx(rp) . (4.19)

The total energy density p is approximately (in units
where /i = c = k = 1)

— 7r2p"' = ~*(T)» T'
where

~*(T) = ).~; (T'IT)'+ — ).~, (&'I&)'
(7b

Bose Fermi
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S'(T) —3p'(T) = 2,*

E, [1 + exp(E, /T)]

is the effective number of relativistic degrees of freedom,
while the contribution of the species of fermions of mass
m, to p —3pis

The effect of the gradual transition between the two eras
has been however duly taken into account in the numer-
ical calculations that we quote below, with the conse-
quence of augmenting the efFiciency of the relaxation to-
ward general relativity.

with E, = gq~ + m2. The integration over p in
Eq. (4.19) can be analytically performed if n(p) is ap-
proximated by a constant and the integration over p is
replaced by an integration over P = 1/T via the relation

dp = d lnR, d lnR = dP/P [using the near constancy
of A(~) during the radiation era]. These integrals yield

~ith kick k / g kick
)

1 7g;/8
2 g, (m+)

'

(4.20a)

(4.20b)

where (cx)"""is some average value of n during the kick,
and where g, (m,. ) is the efFective number of relativistic
degrees of freedom just before the ith threshold (i.e. , for
T ) m, ), which includes the contribution 7g;/8 from the
i-type particle.

The result (4.20a) and (4.20b) indicates that after its
initial velocity when entering the radiation era is damped
out, the rp particle climbs down the potential a(rp) by
steps each time the temperature of the universe crosses a
threshold kT = m, c . In the standard big-bang scenario
(with three light neutrinos) one has g, = 10.75 before the
&eeze-out of the e+e pairs (g, = 4; T, 5 x 10 K) and

g, = 14.25 before that of the @+p pairs (g~ = 4; T„
10i2 K) so that the corresponding "kick" coefficients in
Eq. (4.20a) are

k, = 0.163, k„= 0.123 . (4.21)

Above the temperature corresponding to the p+p
threshold one enters the less understood hadron era. If
one formally estimates the integrated effect of all the
thresholds between a temperature above a few hundred
GeV (where g, is of order 100) down to the last e+e
threshold by summing the k, 's of Eq. (4.20b) over all
the fundamental fermionic g, 's one gets what is prob-
ably an upper bound on the total kick coefIicient of
g,. k; 2 ln(100/10) = 1.15.

In summary, after the inertial displacement (4.17),
(4.18) upon entering the radiation era the ~ particle
probably climbs down the potential a(~) [Eq. (4.20a)]
by only a modest total amount 0.286 & Zk; & l. If upon
entering the radiation era the slope ~n~ of the potential
function was of order unity (i.e. , order 1 difFerences from
general relativity; as is suggested by inflationary scenar-
ios) it will generically be still so upon exiting the radi-
ation era [excluding very rapidly varying or fine-tuned
shapes of a(rp)]. One must therefore examine the matter
era to find whether tensor-scalar theories naturally tend
to a general-relativisticlike state.

For analytical simplicity we approximate, in the text,
the transition between radiation domination (A = 1/3)
and matter domination (A « 1) as being a sharp one.

D. Scalar-Beld evolution
during the matter-dominated era

In the matter-dominated era (A = p/p « 1) the evolu-
tion equation (4.1) reads

~(v ')(~")--+~' = -~(~)
with a velocity-dependent mass

(4.22)

~(V') = 2/(3 —+") . (4.23)

The analysis of the previous subsection shows that the
y particle has damped away any preradiation-era veloc-
ity, so that it starts the matter era with an essentially
zero initial velocity. The scalar-field evolution during
the matter era is then an analogue to the dynamics of
a released particle, of mass (4.23), subjected to the ex-
ternal potential a(rp), and a velocity damping force with
coefIicient equal to one. The resulting evolution of ~ is
qualitatively clear. The ~ particle initially tends to fall
along the steepest slope of a(~). If the magnitude of the
slope n = ~n~ is of order unity it initially accelerates so
as to acquire (on a p time scale of order 1) a relativistic
velocity ~g'~ & ~3. In the case where the slope is every-

where greater than ~3 along its trajectory, the particle
will tend to go straight (in the sense of the geodesics of
the 0 manifold) with a velocity constantly near the limit-

