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We construct a three-flavor chiral Lagrangian of pseudoscalars and vectors with special emphasis on
the symmetry-breaking terms. Comparing tree-level two- and three-point functions with experiment al-
lows us to first fix the parameters of the model (including the light quark mass ratios) and, second, to
predict m(K**)—m(K*°), I(K*—Kw), and I'(¢—KK). The last mentioned quantities come out
reasonably well, in contrast with an “ordinary” SU(3) treatment. For this purpose we need ‘‘second-
order” symmetry breakers involving the vector fields analogous to those needed for the chiral perturba-
tion theory program with only pseudoscalars. An improved description of the 17-7’ system is also given.
We then use the soliton sector of this improved chiral Lagrangian to investigate some aspects of baryon
physics which are especially sensitive to symmetry breaking. For this purpose a fairly elaborate “crank-
ing” technique is employed in connection with the collective Hamiltonian. In addition to the “strong”
baryon mass spectrum a careful investigation is made of the nonelectromagnetic part of the neutron-
proton mass difference. This work is needed to improve our previous estimates concerning the two-
component approach to the “proton spin” puzzle. We find that both the “matter” and ““glue” contribu-
tions are small but they do tend to cancel each other. It is noted that the “proton spin” matrix element
measures ‘“‘short distance” aspects of the model, in contrast with g,, which is dominated by long distance
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effects.

PACS number(s): 11.40.Fy, 11.10.Lm, 13.25.+m, 13.88.+¢

I. INTRODUCTION

In this paper we first discuss a three-flavor chiral La-
grangian of pseudoscalars and vectors with special em-
phasis on symmetry breaking. The soliton sector is then
used to calculate the nonelectromagnetic part of the
neutron-proton mass difference as well as the nucleon
matrix element of the axial singlet current. Our motiva-
tion is to update some earlier papers [1-3] (which should
be consulted for adequate references to background
work). However, this updating has turned out to be non-
trivial and to yield some results which may be of general
interest.

The proton matrix element of the singlet axial vector
current has recently attracted a lot of attention because
the European Muon Collaboration (EMC) experiment [4]
indicates that it is close to zero at g>=0. This is called
the “proton spin puzzle” [5,6] since the matrix element
should equal unity (twice the proton spin) in the naive
nonrelativistic quark model. Amusingly, the simplest
Skyrme model of pseudoscalars only does predict zero
[7]. One might therefore take the point of view that the
simple Skyrme model be considered a kind of first ap-
proximation to low energy dynamics. We have argued
[1] that more is needed because additional ‘short dis-
tance” information is required to adequately explain the
neutron-proton mass difference. In fact, the calculations
of the n-p mass difference and of the axial proton matrix
element are closely linked. Both require (at the dominant
two-flavor level) the “excitation” of the 17 meson field; the
vanishing of one quantity implies the vanishing of the
other. With vector mesons supplying the short distance
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component it is actually possible to explain [1] the n-p
mass difference and obtain [2,8] a suitably small value for
the axial singlet matrix element. Another aspect of the
proton spin puzzle which this kind of model might il-
luminate is the so-called ‘“‘two-component decomposi-
tion.” This is an attempt to make the small value of the
axial singlet matrix element plausible from the QCD par-
ton model point of view. The original idea [9] of decom-
posing the axial singlet current into “matter” and “glue”
parts has been criticized [5,10] as not being gauge invari-
ant. However, a way to overcome this objection, by look-
ing instead at a two-component Goldberger-Treiman-
type relation, has been suggested by Shore and Veneziano
[11]. When this mechanism is implemented [3] in the
meson Lagrangian it turns out to result, at the soliton
level, in an extra contribution to the n-p mass difference
proportional to the “glue” component of the axial singlet
matrix element. A numerical estimate suggested [3] that
the glue component, as well as the matter component,
was small.

Now, most of the above work consisted of calculations
for the two-flavor part but merely estimates for the effects
of including the third flavor. In this paper we discuss the
calculations using the full three-flavor model throughout.
It should be remembered that the n-p mass difference is
driven by the symmetry-breaking terms in the meson La-
grangian so it is especially important to treat these care-
fully. The same care is warranted for treatment of sym-
metry breaking in the collective Hamiltonian which de-
scribes the soliton sector of the theory.

The first step of studying symmetry breaking in the
meson Lagrangian is discussed in Secs. II-IV. We want
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to have sufficient symmetry-breaking terms to be able to
explain at least the pseudoscalar decay constants and
masses as well as the mass spectrum of the vectors and
the 17 —070" decay amplitudes. How to do this for the
pseudoscalars is well known. In the chiral perturbation
theory (CPT) program [12] a list of symmetry breakers
depending on the mass matrix in the underlying theory of
QCD gives sufficient flexibility to fit the 0~ decay con-
stants and masses (apart from the 7-n’ system for which a
special treatment based on the U(l), anomaly is re-
quired). There are also some loop diagrams resulting in
“chiral logs” but these are numerically small for the indi-
cated choice of scale. On the other hand, it has been gen-
erally felt that no such elaboration is required for under-
standing symmetry breaking in the vector multiplet. The
vectors are typically considered [13] the most “normal”
multiplet. Here we emphasize that this is not really the
case. Both the isospin splittings and 17 —-0"0" decay
amplitudes show large deviations from the simple SU(3)
predictions. We find that these can be understood if suit-
able vector symmetry-breaking terms which are the ana-
logs of the dominant ones for the pseudoscalars are in-
cluded. What it boils down to is the use of the symmetry
breakers which satisfy Okubo’s [14] original form of the
quark line rule [14,15], except for the O~ isosinglet chan-
nel. An improved fit for that channel is also discussed
here in Sec. IV. In Sec. VII we make some further re-
marks related to developing a larger analogue of the CPT
program which would also include vectors and presum-
ably describe low energy hadron physics up to around 1
GeV.

Returning to the main track of this paper, we describe,
in Sec. V, the calculation of the n-p mass difference using
the improved meson Lagrangian. A number of improve-
ments, which have been described in detail elsewhere, are
included for treating the SU(3) collective Hamiltonian of
the soliton sector. In the first place, the collective Hamil-
tonian is diagonalized exactly using the Yabu-Ando tech-
nique [16]. In addition, ‘“‘cranking” corrections are in-
cluded to allow for “‘centrifugal” effects with the rotating
Skyrmions. This means that while the classical soliton
involves the 7% w,, and p? fields, once it starts rotating,
fields for 7, 7', K, K, o, Pos K;‘, and I?; get “excited”
[17-20] with amplitudes proportional to the rotational
“angular velocities.” This yields improved results for
“strong” baryon mass differences, static properties, etc.
We find that the model which has been thus improved
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over that of Ref. [1] continues to give a reasonable
description of the nonelectromagnetic part of the n-p
mass difference. What changes is the percentage of this
difference due to the excitation of the n and/or 7’ fields.
Previously [1] it was around 70% but is now reduced to
about 20% for reasons discussed in Sec. V. The applica-
tion of this calculation to determining the ““glue” part of
the proton’s axial singlet matrix element is given in Sec.
VI. We continue to find that this contribution is small.
However, because there is a smaller 7 contribution to the
n-p mass difference, the accuracy of this statement is ac-
tually decreased somewhat.

II. TERMS OF THE LAGRANGIAN

Here we collect together, for convenience, the (a) chiral
invariant, (b) flavor symmetry-breaking but quark-line-
rule conserving, and (c) quark-line-rule violating terms of
the pseudoscalar-vector -effective Lagrangian. Some dis-
cussion will be given of why we have chosen to include
the terms listed, but not others.

The dynamical degrees of freedom are the elements of
the 3 X3 matrix of the pseudoscalar nonet ¢ and the 3X3
matrix of the vector nonet p,. We need the unitary ma-
trices

2i$/F
e

U= s g:Ul/Zzei¢/Fw , 2.1
where F_ is a bare pion decay constant. The vector
mesons, which also transform nonlinearly under chiral
U(@3) XU(3), are related to auxiliary linearly transforming

“gauge fields” 4~ and AX by [21]

AL=¢gp £+ éga,g*, AR=¢"p e+ ég*ayg : 2.2)

where g is a bare p¢¢ coupling constant.

Note that we have included only the lowest lying s-
wave gg bound states of QCD as our dynamical fields.

(a) Chiral invariant terms [21-23]: These include the
kinetic piece for the vectors,

— L THE (P F ()]
, @.3)
F,uv(p):a,upv—avplu_l g[P,va] ’

and pseudoscalar kinetic plus vector interaction pieces,

L Ryt
Tr(A“UA“U )

2 2

4 (2.4)

where m,, is a bare vector meson mass and k is a dimensionless constant chosen as k =(m, /F %)% to ensure correct
normalization of the pseudoscalar kinetic term. Please notice that we are using the “x,=it" Euclidean-type metric

convention.

