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The rare 7t —+ e+e and g —+ p+p, decays are calculated in diferent schemes, which are
seen to be essentially equivalent to and produce the same results as conventional vector-meson
dominance. We obtain the theoretical predictions B(7r —+ e+e ) = (6.41 + 0.19) x 10 and
B(rt ~ p, +tJ, ) = (1.14+t'ts) x 10,where B(P ~ l+l ) = I'(P —+ l+l )/I" (P ~ pp), in reasonable
agreement with recent experimental data.

PACS number(s): 13.20.Cz, 13.20.3f

New experimental data on the rare g —+ p+p, and
vr ~ e+e decays have been obtained very recently by
different groups, and more accurate results are expected
in the near future. On the one hand, the g tagging facility
at Saturne reports [1] a branching ratio B(rl ~ p,+p ) =
I'(rl M tt+tt )/F(rl M all) = (5.6+o'7 + 0.5) x 10, to be
compared to the old result [2] B(rl ~ p+p ) = (6.5 6
2.1) x 10 s. Normalizing the new Saturne's measurement
to g ~ pp one gets

B(rl m p+p, ) = = (1.4 + 0.2) x 10
I 'g~p p

where p = gl —4m'/mz&. The on-shell pp intermediate
state generates the model-independent imaginary part of
B:

Im R(P m l+ l ) = —ln
2 1+

The unitary bound on B, B & B""',is then obtained by
setting Re R = 0 in (3). It takes the values

B"""(rt~ p,
+

p, ) = 1.11 x 10
B"""(~'-+ e+e-) = 4.75 x 10-' .

(5)
(6)

where the branching ratio [3] B(rl ~ pp) = 0.389 +
0.005 has been used. On the other hand, the 7t

e+e branching ratio has been recently measured at
Brookhaven [4] and at Ferrnilab [5] with the results
{6.9 + 2.4) x 10 and (7.8 + 3.1) x 10, respectively.
Averaging these data and using [3] B(7r ~ pp) = 0.988
one similarly has

I' pro -+ e+e
B(7r —+ e+e )

—= = (7.3 + 1.9) x 10
I'(pro m pp)

( )

The "reduced" ratios (1,2) can be expressed in terms
of a dimensionless "reduced" amplitude R(P —+ l+l ):—
B, normalized to the intermediate P ~ pp amplitude,
leading to

2

B(P ~ l+l )=2P
~

™-~R(P ~ i+i-)~', (3)
7t TAQ

In units of B""',the Saturne result (1) and the average
(2) are

B{rt-+p+p )/B"""=1.3 +0.2,

B(7r + e+e )/B"""= 1.54 6 0.40 .
(7)
(8)

The values on the right-hand side (RHS) of Eqs. (7) and
(8), which correspond to 1 + (ReR/ImR), can be used
to extract ReB from experiment:

Re R(rl -+ P+P ) = 6 (3.0+~ z),
Re R(7r' ~ e+ e ) = + (12.9+4s o, ) .

(9)

(10)

We will see below that we are able to choose a sign for
ReR from theoretical considerations. While the imagi-
nary part of B is finite, model independent, and domi-
nant, the real part of A contains an a priori divergent
pp loop, depends on the hadronic physics governing the
P —+ p*p* transition (with off-shell photons), and, ac-
cording to Eqs. (7) and (8), amounts only to a fraction
of ImR.

Calculations of ReR have been performed by many au-
thors in, essentially, two different contexts. One con-
sists in using vector-meson dominance (VMD) ideas [6],
thus introducing the corresponding VMD form factor to
regularize the photon-photon loop. Hadronic couplings
cancel precisely in the "reduced" amplitude B, which
turns out to depend essentially only on the vector-meson
mass Mv in the form factor. Alternatively, one can rely
on (constituent) quark model ideas [7] to regularize the
P ~ p*p* vertex thus obtaining a finite and reasonable
value for ReR. A recent paper by Margolis et al. [8]
confirms the validity (as well as some degree of model in-
dependency) of this approach. In both contexts, one ob-
tains rather stable results which are in reasonable agree-
ment with the above data. The accuracy and reliability
of these methods can obviously be improved when used
to compute difFerences of two ReB's rather than ReB's
themselves, as shown by the authors [9] a decade ago.
The recent and partly related paper by Savage, Luke, and
Wise [10], as well as the publication of new experimental
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results, have prompted us to reconsider the situation.
Assuming the dominance of the two photon contribu-

tion, the reduced amplitude R(q2) = B(P ~ I+I ) can
be written as (see Ref. [11],where details can be found)