ing speed ~3 [inertia-dominated Eq. (4.22), with m(~')
large and (~"), small]. The picture is entirely difFerent

if the slope is (almost) everywhere smaller than ~3. In
this case, all three terms in Eq. (4.22) will generically
soon become comparable, and with the influence of the
damping the velocity tends to remain nonrelativistic, al-
lowing the further simplification of Eq. (4.22) by replac-
ing the mass by its nonrelativistic limit mp = 2/3. The
long-term behavior of the particle then depends domi-
nantly on the shape of the potential a(rp). In the multi-
dimensional case, the particle might undergo a compli-
cated evolution, starting with oscillations up and down
the ridges around gentle valleys, continuing (after the
friction has damped the transverse oscillations) with a
slower fall down a valley, down to a point where the par-
ticle gets trapped in a hollow. The generic long-term
behavior emerges: the particle ends up near a local min-
imum of a(~) (or a minimum at infinity if the potential
8attens out as ~~~

—+ oo). To make this more quantita-
tive, assumptions are needed about the global shape of
a(rp). We consider the simplest cases: (a) a local mini-
mum of parabolic shape, and (b) a power-law approach
to a minimum at infinity in field space. We also consider
the case of a single scalar field. This is not a big restric-
tion because in the case, e.g. , of the parabolic minimum
one can separate the n-dimensional solution of Eq. (4.22)
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in n, nearly independent, normal mode oscillations (they
become independent in the late stages where the veloci-
ties and displacements are small so that one can neglect
the velocity dependence of the mass, and the Christoffel
symbols hidden in the "cov" suffix).

Consider a one-dimensional parabolic potential

a(p) = -'rp (4.24)

where we have normalized a(p) so that its minimum
value is zero (i.e. , A;„= 1). The parameter r, enter-
ing Eq. (4.24) is the curvature (2.8b) calculated at the
bottom of the potential. [In the parabolic approxima-
tion K(p) = r independently of y, therefore the param-
eter r of Eq. (4.24) is the same one that enters the
post-Newtonian parameter P, Eq. (2.16c).] Neglecting
the velocity dependence of the mass so that m 2/3
in Eq. (4.22) (numerical calculations show that this is a
very good approximation) we write down the solution for
the motion of a p particle released without velocity at an
initial position pR [where the label R stands for (end of)
radiation era]:

p(p) = a+e"&+a-e" ",
where

(4.25)

a+= —
/

1+ —/p~,)
A+ =

4s(—1 + r),
r—:(1 —, r.)' ', —8 1/2

when r g 3/8, and

(4.26a)

(4.26b)

(4.26c)

V (p) = V a (1+ —',p) e '", (4.27)

1/ 1i 3
V (p) = —

l
1+ —

~
V a exp —-(1 —r)p

2 ( r) (4.28)

for r = 3/8. [Here and in the following we choose the
arbitrary constant in the definition (3.9a) of the evolution
parameter p so that p = 0 corresponds to the time of
transition between radiation and matter domination, i.e.,

V (o) =
V ~ V '(0) = o ]

For 0 & r. & 3/8, the square root r in Eq. (4.28) is
real, the motion is monotonic, and is a linear combination
of decreasing exponentials with positive coefficients (the
tradition. al overdamped case). For large p time the least-
decreasing exponential (A+) dominates and

v' = —~(v) (friction dominated) . (4.30)

[The consistency condition that the solution of Eq. (4.30)
is a good approximation to Eq. (4.22) is that r g

D Dba(p) « 1.]
For the cases where K & 3/8, the square root (4.26c) is

imaginary and the motion (4.25) is a damped oscillatory
one. Denoting

X/2--=! (!--1)'

OR = arctan ( s r —1)
1/2

(4.31a)

(4.3lb)

the solution (4.25) is

) —1/2

y(p) = pe ~

1 —
~

e "sin(urp+ O~) .8r) (4.32)

When r, m 3/8, Eq. (4.32) tends to the critically damped
solution (4.27).