There are also important interaction terms proportional to the Levi-Civita symbol, €,,,5. To write these compactly it
is convenient to use a form notation with one-forms a=dUU ~! and AL and to write the action terms (rather than the

Lagrangian density terms)
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where c,c,,c; are constants discussed in [20-23] while
I'wzw(U) is the Wess-Zumino-Witten term [24]:
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Equations (2.3), (2.4), and (2.5) comprise a minimal
(though nevertheless complicated in detail) model for
pseudoscalars and vectors [25]. One might imagine ex-
tending it by systematically adding terms with two more
derivatives. This would be analogous to the usual chiral
perturbation theory (CPT) program [12] with only pseu-
doscalars included. It should be remarked, however, that
a good deal of the four derivative structure of the
pseudoscalar-only effective Lagrangian can be obtained
by “integrating out” the vectors of a minimal-type
pseudoscalar-vector effective Lagrangian.

(b) Symmetry-breaking terms: In this ‘“updating” of
Sec. II of Ref. [1] we will include only quark-line-rule
conserving terms, i.e., those which can be written as a
single trace in flavor space.

The current quark mass terms in the fundamental
QCD Lagrangian may be written as

"Lmass= —ﬁq'/%q ’ (2.6)

where g is the column vector of up, down, and strange
quark fields, M =(m, +m,)/2, and M is a dimensionless,
diagonal matrix which can be expanded as follows:

M=yr;+T +xS , (2.7

with  A;=diag(1,—1,0), T =diag(1,1,0), and S
=diag(0,0,1). x and y are the quark mass ratios:

m my—m
x=2 y:_i 4 (2.8)
m 2 m
It is also convenient to define [13]
m,—m —
R=—" S (2.9)
mg—m, 2y

The significance of R is that it can, in principle, also be
determined from the rather well-known masses of the 1%
baryon octet. We have introduced the redundant nota-
tion above because of the importance of M in (2.7), to
which all the symmetry breakers are taken to be propor-
tional. We then write for the quark-line-rule conserving
but flavor symmetry-breaking terms in the effective La-
grangian
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Tr(M[a' (A UAR
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where Fﬁ;R =0,4 LR_3 ALR ;g Aﬁ’R, ALR] and
a',B, y',8,A" are the symmetry-breaking coefficients.
The parameters a'’, B, etc., introduced in Ref. [1] may
be related easily to a’, B, etc., via

x=a"/a'=p"/B'=etc., y=a/a’'=B/B =etc.
(2.11)

Our motivations for including the terms shown in
(2.10) are as follows. First, the &' term is the standard
one which splits the pseudoscalar masses. Next, the a’
term is the one with the correct chiral properties which
splits the vector masses. However, as pointed out in Ref.
[1], the @' term also gives objectionably large derivative-
type symmetry breaking for the pseudoscalars. This is
partially canceled by the pure pseudoscalar derivative
symmetry breaker given by the ' term. The ¥’ term
yields a derivative-type symmetry breaker for the vectors
too. Note that the B’ term is the No. 5 type in the CPT
classification [12]. The A'? term, which involves two
powers of J, is the No. 8 type. It is argued to be the
same order as the 3’ term. Furthermore, it is the only
remaining manifestly quark-line-rule conserving symme-
try breaker to “‘second order.” From a practical point of
view the A'? term also enables us, as we shall see, to vary
x in (2.8) while keeping the pseudoscalar masses and de-
cay constants fixed at their measured values. In the CPT
program, the determination of A'? is subject to the
Kaplan-Manohar ambiguity [26]; we shall discuss this
point later.

(c) Quark-line-rule violating and symmetry-breaking
terms: One of the remarkable features of low energy dy-
namics is the success of the Okubo-Zweig-Iizuka (OZI) or
quark-line rule [14,15]. There is, however, a conspicuous
exception associated with the interactions of the pseudo-
scalar singlet particles (7,7%’,. . .); the physics of this is
denoted as the “U(1) problem.” In a rough way, this pic-
ture is reflected in the CPT fit of Ref. [12]. There the
OZI rule Vviolating terms of No. 4 type
(~Tr(3,U3,UNTr[M(U+UM]) and of No. 6 type
(~{Tr[M(U +U")]}2) are both claimed to be negligible.
On the other hand the No. 7 type OZI rule violating sym-
metry breaker (~ {Tr[M(U—U")]}?) is claimed to be
non-negligible. We shall see that the latter is naturally
associated with pseudoscalar singlet particle interactions.
Incidentally, note that we have now accounted for all the
symmetry-breaking terms involving only pseudoscalars
which appear in the second-order CPT list. To these we
have added the a' and y’ terms in (2.10), which involve
the vectors.

Here, we shall write down essentially just those OZI
rule violating terms needed to fit the  and 7' masses
and two photon decay widths in an effective chiral
Lagrangian framework. In order that the U(1) anom-
aly equation for the axial singlet current, d,J Z =G,
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with G =9,K,, K, =( - 3'ig.(22C.D /47r2)eHByﬁTr[.A g9, A5 —(2igqcp /3) f4,B A, 45] ip terms of 'the QCD gauge fields, be
obeyed in the massless limit it is convenient to introduce G as an “auxiliary” field in the effective Lagrangian. No kinet-
ic term is to be written for G so it gets eliminated by its equation of motion. This procedure might be considered as an
effective way of integrating over instanton field configurations. We thus add the following terms to our effective La-

grangian:

1 ] P o oo
;GZ+ le—Gln(detU/detUT)-I—nTr(a#)Tr(aﬂ)+zGe Tr[ MU — U] +iGETr[M( AlUuaR— AgUTAg)] ,

where k, n, €, and {’ are parameters. The first two terms
in (2.12) are the standard ones for mocking up the U(1)
anomaly and giving mass to the %' meson [27]. The third
term, which gives us the freedom to adjust the %' “decay
constant,” and the fourth term, which is a symmetry
breaker of ‘‘instanton-induced” type, have been men-
tioned before [28]. The fifth term is an “instanton-
induced” symmetry breaker involving vectors; since it
leads only to four and higher point interactions we shall
neglect it for our present purposes by setting {’=0. Now
G appears only in (2.12). It therefore satisfies the equa-
tion of motion
G="x—"ETrmu-uhy,
4 2
where the mathematical [SU(3) singlet] %’ field is defined
by 7'=(V'3/2)F_x, x being gotten from the decomposi-
tion U=e'*U with detU=1. G in (2.13) should be sub-
stituted into (2.12). Among other things it gives a term of
No. 7 type in the CPT list. We have no special reason, on
the other hand, to include a term of No. 6 type.

An additional term involving G will be considered later
in connection with an application to the “proton spin”
puzzle.

(d) Remarks: The total effective action of pseudosca-
lars and vectors is taken to be

(2.13)

T =Z ¢ K'=Z¢, P::prlzw K;Jr:ZK*Plsm w,uzza)(pll,u.+p22,u)/‘/§”¢,u:Z¢p33,u’

where
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Z,=Z,=(1—8y")'"2,

Next, the computation of the “Noether” currents of
this model leads to the identification of the physical pion
and kaon decay constants F,, and Fy, as

F,,=Z.F, Fx,=ZgF,. (3.3)

Expanding out the pseudoscalar mass terms yields, in
the isospin limit,

8 ’ ’
mgz}z(s +417?)
4 (3.4)
mg=——[8(1+x)+21"X(1+x)?] .
FKP
Note that, as pointed out in Sec. II, if A'> were not

1+%(1+x)

al
—43'
gZ

(2.12)

Tog= [ [(2.3)+(2.4)+(2.10)+(2.12)]d*x +(2.5) .
(2.14)

Symmetry-breaking terms proportional to €,,,,g are being
neglected here for simplicity (they do not contribute to
most of the processes which will be discussed in the
present paper). Similarly, OZI rule violation for particles
other than the pseudoscalars will mostly be neglected.

III. PHYSICAL QUANTITIES AT THE
OZI RULE CONSERVING LEVEL

We will find the parameters of the effective Lagrangian
by comparing the tree-level two- and three-point func-
tions with experiment. There is a natural separation into
the properties of the pseudoscalar singlets (which we dis-
cuss in the next section) and the other particles whose
properties follow just from the OZI rule conserving
terms.

Compared to the discussion in Sec. II of Ref. [1], there
is the difference that the A’ term is now included and also
the ¥’ term is not set to zero. The latter results in a very
substantial improvement in the predictions for the prop-
erties of the K* mesons and gives a different fit for the
fundamental mass ratios x and y of the light quarks.

First, expanding out the kinetic terms shows we should
renormalize the fields as (taking typical examples)

172
|

(3.2)

F=[1—4y'(1+x)]'?% Z,=(1—8xy")'/?.

present the two equations in (3.4) would lead to a fixed
value for x =m, /. However it turns out to be very use-
ful to explore the physical situation for various values of
x. The vector meson masses in the isospin limit are

2 2

mi=m}=(m;—2a')/Z} ,

mie=[m}—2a'(1+x)1/Z}s ,

2 (3.5)

mi=(m2—4xa')/Z} .