~2q2 k2 (q Q) 2 [(p k)2 m2]
B(q ) =

where q = m~, p = m), and k' = q —k) and
E is a generic and model-dependent form factor, with
E(0, 0) = 1 for on-shell photons. The simplest and more
transparent way to fix E is by invoking conventional
vector-meson dominance (VMD) ideas. This essentially
implies neglecting direct Ppp and (single V) VPp ver-
tices, thus assuming the full dominance of the (double
V) chain P ~ VV ~ pp. The form factor in this case is

k2 M2 ki2
V V

(12)

marginally consistent with the data. For complete-
ness, we also quote the corresponding results for the
rI -+ e+e decay amplitude: Re B(rj m e+e )
31.3 + 2.0, Im B(rj ~ e+e ) = —21.9, and B(q —i
e+e ) = (3.04 + 0.26)B"""= (1.37 + 0.12) x 10

Let us present the theoretical predictions for the real part
of the amplitude in this naive and conventional VMD
model. Taking Mi = M~ = 0.77 6 0.10 GeV (this
error will be justified later), one gets

ReBp (~ + e e ) = 10.4+0.6. (13)

Quite independently, one also obtains Im B(vr
e+e ) = —17.5 and then the ratio

B(vr -+ e+e ) = (1.35+0.04)B""' = (6.41+0.19)x10
(14)

in good agreement with the recent data (2) (but in
sharp contrast with the old data [12] available when sim-
ilar VMD estimates were commonly performed). The
g ~ p+p, decay can be similarly analyzed. In the
SU(3)-symmetric limit, i.e. , using Mv- = M~ in (12)
and ignoring M@ ) M~, we get

ReRp (rl m P+P ) = —1.3+o's, (15)

whereas Im R(rI ~ p+p ) = —5.47. The predicted ratio
is then

B(q m p+p, ) = (1.06+o os)B""' = (1.18+o'os) x 10
(16)

in reasonable agreement with the corresponding experi-
mental value (1). To calculate B(q —i p, +p ) in the more
realistic case of SU(3) breaking we use the rI-il mixing
angle 0~ = —19.5' [l3], corresponding to an il quark con-
tent rl = (uu+ dd —ss)/~3, and introduce M~ ) M~
This easily leads to

ReR(g m p+p ) = -'ReRp (rl m p+p )
—

4 Re Rp(ri —+ p+p )
+0.9= —&.0-0.6

B(rj ~ p p ):(1 03 ' )oBos: (1 14 o'os) x 10

Two comments about our results are in order. First,
the reasonable agreement we get allows us to solve the
sign ambiguity when extracting the real part of the am-
plitude from experiment in (9,10): We have to choose
the positive value for Re A(vr ~ e+e ) and the negative
value for ReB(rl -+ p+p, ). The discarded values are
4 and 3 experimental standard deviations away from the
theoretical results. Second, as was noticed by the authors
in Ref. [9], some of the uncertainties related to hadronic
scales or cutouts disappear when considering difFerences
of two ReR, as ReR „—ReR„» Fr.om (13) and (17)
we get the numerical result

ReB (m ) —ReB„„(m„)= +11.4 + 0.4,

where the smallness of the error comes from a large can-
cellation of the uncertainties in M~ taking place because
of the difference on the LHS. Equation (18) is fully corn-
patible with the experimental value

ReB~«(m ) —ReRq„„(m ) = +16+7, (»)
which is deduced from (9) and (10) when solving the
sign ambiguities according to our analysis, and adding
the errors linearly.

We are well aware that the above VMD calculations
could be (and essentially were) performed many years
ago. One may argue that VMD is certainly a success-
ful phenomenological scheme but old fashioned and lack-
ing of solid theoretical support. For this reason we shall
now consider more modern approaches, where the inter-
actions among pseudoscalars, vector mesons, and pho-
tons are dictated by well-defined and @CD-rooted La-
grangians. In these contexts, the octet containing the
lightest pseudoscalar mesons plays the role of the set
of Goldstone bosons originated through the spontaneous
symmetry breaking of the @CD Lagrangian for vanish-
ing u, d, and 8 quark masses. We shall discuss three
types of models: The erst refers to improved and up-
dated versions of the nonlinear cr model, such as chiral
perturbation theory (ChPT) [14], and the other two refer
to more recent attempts to include vector mesons in these
chiral Lagrangians, particularly, the "massive Yang-Mills
approach" [15] and the "hidden symmetry scheme" [16].
We shall argue that in the context of these three models
the VMD form factor in (12) and the corresponding pre-
dictions (with the quoted theoretical errors) in Eqs. (13)—
(17) are fully justified.