It is worth commenting on the fact that the exis-
tence of damped-oscillatory approaches to a point where

vanishes, while evident when using the variables

[g~„,p, A(&p)] can be missed when working with the vari-
ables [g„„,@,w(4)] (as actually happened in Ref. [7]
which considered the case (translated in g* —y language)
A(y) = cosh ~icy with r & 0). Indeed, what is a regu-
lar local minimum in the former language takes the form
of a mathematical singularity u = oo in the latter one.
As said in Sec. II above, the latter singularity must be
thought of as being just a "coordinate singularity" in Beld
space.

Now consider the case where the potential a(p) flattens
out in a power-law fashion to a minimum at p = +oo:

a(V') = a~(V'/V'R) (4.33)

naR/(p~ —. (4.34)

Since the curvature r(p) tends to zero as p i +zl we
can here approximately solve for the motion along the
power-law slope (4.33) by using the friction-dominated
approximation (4.30). This yields

[Again we normalized to zero the minimum value of
a(p). ] Note that the initial (p = pR) slope of the poten-
tial is

V'(p) = V'R e (4.29)

In the limit where r, is appreciably smaller than 3/8 the
result (4.28) siinplifies to A+ 2 0!R

V(p) =V 1+ "p
A QR

(4.35)

Equation (4.29), being valid for small values of the cur-
vature v of the potential, admits a generalization to very
general shapes of the potential a(&p). Indeed, if the cur-
vature K(&p) = Bza/By is much smaller than one, the
general solution of Eq. (4.22) becomes damping domi-
nated on a p time scale of order unity, leaving a motion
approximately described by the first-order (Aristotelian)
equation of motion

In summary, depending on the shape of the potential,
we find three main types of approach to a minimum of
a(y): (i) a damped-oscillatory motion around and toward
a generic local minimum with curvature K & 3/8; (ii) an
overdamped, monotic approach to a weakly curved local
minimum (r & 3/8); and (iii) some power-law approach
to a generic minimum at infinity.

The observable consequences of these various scenarios
are discussed in the next section.
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V. OBSERVABLE CONSEQUENCES OF
TENSOR-SCALAR COSMOLOGIES

creased between the radiation era and now, yielding the
strict inequality

A. Inflation, the present value
of 0, and nucleosynthesis

1 — ) exp(ao —aR) =V'p Ap

3 A~ ' (5.6)

In Sec. III we presented the evolution equations for
the universe scale factor in the Einstein kame because
of its mathematical convenience. However, the physical
quantities which are directly accessible from nongravi-
tational measurements (using, e.g. , standard rods, com-
parisons of electromagnetic wavelengths, clocks based on
atomic transitions or nuclear decay) are all obtained in
the Jordan-Fierz kame. This is as well the case for the
(direct or indirect) measurements of the present expan-
sion rate of the Universe H = (dR/dt)/R, of the to-
tal matter density p, and of the age of the Universe t.
Rewriting Eq. (3.6b) in terms of Jordan-Fierz quantities
and the solution ~(p) of the decoupled scalar evolution
equation (3.15), we get

1 —(p'2/3 -
2 8vr Gp k

(1+cx. (p') 3(l+ n )
(5.1)

Here we used a simplified notation for the scalar prod-
uct of the cr-manifold vectors n and ~' as defined by
Eq. (2.14), e.g. , rp'2 = ~'. rp'—:(~', &p'), and G denotes
the value of Newton's coupling strength at the corre-
sponding cosmological epoch, i.e. ,

G(V) = G*&'(V)[1+~'(V )] (5.2)

We define the dimensionless measure of the cosmological
matter density 0 in the usual way:

8mGp

3H2

Equation (5.1) then becomes

(1 + ct.') (1 —(p"/3) (1 + ct.') k

(1+ ct. (p')2 H2R2

(5.3)

(5.4)

In the case where k = 0 (as generically predicted by
inflation) the usual consequence Ocn = 1 gets, as is
well known &om previous discussions in the Jordan-
Fierz frame, modified by scalar-Geld contributions. Using
the experimental limits on the present magnitude of n,
Eq. (2.18a), and neglecting the corresponding terms in
Eq. (5.4) we get at the present cosmological epoch

0-(~=o) (1+~') (1 —
V "/3)

(1+ct rp')2 p

12

3
(5.5)