Next, let us turn to the mass splittings between
members of the same isomultiplet. We are not comput-
ing the photon-exchange contributions here so the pre-
diction will be for the nonelectromagnetic part of the iso-
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splittings. We then find!
[m (KO)—m (K+ )]nonEM

I

2m2
2 K
Fg,mg

—48'— 1604 (1+x) | ,

a'
—_— 43'
gZ

(3.6)
[m (K%*)—m (K **) ] onEM

=y(—4y'mps+2a')/(mZ2s) ,
(3.7)

[Mpw]nonEM:—y(za,_“")"m;)/(mpzlz,) . (3.8)

(The p°- transition mass M oo 18 defined in terms of the
effective term in the Lagrangian: —2m,M pwpga)“.)

Finally, consider the p¢¢ coupling constants. The pmm
coupling constant g,,, may be defined in terms of the
p—2m width I'(p—21) as

8orrlalp)l’

1217'mf,

I'p—2m)= (3.9)

where q(p) is the momentum of the final pion in the p
rest frame. In our model,

m2+aa’

2
gF,Z,

8pmr = (3.10)

For the other vector decays into two pseudoscalars we
find

LK*>Km) _3 [ My Frp Z, |’ |qk*)]?
Lp—2m) 4 |mex Fg, Zes | |qp)®
r(g_uq?):lﬁ Py P2, Plgwr
T(p—2m) my | Fx, | Z4 | lqp)®°

where q(K*), for example, denotes the pseudoscalar
momentum in the K* rest frame. Also, the small OZI
rule violation for ¢ decays was neglected in the second
part of (3.11), as well as in the mass formula (3.5).

Now let us consider the experimental determination of
the various quantities introduced. This is actually the
heart of the matter and contains several very interesting
qualitative features. In the first place this determination
yields estimates of the fundamental quark mass ratios
x=mgy/m and y =(m,—my)/(m,+m,) in our frame-
work. The dependent quantity R =(1—x)/2y is also
relevant since it can be separately determined from con-
sideration of other particle multiplets (such as the baryon
octet). For comparison we mention the results obtained
in earlier work in this model [1] in which y’=A'>=0 and
wherein M, was the only experimental isospin violating
quantity used for the fit:

10nly (3.8) was used for fitting in Ref. [1]. The extra factor
Z ;* makes negligible difference. Note that the A'2—0 limit of
(3.6) quoted, but not used for fitting, should be replaced by the
present formula.

x =37, y=—0.36, R=50. (3.12)
Let us also compare with the determination of Gasser
and Leutwyler [13]:

x =25.0+2.5, y=—0.28+0.03, R =43.5%2.2.

(3.13)

A recent alternate approach to the CPT program by
Donoghue and Wyler [29] predicts instead

y =—0.54£0.09 . (3.14)

Those authors do not have a similarly precise estimate of
x but consider R =32%5 and hence x =36 to be more ac-
ceptable. In the present paper we find a “best fit” for

x =315, y=—0.42, R=36. (3.15)

This is closer to (3.14) than to (3.13).

The main qualitative difference between our result
(3.15) and (3.13) can be roughly understood in the follow-
ing way. Gasser and Leutwyler consider the vector
meson nonet to be the most “normal” one in the sense
that old fashioned SU(3) relations can be best trusted.
Their value of R, for example, is essentially obtained
from the vectors. However we find very important SU(3)
violations for the vector nonet system. They did note
that the nonelectromagnetic part of [m(K%*)
—m (K **)], which is related to M oo (their basic isospin
violation input) by SU(3), could not be adequately ex-
plained but attributed this to uncertainties in interpreting
the experimental results. Here, we find that the experi-
mental value for this mass splitting can be fairly reason-
ably explained if one allows nontrivial wave function re-
normalization for the K ; and ¢, fields by keeping y’#O0.
This also allows us to dramatically improve the predic-
tions for the widths I'(K*)/I'(p) and I'(¢)/T(p) in
(3.11). It is amusing to note that when SU(3) was first
proposed, the symmetry prediction for I'(K*)/T(p)
worked very well. But since then, the measured width of
the p has increased from about 100 MeV to about 150
MeV. The relatively large wave function renormalization
for the K* tends to restore the agreement between theory
and experiment.

It is very easy to fit the symmetry-breaking parameters
X, y,a’,B’,y',S',k’z as well as the “symmetric’ parameters
g and m? to experiment? if one temporarily holds x fixed
and computes everything else. First, feeding the known
values for F,,P, FKp, m_, and mg into (3.4) gives &' and
A2, From Fy,/F,,=Z,/Z, we next find the quantity
(a’'/g*—4B') from (3.2). Equation (3.6) then yields y

while the formulas for m, and m, « in (3.5) together with

(3.8) give us o', ¥’, and m,. Next the p width via (3.9)
and (3.10) gives g and finally B’ is found from
(a’'/g*—4pB'). The fitted parameters as functions of x are
displayed in Table I.

’Input parameters: F,,=0.132 GeV, Fg,=0.161 GeV,
m,=0.137 GeV, mK*:0.892 GeV, mp=0.768 GeV,

mg=0.497 GeV, (mKo—mK+),,0nEM=5.28 MeV, M,,= —2.65
MeV, I'(p—27)=0.1491 GeV, I(K*—K7)=0.0498 GeV,
I'(¢—KK)=0.0037 GeV.



344

J. SCHECHTER, A. SUBBARAMAN, AND H. WEIGEL 48

TABLE 1. Parameters as functions of x.

x y R a' (GeV?) B (GeV?) v 8’ (GeV*) A (GeV?) g

15 —0.13 53.5 —9.08X1073 —2.59%X10™* —1.05%1073 324X 1073 1.45%X1073 3.53
20 —0.19 48.9 —471X1073 —1.42X107% 4.32%X107* 3.72X1073 9.64X 1074 3.72
25 —0.27 43.8 —2.03%X1073 —7.91X1073 1.39X 1073 3.92X1073 6.56X107* 3.83
28 —0.33 40.5 —8.72X 1074 —5.36X107° 1.81X1073 3.98X107° 5.15X107* 3.88
30 —0.38 38.3 —2.25%X107* —4.05%X107° 2.05x1073 401X107° 431x107* 3.91
32 —0.43 36.1 3.43%X1074 —2.89X107° 2.26X1073 4.04%X1073 3.51X107* 3.93
34 —0.49 33.9 8.46X107* —1.88X1073 2.45%X1073 4.06X107° 271X 1074 3.95
36 —0.55 31.6 1.29%X1073 —9.98%X 107 2.62X1073 407X107° 1.84X 1074 3.97
38 —0.63 29.3 1.69%X 1073 —2.19X107¢ 2.77X1073 4.09%X1073 471X107* 3.99

We note that the strength of the standard nonderiva-
tive pseudoscalar symmetry breaker, §’, does not change
much with x. The most dramatic effect is the increasing
importance of ¥’ which, from (3.2), is seen to lead to an
important wave function renormalization for the K* and
¢ vector masses. When x =25, the values of x and y
agree with the Gasser-Leutwyler values in (3.13). As x
increases it is seen that the strengths |B’| and |A’| de-
crease substantially. For our fit in (3.15), a’ has also de-
creased in magnitude and has reversed sign. Clearly &’
and ¥’ are the dominant symmetry-breaking parameters
for our fit. The value of the “gauge” coupling constant g
does not change much with x.

We now have four predictions which are given in Table
IL [m(K**)—m (K "*)],onpmy DK *—K7)/T(p—21),
m,, and I'(¢—KK)/T(p—2m). These quantities are
sensitive to the wave function renormalizations of the
-vector particles containing strange quarks (K* and ¢).
First consider the K%*-K™* mass difference. The
photon-exchange contribution has been estimated to be
—0.7 MeV [30]. The experimental value is alternately
given as 4.510.4 MeV (if one simply subtracts the two
numbers of the Particle Data Group [31]) or as 6.7%1.2
MeV (if one considers just the “dedicated” experiments).
So we should have

5.2 MeV,

[m(Ko*)_m(K+*)]nonEMz 7.4 MeV .

(3.16)

This should be equal [see the limiting forms of (3.7) and
(3.8)] in the SU(3) limit to the negative of the nonelec-
tromagnetic piece of the p-w transition mass
M,, (nonEM), which in turn has been found from analysis
of experiment by Gasser and Leutwyler [13] to be

TABLE II. Predictions.