Let us start discussing the "massive Yang-Mills ap-
proach" proposed mainly by Meissner and extensively
discussed in [15]. Much as in the VMD case, vec-

To further appreciate this effect,
we rewrite our older result [9] (correcting a misprint)
ReA „(m ) —ReR„»(m„) 31n(A„/A ) —31n(m„/m, ) +
ln(m, m„/m m„) ln(m, m„/m„m ) — r ln(m„/A„) ln(1
m„/A„) +, where A„, A are cutoffs needed to regular-
ize the integrals and the form factor model dependence is
efFectively parametrized by the term proportional to r (The.
dots refer to negligible contributions. ) Invoking SU(3) sym-
metry A„= A and allowing 0 ( r ( 1 we obtained [9]
ReR (m ) —ReA„»(m ) +12+ 2, compatible with (18)
but with larger uncertainties.
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tor mesons are introduced as a nonet of gauge bosons
through conventional covariant derivatives in ungauged,
chiral Lagrangians with a Wess-Zumino (WZ) term. Ax-
ial vectors can be introduced with the same procedure,
but (appropriate) mass terms for both types of spin-1
mesons have to be incorporated unsatisfactorily by hand.
When gauging the WZ term, several possibilities are open
concerning the relative weights of axial-vector vs vector
mesons. The most attractive one is due to Bardeen and
concentrates all the e8'ects of the anomaly in the axial-
vector sector. This is also the choice favored by Meiss-
ner in his extensive review [15], where it is also shown
the total equivalence of this Bardeen version of the WZ
term with conventional VMD for the case in hand. Ac-
cordingly, in the most favored version of the "massive
Yang-Mills" approach the vr and g couplings to p*p*
are considered to proceed through the F~~ form factor
(12) and therefore to reproduce precisely our previous,
VMD predictions (13)—(17).

The alternative but related "hidden symmetry
scheme" by Bando et al. [16] looks more interesting
for our present discussion. Vector mesons are intro-
duced as "dynamical" gauge bosons of the hidden local
U(3) v symmetry in the U(3) I, x U(3) R/U(3)v nonlinear
o. model. The corresponding vector-meson masses M~
are now automatically generated inside the model, while
quantum or QCD effects are expected to generate "dy-
namically" their kinetic terms. Photons and weak bosons
can be finally incorporated as external gauge fields. One
is then lead to a well defined theory describing the strong
interactions of pseudoscalar and vector mesons at low en-

ergy, as well as their electroweak ones. In the WZ sec-
tor the scheme contains three free parameters, two of
which (a2 and as in the notation of Refs. [17] and [18]
where more details can be found) are relevant for our
purposes. Their role is to fix the relative weight of the
direct P ~ pp amplitude to the (singly or doubly) V
mediated ones, P —+ Vp ~ pp and P ~ VV —+ pp. Ac-
cording to the general analysis by Bando et al. [16], the
preferred values for these parameters are [17]

a2 ——2as ———3/16vr

which reproduce complete VMD, i.e. , they lead to a can-
cellation of the Ppp and PVp vertices containing direct
couplings of photon(s) to hadrons.

In our specific context we are forced to fix a3 to the
above value (20) by simply requiring that the present ap-
proach has to lead to a finite result, i.e. , by assuming that
vector mesons alone are enough to render convergent the
otherwise divergent two-photon loop. The most appro-
priate way to fix the remaining parameter a2 consists in
adjusting the recent data coming from pp* ~ P pro-
duction and involving one (essentially) real photon and a
virtual one. The k* dependence of the latter requires a
VMD-like form factor with averaged (see Ref. [19]) mass
parameters A = 0.75 + 0.03, 0.77 + 0.04, and 0.81 + 0.04
GeV for vr, g, and g' production, respectively. These
values are immediately interpreted in Bando's context
just fixing a2+ 2as ———3/8vr, thus reproducing the com-
plete VMD result (20), and identifying the mass param-
eter A with the vector masses M~. The numerical coin-

cidence between these masses shows that we can safely
use the physical, Particle Data Group (PDG) values [3]
for the p, cu, and P masses (the latter being responsi-
ble for the slight increase in A when going from vr to
q and g'), affected by errors smaller than some 10%%uo.

Alternatively, we can interpret the above pp* m P re-
sults as requiring the use of the physical, PDG vector
masses but allowing for slight variations of the a2 pa-
rameter (again, of some 10%%uo) around its VMD central
value (20). In this case, our P —+ t+t amplitude pro-
ceeds mainly through the Fvv form factor (12) but it is
then allowed to have small contaminations of a similar
(single) VMD form factor, I"v = M&2/(M&2 —k2). The
latter has been discussed by several authors in Refs. [6]
and [11]showing that it leads to just slightly smaller val-
ues of ReR. In any one of these two alternative interpre-
tations we obtain for ReB our central values [Eqs. (13),
(15), and (17)], aFFected with errors which are roughly
one-half of the quoted ones. The present analysis can be
confirmed invoking the complete set of data on radiative
vector meson decays, U ~ Pp [the most clean and ac-
curate being I'(w ~ n p) = 720 + 50 keV [3]], as well
as the (less conclusive) data coming from 7r, il —i pl+I
decays. Somewhat conservatively, however, we have en-
larged our input error bars on M~ for two main reasons.
One is due to a single (unconfirmed) measurement of the
form factor in ~ ~ vr p+p leading to a mass parameter
A = 0.65+ 0.03 GeV, well below the expected M~. The
second reason refers to recent theoretical analyses sug-
gesting values for a2 and a3 somewhat diferent from the
VMD ones (20) as required by the last mentioned value
of A or as preferred by the attractive and simplifying
"minimal coupling" principle of Pallante and Petronzio
[20]. Accordingly, we have adopted M~ = 0.77 6 0.10
GeV thus generating the error estimates quoted in our
main results (13)—(17).