A scalar contribution to gravity could a priori help to rec-
oncile inHationary scenarios with the observational data
which tend to favor 0 ( 1 (even when assuming the pres-
ence of substantial nonluminous matter in galaxies and
clusters of galaxies; see, e.g. , Ref. [29]). The maximum
possible present value of ~' is constrained, however, by
the energy evolution equation (4.6). Applying the latter
equation during the matter era (A = 0), we find that the
total energy E = —ln(1 —rp' /3) + a(&p) must have de-

IIstandard
/ nucleosynthesis

r G.~z &"R

4 GNewton )
AR

(1 + n2) i~2 Ao
(5 7)

Like ~ itself, A(rp) AR is essentially constant
throughout the radiation era. Finally there results the
rigorous inequality

~12 1

(1+~o)"&-~- ' (5.8)

which is an upper bound to the present value of the
"scalar velocity" ~d~/dp~ in terms of the speed-up fac-
tor during nucleosynthesis. Combining Eqs. (5.5) and
(5.8) (neglecting no and ct.o. ~o) yields

nucleo
(5.9)

Although standard big-bang nucleosynthesis ((„„,~,

1) seems to be compatible with the observed abundances
of light elements, it has been repeatedly emphasized
that there are many uncertainties in both the theoret-
ical predictions (because of the passible effects of inho-
mogeneities created during the quark-hadron transition
[30]) and in the comparisan with observational data (be-
cause of the necessity to extrapolate to zero metallicity
[31]).It would be interesting to reexamine critically these
uncertainties to assert whether a value of („„,i, as large
as, say, 5 (which would render k = 0 compatible with
0 = 0.2) is or is not definitely excluded.

Tensor-scalar gravity could therefore have an impact
on the question of dark matter. However, it must be
admitted that a scenario where the present slope cr(rpo)
is small but the present value of the scalar velocity ~rpo~

is close to v 3 is a rather fine-tuned possibility among
generic scalar evolutions. In the following we consider
only the more generic evolutions in which the scalar field
now approaches a minimum of a(&p) with a velocity ~o
already damped to a small value of order exp. In that
case, the prediction (5.5) is essentially the standard one:

iA( ) —li = O(ct. ) . (5.10)

where the subscript R denotes the value of a quantity
at the end of the radiation era. The right-hand side
of the inequality (5.6) can be connected to the "speed-
up factor" during nucleosynthesis, which is defined as

= H/H(' " ' ), where H is the actual value of
the cosmological rate of expansion during nucleosynthe-
sis, and H(' " ' ) is the value predicted by the stan-
dard big-bang model [i.e. , general relativity with 3 light
neutrino families; H(, t „&,&)

——(87r/3)GN t „p, d with

p, g = s aT ]. From Eq. (5.1) (with ~' = 0 and the

neglect of k/R, as is appropriate to the radiation era)
we obtain H = (8'/3)G, ARp, g, and therefore
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B. Theoretical expectations for
the present values of p, P and i /G

in the spatially Hat, parabolic-attractor case

Under the same approximation

1 —+~20,'p2

p —1 —Kn1 2
p

(5.17b)
(5.17c)

The analysis of Sec. IV has shown that the cosmologi-
cal evolution of scalar fields tends to drive them toward
a minimum of a(~), i.e. , toward small values of the slope
cx(!p) = %~a(&p). First consider the simplest scenario: a
single scalar Field attracted by a local minimum of a(!p),
approximated by a parabola with curvature e. Let 0.R
be the value of the slope at the end of the radiation era,
and pp be the amount of elapsed p time since the end
of the radiation era. From Sec. IV we have the present
values of the slope, np = n(pp), and of the scalar velocity
rpo —(d!p/dp)„, , for the three cases K ) 3/8, = 3/8, or
& 3/8.

For v ) 3/8,

( ) —1/2

8v)
!pp = K [(d cot gp —3/4]no

3
e 4 sin Op (5.11a)

(5.11b)

with Op = (dip + 0R and w and OR as defined in
Eqs. (4.31a) and (4.31b) above.