(KO*_K+*)nonEM m(¢)
x (MeV) L(p)/TK*) T(p)/T(¢) (GeV)
15 2.04 5.44 124 1.01
20 2.44 4.97 103 1.02
25 3.05 4.45 81 1.04
28 3.55 4.12 67 1.07
30 3.97 3.90 57 1.09
32 4.47 3.67 47 1.13
34 5.09 3.44 38 1.18
36 5.84 3.21 28 1.26
38 6.78 2.98 18 1.43

—2.6510.20 MeV. Clearly the SU(3) prediction is very
bad. However, agreement can be obtained in the present
model if ZK*¢1 in (3.7). We see from Table II that the

range of x between 34 and 38 is suitable for this purpose.
This is due to the increase of ¥’ with increasing x. Next,
consider the ratio of widths I'(p—27)/I(K*—K)
which experimentally is 3.0. Equation (3.11) shows that
this ratio is also sensitive to Z, «. We see from Table II

that, once again, exact agreement is obtained for x
around 38. Thus considering just the properties of the
K* particle one would be tempted to choose x =38. This
represents (see Table I) a value of y significantly larger
than (3.13) in magnitude but in agreement with (3.14).
Larger values of x and y [compared to (3.13)] are
also favored by consideration of the ratio
I'(p—2m)/T(¢— KK ) which is experimentally 40.3. We
see from Table II that best agreement for this ratio is ob-
tained for x around 34. On the other hand m  is fit best
with a smaller value of x (about 20). While it is true that
the simplification of neglecting w-¢ mixing has been made
above, this effect is small enough so the m, prediction
should be reasonably accurate. A compromise “best fit”
with x =32 [see (3.15)] improves three predictions re-
markably, does not distort the m, prediction too badly,
and will be seen in the next section to be needed to lead to
a good description of the -1’ system.

It is of interest to note that the vector meson wave
function renormalizations for the best fit x =32 case are
Z,=272,=0.99, Z,+=0.84, and Z;,=0.65. Since Z,, in
particular,’ represents a rather nontrivial correction one
might in the future want to investigate other possible
higher order terms involving vectors and loop diagrams.
In any event, our analysis shows that such large symme-
try breaking is required to understand the vector mesons
which contain strange quarks.

We remark here that the additional symmetry-
breaking term

wTr(ALmARm) (3.17)

can help to fine-tune our results. Because it is quadratic

3In the extraction of the parameters ¢, and c, of (2.5) from ex-
periment in [22] some ¢ decays are involved. We note that in
(4.5) of this reference we should now write |€/Z,| instead of |€|.
This replacement should also be made in (4.8) so that the old
formulas for ¢; and ¢, remain unaltered.
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in /M it will provide a factor of x? for m*(¢) and negligi-
ble contributions to other vector masses. Similarly, it
will mainly affect the ¢, —KK decay amphtude There
will be an extra contrlbutlon of —2x%u /Z2 to mi(4)
and an extra factor of 1+4u'(x +x2/2)/(m2+4a’) for
the ¢— KK amplitude. The choice u'=2.4X107° GeV?
then enables us to fit both m?(¢) and T'(p)/T'(¢) in Table
IT while still keeping x =31.5. Notice that (3.17) is the
analog for the vectors of the A’? term in (2.10) for the
pseudoscalars; there are then three analogous quark-line-
rule conserving but symmetry-breaking terms for each
multiplet.

IV. PHYSICAL QUANTITIES FOR THE 5-n' SYSTEM

In the simplest Lagrangian which can mock up the
U(1) anomaly [just the first two terms of (2.12) included]
the ' mass and the -7’ mixing can be satisfactorily fit.
However the 7 mass comes out too low.* Here we will
show that this problem can be remedied if the second two
terms of (2.12) as well as the OZI rule conserving symme-
try breakers in (2.10) are all taken into account.

Defining the two-dimensional vector

Nr
T Ns
where 177=(¢,,+d,,)/V'2, 15 =3, we collect the quad-
ratic terms in the effective Lagrangian as
1 1
—EaﬂnTKa“‘r]——z"nTP’I] . (4.1)

Here the ‘“kinetic” matrix is

4 16n
Kpr=1+— —4p3 ,
: lg i
Kgg=1+-% |2 _4p |4 81 4.2)
Ss N .
Fl g 7
8V2n
Kps=Kgr= >
F7
while the “potential” matrix is
Prr=—1 85+ S xe'+ & + 16k + 32021 +92)
T Ffr 3 9 )
Pog=—1 |8x5'+ 4 e+ 4 8iex 2e"2+32x 202
S F2 3 18 ’
4.3)
Prs=Ps=—2 | Zie'(1+x)+ X + 8rxe?
1s = £'sT F2 |3 18 .
The “kinetic” matrix is diagonalized by
1 K, o
- = = \
R Y6,)KR (6,)=K o R, 4.4)

4This can be seen by referring to Fig. 2 of [32].

where
cosf; sinb;

R(6,)= —sinf; cos6; @.5)
and K| ,=L(Kpp+Kgs) FV (Kpp—Kgg )P +4K 2 1.
The angle 6, is obtained from

tan260,= ——"— . (4.6)

' Kss—Krr

The effective potential matrix P’ is then

P'=R~'2R~Y#,)PR (6,)R 12 . @.7)

This yields the physical n and 1’ squared masses as the ei-
genvalues of (4.7):

m2m, )= %[(P'TT+P§S VTV (Pyy—Pls P+ 4P1%
4.8)

The “bare” column vector is finally expanded in terms of
the physical fields

_|m
77,;_ ’T]’
as
n=R(6)K 'R (6,)m, , 4.9)

where 6, is obtained from (4.6) while 6, is determined
from

2P/
tan20,= —— > (4.10)
ss —Prr
Note that the transformation (4.9) is, in general,

nonorthogonal. For comparison, the mixing convention
in the octet-singlet basis is

UL

m (4.11)

]
=R (6) n

and, to the extent that K may be approximated by the
unit matrix,

60=~0,+6,—54.7° . (4.12)

The standard source of information, which we shall
also employ here about mixing in the -1’ system is com-
parison of the 7 ——»27/, n —»27/, and 7—2y decays. It is
well known that 7°—2y is well described by “gauging”
the first term of (2.5). Thus it is sufficient to consider ra-
tios of the other rates to the #° rate. We find

O ’
(7 —)27/) . F(”)l—>2'}’) . F('I] _>27/) :2':(01 )2:((12)2 s

mi 0 omd T om} 2
(4.13)
wherein
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5 | cosf,cosf, sinfsinb,
a,= —= =~ - =~
V2 K %/2 K ;/2
sinf,cos6, sinf,cos6,
o R17 R1” ’
. ) (4.14)
5 | cosf;sinf, cosB,sinf;
a,=—=
) R12 R
cosfcosf, sin6;sinb,
R R 12
Experimentally, (a;)>=3.98+0.60 and (a,)*=7.20
+1.40.

We may now try fitting our parameters to these experi-
mental data. Adopting the compromise fit discussed in
Sec. III with x =31.5, we have three new unknown pa-
rameters: «, €, and n [see (2.12)]. On the other hand
there are four experimental quantities to be fit: m,, m,,
and the 7%-7' mixing information contained in (a,)? and
(a, )? of (4.13). Conducting a numerical scan of the k, €',
and n parameter space we find a best fit for

k=0.105 GeV*,

n=1.40X10"* GeV?, (4.15)
€=1.59X10"*.
With these parameters the physical quantities are
m (7)=549 MeV ,
m(n')=959 MeV ,
(4.16)
(a,)*=3.98,
(a,*=T7.19,

in agreement with experiment. Furthermore, the quanti-
ties describing the nonorthogonal 7-7’ matrix in (4.9) are

6,=17.44, 6,=34.7°, K1?=1.07, R}*=1.36.
4.17)

This would correspond, via (4.12), to a usual 7-’ mixing
angle of about —12.6°. However, because K1 this
comparison is just suggestive.

We have found that it is difficult to achieve a fit for the
experimental quantities in the 7-n° system for x
significantly different from the value used above. It is
also amusing to note that the A'2 symmetry breaker in
(2.10) plays an important role in enabling us to get a good
fit in the first place. Without the A’? term present the
only reasonable fit was found with very large and nega-
tive € which would give the wrong sign for the neutron-
proton mass difference, as computed in this model.

V. THE NEUTRON-PROTON MASS DIFFERENCE

In the preceding sections we discussed the effective
meson action with emphasis on the symmetry-breaking
parts, especially those which are isospin noninvariant. In
this section we will use this effective mesonic model to

obtain information about properties of baryons. In
mesonic theories such as the one under consideration
baryons emerge as soliton solutions.

In order to explicitly test the isospin noninvariant
terms we will evaluate the nonelectromagnetic contribu-
tion to the neutron-proton mass difference:

A=(M M (5.1

neutron <" proton )nonEM .

Experimentally the neutron proton mass difference is [31]
1.29 MeV. However the electromagnetic interaction
(photon exchange) also contributes to the neutron-proton
mass difference. Using experimental electromagnetic
form factors this contribution is estimated as [13]

Apy=(—0.76£0.30) MeV .