Let us finally turn to consider our previous results from
the point of view of chiral perturbation theory (ChPT).
As is well known, ChPT is a successful efI'ective the-
ory accounting for strong and electroweak interactions
of pseudoscalar mesons at low energy. It is a nonrenor-
malizable theory containing an infinite set of counter-
terms needed to cancel the divergencies appearing when
computing loop corrections. Very recently, Savage, Luke,
and Wise [10] have discussed the P —i l+t decays us-
ing preliminary data from Saturne to fix the required lo-
cal counterterms and then predicting the vr, g ~ e+e
branching ratios. An alternative way to proceed con-
sists in assuming that the relevant, finite part of the
ChPT counterterms are saturated (dominated) by the
contributions of meson resonances. This resonance sat-
uration hypothesis was already suggested in the original
papers by Gasser and Leutwyler [14], was further dis-
cussed in [21] and has been fully confirmed by several
authors. Vector mesons usually play the central role,
thus realizing VMD in a modern context which turns out
to be particularly successful in the anomalous sector of
the ChPT Lagrangian. As shown in Refs. [17] and [18],
vector-meson contributions are fully dominant in this sec-
tor, well above other ChPT corrections such as the finite
part of the chiral loops. In this sense, our previous VMD
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results on P ~ L+l decays can also be considered as
rather safe calculations in the context of ChPT with res-
onance saturation. To further illustrate this point we
have computed the "reduced" amplitude B in terms of
the local counterterms proposed in Ref. [10] within the
same renormalization scheme, obtaining

»( )+»( )Rea(q =m~) =—
4 2 A

——+ 3ln

1 21 —p ir2
ln

4P 1+P 12P

——Li, ( ),
1 . P —1

(21)

where A is the subtraction point. We have checked
that this result agrees with the amplitude A in [10]
(which is related to our B by A = o.R—/ir ) with
a minor modification: The term +11 in Eq. (2.8) of
Ref. [10] is now found to be +7. This preserves all
the relevant results in [10] except that the new val-
ues of the Saturne experiment should require a counter-
term (for our A = M~ = 0.77 GeV) given by

7+4
x, jMp) yx, [Mq) =

I +,"—4
(22)

The first (second) value in (22) and (23) corresponds
to fixing the sign ambiguities for ReR according (con-
trary) to our amplitudes. Notice that the first values
are consistent with the existence of a unique counter-
term, while the second ones are not and, consequently,
have to be discarded. This further confirms that our am-

In turn, the less precise vr —+ e+e available experimen-
tal data translate into

22+25
xi(M )+x2(M~) =

plitudes represent a good description for the P ~ l+l
processes. Thanks to the resonance saturation hypoth-
esis, we can go one step further and predict the value
of the finite part of these counterterms. This amounts
to choose M~: 0 77 GeV as both the subtraction
point A and the mass Mv appearing in our F~~ form
factor (12). Our previous results for il ~ p+p, (15)
and ir ~ e+e (13) can now be presented as leading to
yi(M~) + y2(M&) —14 and —12, respectively, close to
the experimental values displayed in the first row of (22)
and (23). Notice that we obtain slightly different cutofF
values for the two processes. This is related to the fact
that our VMD saturation hypothesis does not strictly
lead to a constant counterterm, as explicitly required in
(10), but to a function smoothly depending on Mv, m~,
and m~.

In conclusion, we have performed a careful calculation
of the vr ~ e+e and g m p+p decay rates in con-
ventional vector-meson dominance. We have shown that
the calculation is equivalent to those coming from favored
versions of more modern approaches such as the "massive
Yang-Mills approach" and "hidden symmetry schemes. "
Similarly, we have predicted the appropriate value for
the finite part of the corresponding ChPT counterterms
under the resonance saturation hypothesis. Special care
has been taken when estimating the theoretical errors,
particularly in the rather precise prediction (18) for the
difference between the real part of the two decay ampli-
tudes. The other two relevant results of our calculation,
Eqs. (14) and (17), are in reasonable agreement with re-
cent data.

Discussions with and comments from M. Garison, R.S.
Kessler, B. Mayer, A. Deshpande, and Y. Wah (from the
Saturne Collaboration, BNL, and Fermilab) are warmly
acknowledged.
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