For K = 3/8,
3

no —n~ (1+ -', pp) e

po = —-', po (1+ —,'po) 'no,
and for 0 & r & 3/8

1 r —-1-
ao =QR e" 2r

I 3 1 —r
P() = —— 0!p )4 v

(5.12a)

(5.12b)

(5.13a)

(5.13b)

with r—:(1 —8r/3) ( In the ca.se where K « 3/8 the
latter relations simplify to

0.'p ~ 0!Re (5.14a)

(5.14b)

These small but nonzero values of o.p and pp translate
into small but nonzero values for the post-Newtonian pa-
rameters p —1 and P —1 of gravitational physics, and
additionally the present coupling strength of gravity still
slowly changes with time. By differentiating Eq. (5.2)
with respect to the physical time t, and using the link

1+ cL (p

from Eq. (3.13), one gets (in the one-scalar case)

(5.15)

dG/di ( K ) n!p'=2 1+ 1+n J 1+n (5.16)

(G/HG)o ——2(1+ ~)nopo (5.17a)

For application of Eq. (5.16) to the present epoch the
fractional corrections of order 0;p can be neglected, and

Note that the values of (1 —p) and (P —1) are positive

under these conditions, while the sign of G depends upon
the relative sign of o.p and pp. In the friction-dominated
case (5.13a) and (5.13b) [and (5.14a) and (5.14b)] one has

G ( 0, while in the oscillatory case G can have either sign
depending upon the phase Op of the oscillation. It is also
interesting to note that if one takes into account only the
existing experimental upper bound on o.p, and the the-
oretical upper bound (5.8) on po, one gets the following

rigorous upper bound on the magnitude of G/G:

(IGI/HG) «2v 311+~llnpl(1 —4.'.i..)'" (5.18a)

i.e. )

(lGl/G)o & 0.84l1+~l(1—(-', )'('t „x10-"y.-',
(5.18b)

where 67s ——H/75 km sec Mpc . However, as we
said above, the upper bounds (5.18a) and (5.18b) will
be attained only in some 6.ne-tuned scenarios. In generic
cases one expects po to be of order of np (except if Op = 0
modulo 7r, in the oscillatory case). Therefore, one expects

(G/HG)p to be of order 2(1+ r)np2 4P —p —3.
To convert Eqs. (5.11a) and (5.11b)—(5.14a) and

(5.14b) into more explicit estimates of present-day devi-
ations from general relativity we need (i) an assumption
about n~ and (ii) an estimate for the value of pp.

In line with the working assumption of this paper that
gravity is described by a tensor-scalar theory, with a cou-
pling function a(!p) involving only dimensionless numbers
of order unity, we assume that the (nearly constant) value
of o. during the radiation era is of order unity:

AR 1. (5.19)

If inflation did not occur, the assumption (5.19) is natu-
ral for the state coming out of the primordial Planck era
and having had the scalar field evolution frozen during
the subsequent radiation era. On the other hand, if in-
flation did occur, it has been argued that the slope upon
entering radiation era must be greater than some lower-
bound 0.R ) ni if inflation is to terminate adequately
[32, 33] (e.g. , the conclusion of Ref. [32] that the true up-
per bound on w is probably even lower than 18 translates
into ni ) 0.16). If this constraint from inflation is to
be met in a non-fine-tuned way, we expect (5.19) to hold.
Note however that the scalar field evolution during the in-
flation era [Eq. (4.1) with A = —1] also exhibits a generic
tendency to be trapped near a minimum of a(y). This
may mean that inflation requires special shapes of a(p)
and special initial conditions to terminate with o. ) o.i

The value of pp is obtained by combining Eq. (3.13)
with the redshift value Z—:Rp/R~ at the end of the
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radiation era (defined as the equivalence between the
radiation and matter energy densities). From Po

~

1.6813a T (taking into account three light neutrinos)
and T = 2.735K [34] we get po ——7.918 x 10 gem
and hence

—2

-matter
Z = = 13350 x Op5,~rad

p

(5.20)

where we have introduced the following measure of the
present matter density:

—8

8&G ~matter
075 —= —1 —13(75 km sec Mpc )

2

-matter
Pp

1.0568 x 10 gcm

(5.21)

[Note that the quantity 75 km sec Mpc is used only to
deBne a convenient unit for pz ",and does not presume
anything about the actual value of Hp]. In terms of these
deBnitions one has

FIG. 1. Present value of logic(l —p) as a function of the
curvature r. of a parabolic minimum, a(p) = rp /2 The.
upper curve corresponds to 07' ——0.01, the intermediate one

to 075 ——0.1 and the lovrer one to 075 —1 ~ The starting value
of n deep into the radiation era is taken to be nR ——l.

pp ——ln Z+ aR —ap ——9.50+ ln 075+ a~ —ap .