The negative sign agrees with Agy being dominated by
the Coulomb repulsion. Thus we may extract

A=(2.05£0.30) MeV . (5.2)

A. Description of the approach

It has been demonstrated previously [1] that vector
mesons are a necessary ingredient in an effective meson
theory in order for it to explain the neutron-proton mass
difference reasonably well. In Ref. [1], however, only the
SU(2) X U(1) version of the model was properly calculated
while the SU(3) part was just roughly estimated. It is
therefore highly desirable to extend the treatment to
SU@).

In the first step the static soliton with unit baryon
number is constructed.> The appropriate classical
Ansdtze are

exp(iT-7F(r)/2) O

§r)= 0 1l
wp=-22) (5.3
° 2v2g 3)
_G(r)

Pia = \/ig'r €ijaly -

Substituting (5.3) into the Lagrangian £ yields the classi-
cal mass M ;= — f d3r.L. The isospin-breaking terms do
not actually contribute to M. An analytic expression
for M, may be found in Ref. [17]. Extremizing M
yields second-order nonlinear differential equations for
F(r), G(r), and w(r). The solutions to these equations
are characterized by their topological charge which is
identified with the baryon number. The solution of the
baryon number one sector has been extensively discussed
in the literature [17-20,22]. The static soliton (5.3) is in-
variant under ‘“‘grand spin”> G =J+1 transformations but
not under spin (J) and isospin (I) transformations sepa-

SMore details on the notation of this section may be found in
Ref. [17].
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rately. Therefore the static soliton carries neither good
spin nor good isospin quantum numbers. In SU(2) the
projection onto good quantum numbers is carried out by
introducing time-dependent collective coordinates for the
zero modes of the theory. In SU(2) these are the spatial
and isospatial rotations. These two transformations are
actually equivalent due to the above-mentioned grand
spin symmetry. Thus in SU(2) the spectrum contains
only baryons with equal spin and isospin, e.g., N, A.

Unfortunately the extension of soliton models to in-
clude strange fields is nontrivial due to the presence of
SU(3) breaking, i.e., flavor transformations are not real
zero modes. However, we will consider SU(3) to still be
an approximate symmetry and therefore shall introduce
collective coordinates for the whole flavor group. This
approach allows us to easily make contact with ordinary
baryon phenomenology. Furthermore it has been demon-
strated in Ref. [17] that the collective approach describes
static properties of the low-lying 1 and 2% baryons
reasonably well. An alternative point of view that SU(3)
symmetry is strongly broken leads to the bound state ap-
proach [33]. In this approach a kaonic bound state is
constructed in the background field of the static soliton.
The corresponding bound state energy eigenvalue deter-
mines the mass splittings of baryons with different hyper-
charge since they are characterized by different occupa-
tion numbers of this bound state. Numerically the two
(somewhat different) approaches yield comparable results
for the mass differences of baryons with different hyper-
charge and spin.

The collective coordinates A (t)ESU(3) are intro-
duced by flavor rotating (5.3):

Er,)=A(DEE(DE AT(D) (5.4)
and

1 B p.to, K ;

5P =A(0) k' o 4’ . (5.5)

Here we have also allowed for a more general field
configuration parametrized by §; and K. We will see
shortly how these additional fields get excited. The time
dependence of the collective coordinates is made most
transparent by the introduction of ‘“angular velocities,”
Q, (a=1,...,8):

V73
L=—M4+
cl 2 “~ 2

1

—I'3D3—A

i=1 i=1

1 3
gs )—57/T > Dg;Dgi—
i=1

3 3 7
D D3iDg;+D3gDgg |+ 2 D;;Q;+B;5 3 D3,Q,,

(e.te, o

t 4=
44 o —20,

(5.6)

i
2,
wherein the A, (@ =1,...,8) denote the SU(3) Gell-
Mann matrices.

Obviously the vector meson terms in (2.4) as well as the
‘“anomalous” part of the action (2.5) contain expressions
which are linear in the time derivative. These expressions
provide source terms linear in the angular velocity for the
fields which vanish classically. Thus additional fields are
excited by the collective rotation. Clearly they are linear
in the angular velocities. The most general Ansatz for
the nonstrange vector mesons excited by the isospin rota-
tion is [17,19-20]

pe= 2‘/_ ——[&(NQ+E(N(E-QF]T,
& (5.7)
0,=201) a3, .
T 2vag

The pseudoscalar nonet contains components which are
excited by the isospin rotation [20] as well as by rotation
into the strange directions [19]. Parametrizing

gr=e" "t (5.8)
:el s = .

k K" g

suitable Ansdtze are mnr=4[x(r)+x(PIE-Q, g

=1[x(r)—2xs(r]E-Q, and K =W (rft-7Qg. For later
calculations it is convenient to introduce also an Ansatz
for the glueball field G =g (7)T-Q instead of eliminating G
from the beginning via (2.13). From parity and isospin
covariance we also get the following Ansdtze for the K*
isospinor fields:
«_ S

K;§ iz

Qg ,

(5.9)
K*= _1 1E(r)?+D(r)
2V2g

i jk?j T | Qg
Substituting (5.3)—(5.5) and (5.7)-(5.9) into the action and
expanding up to second order in the angular velocities as
well as linear order in isospin breaking yields the collec-
tive Lagrangian

las o+ lp z 2= L3040, 3 Dy +8, S Dy
i=1

a=4

1
27’Ts 2 Dy, Dy,
a=4

(5.10)
a=4
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where the D;; denote the matrices ;Tr(A; 4A; 4 t) of the
SuU@B) ad_]omt representation. The moments of inertia a?
and f? are functionals of the radial functions
(1,62, P,X,Xg) and (W,S,E,D), respectively. Varying
the moments of inertia with respect to these fields yields
linear inhomogeneous second-order differential equations
with the classical fields F, G, and o as source terms. An-
alytic expressions for the moments of inertia as well as
the symmetry-breaking parameters 7, a,, and [3; may be
found in Ref. [17]. Here we only wish to explain the
mechanism which excites ¥, X5, and g. The nonstrange
combination Y +X; is excited by the terms proportional
tO €,,,4p in (2.14) exactly as explained in Refs. [1,20]. The
glueball field and the strange part of the 7 fields are sub-
sequently induced via the equation of motion (2.13).

The additional symmetry-breaking parameters ¥y, ¥ 7»
and 7 7 are solely due to the (1')? term in (2.10):

327

:——(7»' x)zfdrr (1—cos2F) ,

Ys=—Yr

(5.11)
327r

Y s =——(A)(1 fdr r*(1—cosF) .

The isospin symmetry-breaking parameters I's;, A;, a3,
and B; are needed for the evaluation of the neutron-
proton mass difference and we present the somewhat
lengthy analytic expressions in an appendix. Here we just
wish to mention that I'; and A; contain only classical
fields while a3 and B, contain expressions linear in the ex-
citations (5.7) and (5.8) as well.

The Lagrangian (5.10) is quantized canonically by in-
troducing SU(3) right generators R, (@ =1,...,8)via

aL

R _—

¢ aQ,
—(a?Q, +a,Dg, +a;Ds,), a=1,2,3,

= {—(8’Q,+B,Ds, +B3D3,), a=4,...,7,

V3,

a=8.
(5.12)

We separate the isospin-breaking part of the Hamiltoni-
an:

8
=—3 R,Q,—~L=H,_,+H,_, .

a=1

(5.13)

The isospin symmetric part H;_, may be diagonalized
exactly by generalizing the approach of Yabu and Ando
[16]. This yields the energy formula

1 1

al /32

_ 3
EI:()—MCI+ J(J+1) B2 232 —5 €SB >

1
2
(5.14)

where egg is the eigenvalue of

2 Dyg;(2R; +a,Dy;)

C,+B*y(1—Dygy )+B2
(1 i=1

7
+By X Dsa(ZRa+BlD8a)+327’s( 1 _D§8 )
a=4

3 7
BZ?’T > DsiD8i+327’Ts D DDy, (5.15)

i=1 a=4

and C,=33_, R2 denotes the quadratic Casimir opera-
tor of SU(3). egy is obtained, of course, numerically, us-
ing differential operator realizations of the R, [34]. The
isospin-breaking part is obtained to be
3
H;_=T3Dy+A; | 3 D3 Dy + D3y Dy
i=1
; 3
+— > D;i(R; taDy;)
i=1
2 D, (R,+BDyg,) (5.16)

BZ
In the evaluation of the Hamiltonian only terms linear in
the isospin breaking have been retained. Finally we have

the nonelectromagnetic contribution to the neutron-
proton mass difference:

A=(H|HI=1|'1 >_<P|H1=1|P)

3
2 DSiD8i+D38D88

i=1

?)

