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Current algebras and the heavy quark limit
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Current algebra is used to obtain the matrix elements for B,D —+m in semileptonic B and D decays.
The relation g ~ =(mDmD)' /2f is also obtained, using SU(4) current algebra, PCAC, and the

heavy quark limit.

PACS number(s): 14.40.Jz, 11.40.Ha, 13.20.Fc, 13.20.Jf

Recently [1,2], the chiral and heavy quark symmetries
[3—5] have been combined. An efFective Lagrangian [1,2]
has been constructed to describe interactions of low-
momentum pions with heavy quarks.

In this paper current algebra and partial conservation
of axial-vector current (PCAC) are used to derive results
similar to those obtained in Refs. [1,2]. We also obtain

gD+D =(mDmD)' I2f [6] using SU(4) current algebra,

PCAC, and the heavy quark limit (HQL).
We define the matrix elements

G, (m ~)=— (9)

Heavy quark spin symmetry [3] gives

(6) and (7) hold in the neighborhood of t =mD. The
range of validity of these results has been discussed in
Refs. [2,8,9]. A similar result for the form factor G, can
be derived. In the chiral limit, the current algebra result
[10] is

&vr, q idy„clD, p) =[F+(p+q)„+F (p —q)„],
, q Iidy„y, c ID*,p )

f ~=mDfD,

&~ ltd y—,c ID ) =
& ~ Iidy3y5c ID* )

(10)

=i[6,c +Gzq e(p+q)„+G3q e(p —q)„],
y„y I»= &2f p„,

& 0liuy„c ID*)=tI2f,e„,

From Eq. (11) we obtain
(2)

(3)
[F+(p + q )4+—F (p —q)4]-

(4)
=i[ Ge, +G 2qe(p+q)3+G3q e(p —q)3] . (12)

& D,p'l&. ID *+,p &
=&2g * „(p —2p') e, (5)

Evaluating Eq. (12) in the rest frame of the heavy quark,
we get

where e„ is the polarization vector of D'. We have
suppressed the kinematic factors. In our normalization,
f =93 MeV. The form factors F and G are functions of
t: t= —(p q) =mD+2—mDU. q, where p=mDv and we
have put m =O. In the rest frame of the heavy quark,
~ =mD —2mDF-„.

Writing a once-subtracted dispersion relation for
(F+ +F ) and an unsubtracted dispersion relation for
(F+ F), we obtain—[1]

f-gD*~.
f mD 6—U. q

2fDgD*DF —F+ 6—v-q (7)

where 6=m +
—mD. In deriving the above relations,

only the contribution of the D * pole has been retained in
the dispersion integral and the current algebra result [7]

F+ (mD )+F (mD ) =+fD If
has been used. Since only the D* pole has been retained
in the dispersion integral, it is therefore obvious that Eqs.

D
G, +G,E' G,E' = — —

mD . (14)

In the chiral limit (E —+0), we get back the current alge-
bra result when Eq. (10) is used. The form factor G3 is
dominated by the D pole, viz. ,

2fD63= m* 5+v.q
(15)

The relation (10) in the form f ~=(mgmD)'~2f
known before the advent of heavy quark spin symmetry
(see, for example, Ref. [6]). It can be derived in a nonre-
latvistic bound state picture for D and D*. Relation (10)
follows from it by taking mD =ma.

The only unknown in the form factors F+, F, 6&,
and 63 is gD D . This can be fixed as follows. We use
the SU(4) algebra generated by axial charges [11,12], viz. ,

—[(F++F ) m~ + (F+ F)E ] = G—, +G~E2 —G3E2 .

(13)

From Eqs. (13), (6), and (7), we get
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[s,' ' s'-']=25.1, ,

where

S,+=f A,'+'(x)d'x,

and

I3= i—I V43(x)d x, V4;= ,'q r3—q .