(5.22)

In the parabolic approximation the last term in Eq. (5.22)
is approximately a~ —a;„; „=zrrpIr ——cr&/2K = 0.5
if o.~ 1 and r 1. Using Op = 075 x 675, the theoret-
ical value (5.10) for Bo in the spatially ffat case, and the
observational limits 0.67 ( h75 ( 1.33, we get pp = 10.
Using this value of po in Eqs. (5.11a), (5.11b)—(5.14a),
(5.14b), and Eq. (5.17b) we obtain, in the spatially flat
case, the level at which it is likely to observe deviations
from general relativity in solar-system experiments.

For K ) 3/8 (with ep = ~po + 0~)

n+ 2 o.&0!p = 0!R 1+ Ppn a~
I

(Pp = —O.'p

n+1
n+2

(5.24a)

(5.24b)

With the assumption (5.19) (and o,R 1) one estimates
a present value of 1 —p of order

2(1+&)cio 4P —p —3, represents a difficult challenge for
solar-system experiments (even if one can get centimeter-
level ranging data to the inner planets [35]).

Staying within the k = 0 framework, but considering
scalar Beld evolutions toward a minimum at infinity in
field space, Eq. (4.35), Eqs. (5.11a) and (5.lib) are re-
placed by

20!2
sin Ope 2"' ~ 3 x 10

1 —3/(8K)
(5.23a)

2 n+1
1 —p~p "+' ~10 (5.25)

when considering values of K sufficiently above 3/8, and
using Eq. (5.19) and sin go 1/2.

For K = 3/8, using Eq. (5.19),
3

1 —p 2n& (1+ 4po) e 2"' —4 x 10 (5.23b)

while for K sufficiently below 3/8,

1 —p 2o.&e ""' & 4 x 10 (5.23c)

The dependence of the expected value of 1 —p upon
the curvature K is illustrated in Fig. 1 (lower curve).
Figure 1 was drawn by using direct numerical integra-
tions of Eq. (3.15), starting from n& ——1 deep into the
radiation era, and taking into account the progressive
change between radiation domination and matter dom-
ination. Note that this yields present values for 1 —p
which are slightly but systematically smaller than the
analytical estimates given in the text. From Eq. (5.17c),
the corresponding values of P —1 are obtained by mul-
tiplying the results (5.23a)—(5.23c) by (r/4) which, un-
der the assumption of theoretical naturalness, would be

1. The expected size of G/HG, which is of order

with an exponent x = 2(n+1)/(n+2) somevrhere between
1 and 2 [depending on the value of the exponent n ) 0
in the power-law fall-oK (4.33)]. A power-law (or expo-
nential) attractor at infinity is a rather inefficient one. In
view of the observed upper bound ~p

—1~ ( 2 x 10 s, a
scenario involving a local minimum as an attractor seems
more compatible with the idea of leaving the radiation
era in a scalar field state which difFers significantly from
general relativity [Eq. (5.19)].

C. Post-Newtonian measurements as probes of the
cosmological density of matter

3k(l + n2)

87t;GpB2
(5.26)

As we are now very near a general relativistic situation

We now consider the cosmological case of k ( 0, which
is, if one goes beyond the infIationary paradigm, of di-
rect physical interest since most observational data sug-
gests subcritical values for the cosmological matter den-
sity. The scalar evolution equation with k g 0 is given
by Eq. (3.15), and contains the new quantity e, given by
Eq. (3.14b) or
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the present value of e can be approximated by

(5.27)

where 0 is defined in the usual way, Eq. (5.3). From

Eq. (5.26) (with p oc B ) e(p) approximately increases
as R = exp[p+a(p(p))]. It can therefore bring noticeable
modifications to the coeFicients of the scalar equation
only during the last few units of p time before the present
cosmological epoch. In the limit where ep » 1, Eq. (3.15)
yields (in the one-scalar case)

f!+2 I 0 (5.28)

near the present epoch. This means that a negative spa-
tial curvature ultimately quenches any oscillatory behav-
ior, and accelerates the rate of approach toward a local
minimum.