=—2Iy{(p|D3lp) _2A3<P

a; 3
_2;7 ,-21 (p|D3;(R;+0a,Dg;)|p)

—2; 2 (pID3(R,+BDgy)lp) ,
where |p) denotes the exact proton eigenstate of H;_,.
In writing (5.17) we have made use of the flavor transfor-
mation properties of the D functions.

Although it is obvious, we would like to stress that in
this treatment the neutron-proton mass splitting is not
obtained as the difference of two large numbers. On the
contrary, the leading operator in the isospin breaking
(H;=,) has been extracted and its expectation value is
identified with the mass difference.

(5.17)

B. Numerical results

We now present our numerical results for the neutron-
proton mass difference. To proceed we have to fix the pa-

rameters of the anomalous part of the action, (2.5). Pre-
viously [22] it has been shown that
h=4[2c,—c,/8—c;/(48%)]=~0.4 ,
(5.18)

gVV¢=4czzl.9

fit reasonably well the decay processes w—37 and
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TABLE III. The isospin-breaking parameters I';, A3, a;, and
B; as functions of x. The input parameters are according to

TABLE Iv. The relevant matrix elements
M,=-2/a*3}_ (Ds(R;+aDg)), and M,=-2/8
X3! _4{D3(R,+BDyg,)), to evaluate the neutron-proton

mass difference as functions of x.

Table I. For parameters of the anomalous sector we take
h=0.4,8y15=1.9, k=1.0.

x r; (MeV) A; (MeV) a; Bs
25.0 —15.32 0.08 —0.0046 —0.0171
28.0 —15.60 0.05 —0.0049 —0.0178
30.0 —16.08 0.04 —0.0052 —0.0185
31.5 —16.45 0.03 —0.0055 —0.0189
34.0 —16.89 0.02 —0.0060 —0.0195
38.0 —17.89 0.00 —0.0070 —0.0205

x —2€Dy), M, MeV) M, MeV) M,—M, (MeV)
250 —0.017 —174.1 —31.0 1.60
2800  —0.020 —180.0 —31.2 1.75
300 —0.021 —183.5 —31.0 1.88
315 —0.023 —185.1 —30.6 1.97
340  —0.025 —188.6 —29.7 2.12
380  —0.028 —193.0 —27.3 2.41

©—>p. h and 8yyy are allowed to vary® in the range
h=-—0.15,...,0.7 and 8vys=1.3,...,2.2 subject to
the constraint |gyy,—%|~1.5 due to uncertainties in the
determination of the w-¢ mixing angle. The third param-
eter could not be fixed in the meson sector; however, it
was argued that k=c;/(2gc,)~=1 from studies of baryon
properties. We will adopt this value together with (5.18).

In Table III we present the results for the isospin-
breaking parameters I';, A3, a3, and B; as functions of x.
Obviously A; is negligible and we will omit it from now
on.

In Table IV we display the relevant matrix elements
and the prediction for the nonelectromagnetic contribu-
tion to the neutron-proton mass difference, A in (5.3).

Note that the a; term dominates and contributes more
than 50% of the neutron-proton mass difference. This is
expected since the a; term represents essentially the pure
two-flavor contribution. As previously discussed [1] the
use of the exact wave functions of the SU(3) Hamiltonian
rather than the ‘““‘unperturbed” wave function drastically
suppresses the matrix elements of the I'; piece. Clearly,
reasonable agreement with the result extracted from ex-
perimental data (5.2) is obtained for x =30. Especially
the prediction for the n-p mass difference for the favored
value in the meson sector x =31.5 turns out to almost
coincide with the central value of the experimental data.

Based on the discussion in Ref. [17] one might however
object that for 4 =0.4 and gyye=1.9, the SU(2) moment
of inertia a>=4.52 GeV ™! is somewhat too small, pre-
dicting too large mass splittings between the 1+ and 2%
baryons. A small variation to # =0.36, g,4=1.88, and
x =28 yields a*=5.00 GeV~!. The corresponding mass
differences are displayed in Table V and are found to
agree reasonably well with the experimental data. Actu-
ally the SU(3) mass differences come out slightly worse
than previously since the effect of a’ is lowered. This is

SWalliser has pointed out to us that the experimental measure-
ments for the relevant w and ¢ partial decay widths have
changed from the 1986 to the 1992 Particle Data Group results.
Continuing to use (4.4) [see footnote 3 above], (4.7), and (4.9) of
[22] now gives us |€|/Z;=0.05940.005 and central values
Zvvy=1.81,A=0.38. These are substantially similar to the old-
er values.

due to the fact that large, positive a; and B; terms in
(5.10) mitigate the effects of a large collective symmetry-
breaking parameter y. In the previous fit (without the ¥’
type term) a' was negative and significantly larger in
magnitude than in the present case (cf. Table I). Noting’
that a, is essentially proportional to (1—x)a’ we may un-
derstand why the SU(3) mass differences are increased.
For this parameter set we obtain

A=1.77 MeV , (5.19)

which is slightly lower than the central value 2.05 MeV
of the experimental data for A but still within the error
bars. The dominant contribution to (5.19) stems from the
aj term: 0.93 MeV. Previously [1] we had found that
this contribution was almost entirely due to the 7 excita-
tion. This is now somewhat modified since firstly in Ref.
[1] only the unphysical i, was present and its mass of
550 MeV was assumed. Employing the treatment of Sec.
IV in the soliton sector as well decreases the effect of the
77 fields somewhat because they are suppressed by a larger
mass. Secondly the y’ term which was not present in the
approach of Ref. [1] contributes about 30% to a;. The
strange excitations contribute about 0.54 MeV to the
mass difference. The contribution of the I'; term (0.29
MeV) is strongly suppressed since the matrix element of
D ;4 is much smaller than its SU(3) symmetric value when
the exact eigenstates of H;_, are used. Comparing (5.19)
with the results obtained for the central values (5.18) we
recognize a small change for the worse with the baryon
best fit parameters. However, the better agreement of A

TABLE V. Best fit to the mass differences of the 1™ and 3
baryons with respect to the nucleon for the parameter set
h=0.36, 8yye=1.88, k=1.0, and x =28 (see also Table I).
Also listed are the predicted mass differences for the central
values for 4 and gy with k=1.0 and x =31.5 (3.15).

A b = A >* =* Q
Fit 168.0 263.0 4040 3270 4700 617.0 766.0
(5.18) 1440 237.0 3500 360.0 4800 602.0 723.0
Expt. 177.0 2540 379.0 293.0 4460 591.0 733.0

"Correct charge normalization requires that we only include
the contributions of the classical fields (5.3) to a; and .
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for the set (5.18) is merely due to the smaller nonstrange
moment of inertia so we would expect the baryon best fit
set to be more reliable for predicting baryon observables.

In the next section we will discuss a small extension of
the model Lagrangian which enables us to fine-tune the
predicted neutron-proton mass difference by adding a
term which may be interpreted as providing the gluonic
contribution to the proton spin.

VI. TWO-COMPONENT DESCRIPTION
OF THE PROTON SPIN PUZZLE

In this section we will describe the implications of the
preceding considerations on the so-called proton spin
puzzle which actually refers to the surprisingly small ma-
trix element of the axial singlet current between proton
states. In a naive quark model this matrix element mea-
sures twice the proton spin. As indicated previously [3]
the neutron-proton mass difference may be used to deter-
mine the gluonic contribution to this matrix element. In
Ref. [3] only an estimate of this quantity was made. Here
we will present the complete calculation since all the
necessary tools have been provided in the preceding sec-
tions and we may therefore disentangle the two com-
ponents of the axial singlet matrix element: matter and
gluon contribution [11].

The axial singlet current J Z may most easily be ob-
tained from

oL

J,= —2a—x/31? 20,1 +sT;, (6.1)

5
m

with y being defined after Eq. (2.13).
note that the second part,

It is important to

- iYL, Y2l >
J‘Z=euvpgTr '5 _3_+—2_ PPy VU_VZYZngp Vo
—4i §2(Y2+2}/3)VVVPV ’ (6.2)

is not a pure gradient and has therefore a nonvanishing
matrix element at zero momentum transfer in contrast
wit‘l} the first part. In Eq. (6.2) we have used
1L/vV2v, =p,~iv,/(2g) as well as p,(v,)
—Ulm% ft/2ia U”zUI/ZT. J;, may be conside’;‘gd as
the short dlstance part of the ax1a1 singlet current since it
is dominated by the vector mesons and is not present in
models with pseudoscalars only. The dimensionless con-
stant s has been introduced by the replacement in the La-
grangian
ayﬂ;_»sapxig (6.3)

to allow for a deviation from the nonet form for the pseu-
doscalar fields in the Lagrangian. The nonet form was
originally introduced to satisfy the OZI rule; however,
such an approach seems somewhat debatable for the 7’.