(16)

(17)

(18)

turated by the D state, we get Eq. (21).
Let us consider the possible contribution of p-wave

states DJ (J=0, 1,2) to the sum rule (19).
The D (J = 1+) states do not contribute to the sum rule
(19) due to the following argument. From Lorentz
and parity in variance, the matrix element
(D+,p'I A „+ ID(J= 1+ ),p ) is proportional to
e„@g~'~&, where q is the polarization vector for
D (J= 1+). Thus

i [ A, e„+A 2p'. e(p +p')„
+2po2p o

+ A3p'. e(p p')„] . — (20)

In order to evaluate the left-hand side of Eq. (19), we in-
troduce the complete set of allowed intermediate states.
We retain only D state; i.e., we assume that the algebra
is saturated by isospin multiplet (D"+,D* ). In the rest
frame of the D meson, we obtain

Taking the matrix elements of Eq. (16), between ID+ ),
we get

(D+
I
[s;+,sj ] D+ ) =25"(D II D+ ) =5.. . (19)

We define

&D p'I A„ ID*',p )

&D+ p'I A;+ID(J=1 )) &;) g,p

fD(mDmD )'F+=-
2f b, —u q

= —F (24a)

and hence it vanishes in the static limit.
Equation (23) was derived in Ref. [6], using PCAC and

the nonrelativistic bound state picture for mesons with a
heavy quark. The derivation of Eqs. (10) and (23) shows
a close relation between the bound state picture and alge-
braic approach. A relation similar to Eq. (23) was ob-
tained in Ref. [15], using a Adler-Weisberger-type sum
rule with only a pole contribution in the sum rule. Note
that for this type of algebra the natural frame is the
p~ ~ frame.

Using Eq. (23) and neglecting terms of order u.q /mD,
we obtain

2 ) =4m~mD .

PCAC gives

A, + Az(m —mD)= 4f g—
(21)

(22)

Gi = —(mDmD)' fD If

fD(mDmD )'
63=

mgf b+uq

(24b)

(24c)

In the HQL, m +
—mD =const. But the second term on

the left-hand side of Eq. (22) can be neglected in the HQL
because A2 is suppressed with respect to 2, by an in-
verse power of the heavy mass. Hence we obtain

(mDmD)'"
D Dn 2f (23)

It may be noted that Eq. (23) follows from Eq. (21) plus
PCAC and the HQL.

For K* and p, the SU(6) relations g + — =m ~I2f
and g =m If have been known since 1966 [11,13].
These relations differ from Kawarabayashi-Suzuki-
Riazuddin-Fayyazuddin (KSRF) values [14]
gz+ — =mz+/2 2f and g =m Iv'2f by a factor
of &2. Experimentally, the SU(6) relation for E' or p is
not tenable. But for heavy quarks relation (23) is expect-
ed to hold for the following reasons. (i) For SU(4) algebra
the natural frame is the p=0 frame, a good frame for
heavy mesons. For heavy quarks the static limit is a good
approximation. The spin of a D or B meson is flipped
with the emission of a pion, with negligible recoil. (ii)
The PCAC relation (22) reduces to A, = 4f g, in-
the HQL. This relation is exact in this limit and is cru-
cial in deriving relation (23). This is not the case for p
and K* mesons. If we take the matrix element of Eq. (16)
between ID ) and assume that the left-hand side is sa-

Needless to say, the above relations are equally applicable
to B mesons. Since for B mesons 6=m +

—m&=50
MeV as compared to 140 MeV for mDg —mD and m~ is
much larger than mD, the above results are expected to
be more accurate for B mesons. However, the decay
B*~Bm is not allowed energetically, the relation
g + =(m~m~ )' /2f cannot be tested directly.

From Eq. (23), we obtain I (D'+~D ~+)=184 keV,
I (D*+~D+m)=84 ke'V, and I (D* ~D rr )=121
keV. Since a direct experimental measurement of these
decay widths is dificult, to make contact with experi-
ment, we use the branching ratios Boo Bor B++ B+0 Br+
Recent CLEO data [16] give the branching ratios (%)
B =63.6+2.3+3.3 B =36.4+2.3+3.3 B =68. 1

+1.0+1.3 B+ =30.8+0.4+0.8 a d B+ =1.1+1.4
+ 1.6. Taking 30%%uo & B & 40%%uo, we find
52& I (D" ~D y ) & 81 keV. Most models [17] for the
M1 transition for D —+Dy give B+ (1.4%. Thus we
find I (D*+~D+y) &4 keV. Equation (23) combined
with the present experimental branching ratios give M1
transition decay widths for D +' to be higher than those
given by most models [17] for these decays.

I would like to thank Professor Riazuddin for many
useful discussions.
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