But, a negative value of A: implies a lower elapsed. total
p time since the end of the radiation era. From Eq. (5.22)
one gets [with the usual assumptions (5.19) and r 1]

pp 10+ ln 075, (5.29)

where one should recall that A7s, Eq. (5.21), is a conve-
nient dimensionless measure of the cosmological matter
density (contrary to the standard Bp = 07s x h75, 07s
does not depend on the value of Hp). Numerical compu-
tation of the solution of Eq. (3.15) for various values of
07s shows that the diminution of pp, Eq. (5.29), is the
dominant eAect in controlling the eKciency of approach
toward general relativity. The direct efFects of a nonzero
e [with the limiting equation (5.28) when ep is large]
become numerically important only around and below

075 0.01. [For such small values of 0 one finds that the
approach towards general relativity is too slow to be com-
patible with the present observational limits on o.p as-
suming (5.19).] For larger values of 075 (0.05 & 075 & 1)
one finds

~2
1 —p 2O'p 2O.'Re 4 Z (5.30)

which yields numerically, under the assumptions K, 1
0!R)

1 —p 2xi
0.1 )

or equivalently

(5.31a)

( -matter ) s/2
1 —p 2x~

~

x10
(10 gcrn

(5.3lb)

These rough analytical estimates should be compared
with the results of a direct numerical integration shown
in Fig. 1.

Much of the present cosmological data is compati-
ble with 075 0.1, i.e. , pp

tt" 10 sP
g cm s (and

k = —1). If this is indeed the case, the level 1 —p 10
would be a loner bound for the present value of 1 —p
(excluding the exceptional values of r for which 1 —p
vanishes; see Fig. 1). Indeed, Eq. (5.30) was obtained for
the case of a significantly curved (v. ) 3/8) local mini-

mum of the scalar coupling function a(y). The results
of the previous section [which are applicable to the ini-
tial damped approach to the minimum, when e(p) is still
small] show that the other cases are less efficient attrac-
tors toward p = 1.

VI. CONCLUSIONS

The results obtained in this paper suggest a new inter-
pretation of the present tests of general relativity. The
aquisition in 1979 [11] of a very tight bound (w & 500,
n & 0.001) on the possible admixture of a scalar compo-
nent to gravity, later confirmed by other high-precision
tests, has been generally interpreted as reducing the
likelihood that massless gravitational scalar fields ex-
ist. Our finding that tensor-scalar theories of gravity
generically contain a natural attractor mechanism tend-
ing to drive the world toward a state close to a pure
general relativistic one render this conclusion premature.
The important point is that this idea is observationally
testable. Assuming that during the radiation era (during
which the evolution of the scalar fields is nearly frozen)
the tensor-scalar theory was ord.er-of-unity away fron1 a
quasigeneral-relativistic state, Eq. (5.19), we found that
there exists a lower bound to the presently observable
deviations from general relativity in the post-Newtonian
regime. This lower bound is 1 —p 3 x 10 and corre-
sponds to the case of a spatially Hat cosmological model
and a parabolic local minimum (with curvature K ) 3/8)
in the coupling function a(p) of the scalar. All other
cases (negative curvature cosmology, local minimum with
r. & 3/8, or a minimum at infinity in field space) yield
higher values for 1 —p. In particular, a local minimum
with K & 3/8 yields 1 —p & 4 x 10 s, and a negatively
curved universe with pp

"& 10 g cm (075 & 0.1)
yields 1 —p & 2 x 10 . Note also that more complicated
shapes for a(p), and/or the existence of several scalar
fields, are generically expected to delay the approach to
a minimum, thereby leading to higher values for 1 —p.
[Indeed, in more complicated cases only a fraction of the
redshift (5.20) is effectively used to relax toward a mini-
mum. ]

These numerical estimates should hopefully provide
new, strong motivations for experiments which push be-
yond the present empirical upper bound on p (~p —1~ &
2 x 10 s; 10 level). In particular, it is to be noted that
GPB [36], POINTS [37], TROLL [38], and a proposed
Mercury Relativity Satellite [35] all plan to probe the
level ~p