Defining axial form factors of the nucleon for the
flavor [ =u,d,s via

V/pops
——MB—O~<P(p’)|mV,msqzlP(p)>
P
=17(P,) quSHI 2)+W‘Y5H[(q ) ( ),
with ¢, =p,—p, , (6.4)
the relevant quantity for the axial singlet current is
3
H(g*>)=3 H)(g? . (6.5)

=1

Obviously the first term in (6.1) only contributes to the
induced form factor H(g?)=3j_, H,(g?). In the origi-
nal Skyrme model (without vector mesons) J Z=O and
therefore also H (0)=0, which has been considered as a
success [7] of the Skyrme model since it nicely describes
the results of the EMC experiment [4]. The axial charge
of the nucleon g, may also be expressed in terms of
H,;(0): g,=H(0)—H,(0). In contrast with H(0) g, is
not a member of an octet; thus there is no symmetry
transformation relating H (0) to g,. In the soliton picture
this is manifested by the fact that the large distance
behavior of the chiral angle F(r) dominates the result for
g, (and thus for all other members of this octet). For
H (0), however, a nonvanishing result is merely due to
short range effects [2]. In our model these are represent-
ed by the vector mesons. It is therefore obvious that the
modifications made so far in the meson Lagrangian do
not affect g, since they are either in the short range sec-
tor (Sec. III) or the isoscalar channel [Sec. IV and Eq.
(6.3)]. As demonstrated in Refs. [1] and [3] only the
neutron-proton mass difference A as well as H (0) possess
a sizable sensitivity to the modifications in the isoscalar
channel.

In order to introduce the two-component mechanism
[11] it is necessary [3] to allow the pseudoscalar gluon
field G to couple to J,° via the chirally invariant expres-
sion

2t +

9,67, (6.6)
wherein ¢ is a new dimensionless parameter. This addi-
tional term changes the equation of motion for the glue-
ball field (2.13) to

K ~

=——n'+13,]; . .
2V3F, ' +13,J, (6.7)

We furthermore have the U 4(1) anomaly equation which

is equivalent to the equation of motion for %’ after elim-
inating the glueball field:

K
6F2

,_ S—t F5
= 75 (6.8)

—3*+ =
VT

In both equations (6.7) and (6.8) we have neglected small
symmetry-breaking effects originating from the €’ term in
(2.12). Taking matrix elements of these equations be-
tween nucleon states we may read off the corresponding
coupling constants at zero momentum transfer:



48 EFFECTIVE HADRON DYNAMICS: FROM MESON MASSES TO . . . 351

_s—t 2my
&yNN = s V3F

t 2V_3Fﬂg n'NN

t—s K

H(0),
(6.9)

86NN T

Next we may use the coupling constants to reexpress the
axial singlet current form factor:
V3F
H(0)=—" |g, vy — ———
(0) 2y &y NN 2V3F, 8GNN

= “matter” + “glue .” (6.10)

The modifications (6.3) and (6.6) of course enter the eval-
uation of the nonstrange moment of inertia a?; however,
we find, even for a large deviation of s —¢ from unity, no
significant change of a®. This is due to the fact that these
modifications only affect the 7 and glueball fields but
leave the vector meson excitations &, &,, and P essential-
ly unaltered. Since the 7 fields do not explicitly appear in
the definition of J;, the corresponding matrix element nu-
merically turns out to be independent of ¢; we find for the
best fit parameters of Sec. V (see Table V):

H(0)=0.29s . (6.11)

However, we do find a significant dependence of the pre-
dicted value for the neutron-proton mass difference, A on
s and t since there the 7 fields enter crucially. In Table
VI we display our numerical results for A using the
“baryon” best fit parameters. We note that for ¢/ <1.5
the mass difference depends linearly on ¢ while for larger
values of |t|, nonlinear effects which enter via the equa-
tions of motion are significant.

To proceed, we consider the precise value of H(0) as
the parameter which determines the “fudge factor” s via
Eq. (6.11). Then fixing ¢ from the neutron-proton mass
difference allows us to separate the matter and gluon con-
tribution to H(0) in Eq. (6.10). We present our results
for various experimentally allowed values of H(0) in
Table VII for the parameter set used to fit the baryon
mass difference as well as for the central values of & and
Zyvygs (5.18) together with (3.15). We think that the re-
sults of the “baryon” best fit should be more reliable than
the results for the set which gives a best fit to the meson
properties. This is because for both the spin and isospin
mass splittings, a fine-tuning of the nonstrange moment
of inertia a? turns out to be crucial (see Sec. V). In any
event, the difference between the two sets provides a mea-
sure of the “systematic” uncertainties in our calculation.

TABLE VI. The neutron-proton mass difference A as a func-
tion of the parameters s and ?.

t 0.0 —0.5 —1.0 —1.5 —20

s
0.8 1.70 1.84 1.98 2.13 2.25
0.9 1.74 1.87 2.02 2.16 2.27
1.0 1.77 1.91 2.05 2.20 2.29
1.1 1.80 1.95 2.09 2.24 2.32
1.2 1.85 1.98 2.13 2.27 2.35

TABLE VII. The “matter” and ‘“glue” contribution to the
axial singlet matrix element of the proton for two sets of param-
eters. For the best fit parameters see Table V.

H(0) t “Matter” “Glue”

Baryon best fit

0.0 —1.86+0.90 0.54+0.26 —0.547F0.26

0.1 —1.641£1.02 0.57+0.30 —0.47+0.30

0.2 —1.31£1.04 0.58+0.30 —0.38+0.30

0.3 —0.96£1.00 0.58+0.29 —0.28+0.29
Set (3.15),(5.18)

0.0 —1.09+0.94 0.32+0.26 —0.32F0.27

0.1 —0.74+0.93 0.31+0.30 —0.21F0.27

0.2 —0.38+0.96 0.31+0.30 —0.11F0.28

0.3 —0.00+0.97 0.30+0.29 0.00F0.28

Taking into account that for the set (3.15), (5.18) the ab-
solute values for the gluon contribution to the axial sing-
let matrix element are lower than for the baryon best fit
we might consider the results for the latter set as an
upper bound. We should furthermore remark that it
would be surprising if s were to deviate too much from
unity. Thus, in each case the range for H(0) between 0.2
and 0.3 would seem most reasonable. For completeness
we would like to comment on the numerical value of g,.
As explained above, the detailed modifications of the
isoscalar-pseudoscalar sector of the Lagrangian we have
made will not significantly affect the result for g,. From
the calculations in Ref. [17] we therefore expect g, ~0.9
for the parameter set which fits the baryon mass
difference (cf. Table V).

To sum up, we may conclude from Table VII and the
discussion above that while there is a tendency for the
“glue” part to cancel the “matter” part, both are most
likely to be on the small side compared to unity. This
agrees with the results of [3], though it must be remarked
that the present, more detailed, calculation allows larger
uncertainties in the “glue” and “matter” pieces. The
reason for this is that, as pointed out in the previous sec-
tion, the dependence of A on the 7 fields is lessened due
to the inclusion of the ¢’ term in (2.10). This translates
into somewhat larger values of (s —¢) than were previous-
ly estimated [3] as well as large uncertainties in ¢. Since
the present approach “lives off” the deviation of the cal-
culated A from its ‘“‘experimental” value, its accuracy
could be improved if a more accurate value of the
photon-exchange contribution Agy; were available.

VII. REMARKS ON THE MESONIC LAGRANGIAN

The effective Lagrangian discussed in Secs. II-1V has a
number of connections with physical quantities outside
the Skyrme model approach. We would like to make
some, partly speculative, remarks on this here.

A. Light quark masses

Their values are of interest, for example, in construct-
ing models of the quark mixing (Kobayashi-Maskawa)



352 J. SCHECHTER, A. SUBBARAMAN, AND H. WEIGEL 48

TABLE VIII. Light quark masses.

m, my my
2.3 5.6 125
3.2 7.9 175
4.2 10.2 225

matrix of weak interactions. Conventionally [13], the ab-
solute values of the (current) quark masses are considered
to be “running” masses evaluated at the scale of 1 GeV.
Estimates of the kind we have made here yield just their
ratios. Evaluation of “QCD sum rules” yields [13] an ab-
solute value for m; (1 GeV) in the 125-225 MeV range.
Combining this with the “best fit” in (3.15) yields the sets
(all in MeV) given in Table VIII.

Note that ratios like V/m,/m =0.21 are independent
of the absolute value of m (1 GeV).

B. Confirmation of R

It is interesting to try to confirm the value R =36 in
(3.15) from consideration of other particle multiplets.
The most precisely known masses are, of course, those of
the low-lying %* baryons. First-order perturbation
theory (which yields the fairly well-satisfied Gell-

Mann-Okubo mass formula) gives the prediction
E-X_ _2—N
n—p =0’

wherein each particle symbol stands for its mass, which
in turn is assumed to have been ‘“‘corrected” by subtrac-
tion of the photon-exchange contribution. Numerically
this reads R =60.71+9.1=46.21+5.9. The large deviation
between the two central values suggests a need to go
beyond first-order perturbation theory. If one expands

N

around m,=my;=m;=0 the procedure [13] is not
straightforward since one encounters nonanalytic terms
like m3/?2 and m Inm. A possible way out is to expand
around the point m, =my;=m;=1(m,+m +m) rather
than zero. It was recently shown [35] that this method
leads to a second-order prediction for R:

_ 3A+3—2N —2E
2V3mp+(n —p)+(E°—E7)

; (7.2)

where my is the “corrected” A—Z=° transition mass. In
principle m4 could be determined by a precision mea-
surement of the difference between the pK ~ — A7 and
nK°— An scattering amplitudes, for example. In the ab-
sence of such information we can use (7.2) to construct a
lower bound for R if we assume that quantities at second
order should not deviate too drastically from their first-
order values. This yields [35] roughly

R >38%10, (7.3)

which is evidently consistent with R =36.

C. Kaplan-Manohar ambiguity

If M(x) is a 3 X3 matrix field transforming as (3,3*)
under SU(3); XSU(3)g, it is easy to see that
[JI/L(x)]T"ldeL/l/LT(x) transforms in the same way. This
suggests investigating [26] the substitution

M=M+bM " detM’ , (7.4)

where b is a real parameter and M=mM" is the diagonal
matrix proportional to quark masses, given in (2.7). Us-
ing the characteristic equation for a 3 X3 matrix it can be
seen that the effect of the substitution (7.4) on the non-
derivative symmetry breakers of the second-order CPT
program [12] is simply

STr[M(T+ TN+ A2 Te(MTMT +MTMTY) + e (Tr[m(T + T ]2+, (Te[t(T—TH ]2

—§'Te[M(T+ TN+ ‘A’Z—% Te( M TM T+ T T
bd' v A2 bd’ v N2 L s
+ |c6+T {Tr[M(U+U" ]} + c7+T {Tr[M'(U—U")]}*+higher order . (7.5)
[

Here we have chosen to use the octet chiral field U, with  (A"?),c§,c5}; these are related by
detTU =1, for simplicity. By “higher-order”” we mean the
terms proportional to b which are generated from the A'%, m,=m, +bmgm;, mg=mg+bm;mg,
cg, and c; terms. These are third order in the CPT pro- ,
gram and are to be thrown away when one is working at my=m!+bm,m} , A?=(\A?)— b&' , (7.6)
second order. The significance of (7.5) is that, assuming 2
the higher order terms to be negligible, the identical
physics is obtained using either the parameter set co=c' + b —cl b
{my,mg,m,,N'%ce,c7}  or the set {m,,mjm,, 66T g 2 TTTT Ty
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for any b.

Evidently there is a one parameter family of ambigui-
ties. A lot of attention has been focused on the possibility
of obtaining m, =0 in some ‘“frame” since that might
provide a nonaxionic solution of the “6O problem.” As-
suming that a solution for the parameters is specified for
the primed frame in (7.6), we can transform to m,=0

with the choice b =—m, /(mjm;). The corresponding
transformation for R in (2.9) is then
R~R'/(1+m)/m}) . 7.7

With the best fit choice (3.15) for the primed frame we
find that R =26 is needed for m, =0; according to (7.3)
this would perhaps be unlikely.

The present model is, of course, different from the usu-
al CPT program since, among other things, we are in-
cluding the vectors. In any event, as discussed in Sec.
II C, the assumption that OZI rule violation is dominant
for the pseudoscalar singlet channel leads to a type 7 but
not type 6 symmetry breaker. This would uniquely fix
the “frame” for the present purpose.

D. Extension of the meson Lagrangian

It is naturally of interest to consider how the present
mesonic Lagrangian can be modified to yield a systematic
continuation of the CPT program to higher energies.
The CPT program [12] itself is most reliable for energies
up to several hundred MeV, which restricts us to using
just the pion fields. Each successive order of approxima-
tion adds terms with two more derivatives or one more
power of the mass matrix (formally introduced as coun-
terterms to loops computed at the previous order). In
practice, going beyond second order may be difficult.
Perhaps surprisingly, the three-flavor continuation, in-
cluding the K’s and the 7, seems to work reasonably well.
However, it obviously cannot be extended in energy past
the vector mesons without including them. Since we
would like to use the meson Lagrangian to study baryons
as solitons in the 1-GeV region, it would seem reasonable
to add just the vectors (together, perhaps, with pseudo-
scalar and scalar singlet glue fields in order to develop a
direct connection with QCD) and stop there. This pro-
vides a “clean break” in the sense of including just the
lowest-lying s wave states of the quark model. To model

J

r,= 8’”’ 2 [arks,

;= —a—[r cosF (F'*+w?)—
2g°

—-chosF 2G'2+ (G+2 02 |+

3

4(2+x)A\'?

QCD in this way to all energies would likely require us to
include all the higher resonances, as suggested either by
their need to produce high energy Regge behavior [36] or
by their presence in the large N, approximation [37].

Once we have agreed to limit the “quarkonium” states
to the pseudoscalars and vectors it is necessary to list the
chiral invariant interaction terms. One question is
whether this will introduce double counting since it is
known [38] that “integrating out” the vectors reproduces
the coefficients of some of the pure pseudoscalar terms.
We think that this should not be a problem; one should
include a priori both the vector and pseudoscalar terms
and suitably readjust the coefficients of the pseudoscalar
terms. For the “second-order” treatment, loops comput-
ed with the “first-order” terms [(2.4) and the ¢’ and &'
terms in (2.10)] should be included. For a start, however,
it seems reasonable to neglect them (while loop diagrams
are of great conceptual interest they are often numerical-
ly negligible for the indicated scale choice®).

Here we have included those terms which we believe to
be dominant. Especially, we have neglected OZI rule
violating terms, except as discussed in Sec. IIC. The fit
to experiment is reasonable for the two- and three-point
functions considered. Trying to fit more quantities will
probably require fine tuning by adding additional terms
and including chiral logs. Considering the tremendous
amount of data in the region below 1 GeV, it is clear that
the best way to proceed is along an incremental “evolu-
tionary” path.
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APPENDIX

In this appendix we list the analytic expressions for the
isospin-breaking parameters in the collective Lagrangian
(5.9).

Substituting the classical fields into the symmetry-
breaking part of the Lagrangian (2.10) yields

(A1)

2G (G +2)cosF +4(1+ G —cosF)]—2B'cosF (F'’r2+2 sin?F) +28'r*(1 —cosF)

r2(1—cos2F) ,

8For example, the “chiral logs” are not qualitatively important in (10.11) of the first of Ref. [12].
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and

3277'
3\/§

For the isospin-breaking parameters which appear in those terms which are linear in the angular velocities we find

as 81ry fdra3, By=4my fdrB3 ,

A= —x)yA’? [ drr¥(2sin®F +3 cosF —3) . (A2)

a;= f { r[2—2&,—cosF (2+£&,+&,)]—4®(14+ G —cosF)+ (x +xg)sinF [10*r*+ 1F?r*— G (G +2)]
g’
—[7%cosFF'(x' +x3)+2(x +x3)sinF1}
—2B'{(x+Xg)sinF (F"?r2+2 sin’F) —2[ r?cosFF'(x'+ x§) +2 sinF (Y +x3)1}
—J’— (X +Xg)sinF 2G'2+ G? To(G +2)—w'Wr? | +4(0'Eir*+2G' D) +2 cosF (o'(§’1+§’2)r2+—42—<1>G(G +2)
g? r
—28'r2(x + xg)sinF —2V2 €'r2g sinF — g2tx 5.2, X +Xg)sin2F | (A3)
By=—"2_ | W |sinL +sinF |[0??—2(1+G —cosF)]
28 2
+2 cos—— (1+G —cosF) |D +2Ws1n§ 1+cos—§— —owr? (S —1+cos§ l
+ a—2 r2w sin g —W(1+G —cosF) sm? 1+2 cosg +cosF | +2sinF cosg +cosF
g
2
+sin£ L p|E+2 sinE W'—F'W |—sinF |D +2Wsin-F— 1+cos£
212 2 2 2
+2 } 'W sin§+sinﬁ (F"*r*+25sin’F)—2 cosg 1+cos L [#F' wW’'+2 cosgsinFWl ]
—458'r smE 1+cos—§— W—i—l/— {cosg— G'(2D’+EG)+%(G +2)2D —20'r? S’+%E
g2 r
—w sin§+sinF G'2+ G (G +27—wr? ] ]
—4M2r2W |sin2F +2 sin% +sinF +2x sing 1 +cos§ (A4)
Of course, for the parts of the Lagrangian already investigated in Ref. [1] the expressions for I'; and a; coincide.
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