—
1~ 10 —10 . In addition to experiments

which probe the post-Newtonian parameter p —1, any
experiment pushing by 2 orders of magnitude the present
upper bounds on p —1 (~p —1 & 2 x 10; la level) or
7I = 4p —p —3 (~g~ & 5 x 10; 10 level) would also be
of great interest. Indeed in many of the attractor sce-
narios considered here the ratio (P —1)/(1 —p) —K is
expected to be (positive and) of order unity. (An im-
portant exception would be the approach to a minimum
at infinity where one would expect relatively large val-
ues for 1 —p, but much smaller ones for P —1 because
v ~ 0 at such a minimum. ) The scientific implications
of a nonzero result for any post-Newtonian parameter at
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these discussed levels would be enormous: it would signal
the existence of a new interaction, and would potentially
give us an indirect handle on the average mass density in
the universe, Eqs. (5.3la) and. (5.3lb).

In addition to hopefully providing a new stimulus
for improving weak-field tests of relativistic gravity the
present results suggest the need to revisit various cosmo-
logical issues within a larger framework. As mentioned
in Sec. V A it would be important to assess the extent to
which present data on the abundances of light elements,
when keeping one's mind open to systematic uncertain-
ties in the interpretation of data and in the predictions of
inhomogeneous nucleosynthesis, do constrain the value of
the coupling function aR = a(rp~) during the radiation
era.

An interesting prediction of many of our scenarios is
the damped oscillatory behavior of the effective New-
tonian constant G during the matter era. It would be
worthwhile to study the possible consequences of these
initially strong oscillations (AG/G of order unity over
the first few Hubble time scales of the matter era) on the
formation of structure in the Universe. Could, for exam-

ple, such strong oscillations in G provide, via a paramet-
ric amplification effect in the relativistic Jeans equation,
a mechanism for accelerating the rate of formation of
structures? On the other hand, one should note that,
contrary to some recent investigations where the period
of cosmological oscillations of G was fixed in an ad hot"

way by giving a very small but finite mass to the scalar
field [39], in our case that period is predicted to be of or-

der unity when time is measured in Hubble units, H
More precisely, &om Eq. (4.32) one gets (when k = 0 and
K ) 3/8)

G(p) = G„1+ nRe ~" sin (~p+ 9R), (6.1)
K+I 2 s

Ic —3 8

where u = 4(8K/3 —1) ~ . During the final oscilla-
tions before the present epoch one has approximately
p lnB + const = —ln(1 + z) + const, with z being
the usual redshift. Equation (6.1) therefore represents
a damped oscillation which is periodic in ln(l + z) with
period

4~ (8K
3 ( 3 )

(6.2)
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Although it is tempting to associate these oscillations
with the periodicities in ln(1+ z) that have been claimed
to exist in quasar or galaxy observations [40,41] they have
probably nothing to do with them, because the periods
given by Eq. (6.2) are too large (P ) 0.8 if K ( 10), and
their amplitude n2R exp( —3po/2) (1 —p) too small

even considering the strong dependence (x: G of stellar
luminosities on the value of G.

Note that during the entire history of our Galaxy, i.e. ,

for the last 6 or 7 billion years, Eq. (6.1) indicates that
G had already been driven extremely close to its present
value. Contrary to the initial hope of Jordan, generic
tensor-scalar theories seem to have negligible impact on
geophysics, astronomy or galactic astrophysics.

In this paper we have concentrated on estimating
the coupling strength o.z which measures the present
weak-field deviation from general relativity. Recently
one uncovered the existence of nonperturbative strong-
gravitational-field eff'ects in tensor-scalar theories [42] al-

lowing, in certain cases, for order unity deviations in neu-
tron star models in spite of a very small o.o. A necessary
condition for such nonperturbative effects to take place is
that r = cl /aBp obe negative. However, the cosmologi-
cal attractor scenario investigated here tends to drive the
world to a state where r is positive [minimum of a(p)].
In such a case, the results of Ref. [42] are, on the con-
trary, that strong-Geld effects further quench the level of
deviation from general relativity. Let us finally mention
that the existence of a long-range scalar field could have
important consequences on gravitational waves. It would
be interesting to study the impact of tensor-scalar grav-
ity on possible cosmological backgrounds of gravitational
waves (particularly on the stochastic scalar gravitational
waves generated during inflation) and on the efficiency
of the earliest gravitational collapses in the Universe's
evolution as scalar gravitational radiation emitters [43].
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