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Point-to-point vacuum correlation functions for spatially separated hadron currents are calculated
in quenched lattice +CD on a 16 x 24 lattice with 6/g = 5.7. The lattice data are analyzed in
terms of dispersion relations, which enable us to extract physical information from small distances
where asymptotic freedom is apparent to large distances where the hadronic resonances dominate.
In the pseudoscalar, vector, and axial vector channels where experimental data or phenomenological
information are available, semiquantitative agreement is obtained. In the nucleon and A channels,
where no experimental data exist, our lattice data complement experiments. Comparison with
approximations based on sum rules and interacting instantons are made, and technical details of
the lattice calculation are described.

PACS number(s): 12.38.Gc

I. INTR.ODUCTION

The structure of the @CD vacuum and of hadrons
poses an exceedingly rich and complicated many-body
problem. Hence, as with other many-body systems, it
is instructive to focus ones attention on appropriately
selected ground. state correlation functions, to calculate
their properties quantitatively, and to understand their
behavior physically.

The correlation functions we address in this work are
the spacelike-separated correlation functions of hadron
currents in the @CD vacuum which have recently been
discussed in an extensive review by Shuryak Il]. For ex-
ample, in the case of a meson current J(x) = q(x)I'q(x),
we consider the correlation function (O~TJ(2:)J(O)~O)
where x is spacelike and for simplicity may be taken to
be purely spatial so that the two currents are at equal
time and ~B) denotes the interacting ground state. This
correlation function has a number of appealing features.
In many channels, it has been determined phenomenolog-
ically by using dispersion relations to relate it to e+e
hadron production and v-decay experimental data. Be-
cause it is defined at equal time (or Euclidean time), it
may be calculated on the lattice and in the interacting
instanton approximation as well as by using sum rules. It
complements bound state hadron properties in the same
way scattering phase shifts provide information about the
nucleon-nucleon force complementary to that provided by

the properties of the deuteron. 3ust as nucleon-nucleon
scattering allows one to explore the spin-spin, spin-orbit,
and tensor components of the nuclear force at diBerent
spatial separation in much more detail than deuteron ob-
servables which reflect the composite effect of all chan-
nels and ranges, so also the interaction or "scattering" of
virtual quarks and antiquarks from meson sources at dif-
ferent spatial separations allows one to obtain much more
detailed information about quark interactions for difer-
ent channels and spatial separations than the composite
e8'ects reflected in hadron bound states.

Much of the richness of the study of these correlation
functions arises from the diferent physics involved at dif-
ferent spatial separations. For convenience, we will con-
sider the ratio of the physical correlation functions to
those of massless noninteracting quarks, which by dimen-
sional considerations must fall as x . By asymptotic
freedom, at extremely short distances the interactions
between quarks must become negligible, and the ratio
approaches 1. For slightly larger distances, where inter-
actions are small but non-negligible, one should be able
to use the leading terms in the Wilson operator product
expansion to describe the deviation from unity. In the
absence of separate, exact evaluation of the relevant op-
erators, one must use the factorization approximations
which have been developed in connection with sum rule
techniques, and we will see below that these approxi-
mations are successful in some channels and fail in oth-
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ers. At still larger distances, the full complexity of non-
perturbative QCD comes into play, and one may use this
region to test and refine QCD motivated models such as
the interacting instanton approximation. For example,
a dominant feature of instanton models is the 't Hooft
effective interaction which couples left- and right-handed
quarks and thus in leading order contributes only to the
scalar and pseudoscalar channels and with opposite sign.
Finally, at very large separation, the decay of the corre-
lation functions is governed by the lightest hadron mass
in the relevant channel.

As a result of this diverse range of physics at different
spatial separations, it is clear that definitive lattice cal-
culations of correlation functions would provide an ex-
ceedingly useful supplement to accessible experimental
data in allowing one to quantitatively explore and im-
prove approximations based on the operator produce ex-
pansion, sum rules, and interacting instantons. We view
the exploratory calculation described in this work as a
successful first step in this direction. Although the lat-
tice size, lattice spacing, statistics, extrapolation to the
physical pion mass, and quenched approximation limit
our present accuracy, the semiquantitative agreement we
obtain in channels for which experimental data exist and
the lack of major pathologies in statistical noise or ex-
trapolation to the chiral limit clearly indicate the poten-
tial for lattice calculation of these correlation functions,
In addition to the meson correlation functions discussed
above, we will also address analogous correlation func-
tions for baryon currents.

The outline for this paper is as follows. In Sec. II
we de6ne the hadron currents we use, present the re-
sults for correlation functions of these currents for free
quarks on the lattice, and describe a useful phenomeno-
logical parametrization in terms of resonance and contin-
uum contributions. The lattice calculation is described
in Sec. III, including the treatment of lattice anisotropies,
corrections for images, extrapolation in v, and determi-
nation of parameters of the phenomenological fits. Sec-
tion IV presents the results. For each meson and baryon
channel, the lattice correlation functions extrapolated to
the physical pion mass are presented and, where possi-
ble, compared with correlation functions extracted from
experimental data and approximations based on sum
rules and instanton approximations. In addition, masses,
coupling constants, and thresholds extracted from phe-
nomenological fits to the lattice results are also presented
and discussed. Our conclusions are discussed in Sec. V.

II. CORKEI ATION FUNCTIONS

The two-point function for a generic current J is de-
6ned as the vacuum expectation value of the time-ordered
product

(OiT J(x)J(0)]O) = R(x) .

For a local field theory, the two-point function in momen-
tum space can be uniquely characterized up to a polyno-
mial by its absorptive part through a dispersion relation

d'xe*'*(O]TJ(*)J(0)]n& = K(q) ds, + p(q'),
S —g —26

(2.2)

where K(q) is a kinematic factor which only depends on
the quantum numbers of J, and P(q2) is a finite-order
polynomial of q .

In the case of free massless quarks, without the gauge
interaction, the spectral density function f (s) can be cal-
culated easily. For a mesonic channel with current J
composed of quark and antiquark operators and Dirac
and Qavor matrices tabulated in Table I, the correspond-
ing f(s) is simply given by the imaginary part of the
fermion bubble graph in the same channel. Up to an

overall sign, f(8) = 3s/87r and K(q) = 1 for scalar
and pseudoscalar channels. Similarly f(s) = 1/4vr2 and

K(q) = q g„„—q„q for vector and axial vector channels.
For convenience, we contract indices p and v in vector
and axial channels to obtain direction independent cor-
relators.

To calculate free baryonic correlators with massless
quarks, it is more convenient to work in coordinate space,
rather than in momentum space. Otherwise, we would
have to calculate the imaginary parts of two-loop graphs.

TABLE I. Hadron currents and correlation functions.

Channel

Vector

Axial

Pseudoscalar

Scalar

Nucleon

Current

J~ = tC+IJ d

J —up„p5d

J" = up5d

J = 'lid

J"= ..b, [u C~„ub]~„~.~

J~ —E~b~[V, Cg~ib ]it

Correlator R(x)

(niT J„(x)J„(0)in)

&niT J,'(x) J„'(0)in&

(niT J"(x)J"(0) in&

(niT J'(x)J'(0) in)

-'Tr[&n]T J (x)J (0)in)x„p„]
—,'T [&niTJ„(x)J„(0)in&*.&.]

fo(s)

X/(4~')

1/(4vr )

3s/(8m )

3s/(8vr')

s /(64vr )

Bs /(2567r )
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In coordinate space, a massless quark propagator has the
simple form

(o ITq(x) q(o) I o) (2 3)

For the nucleon and 4 currents defined in Table I, it is
easy to verify the following:

(2.4)

(2 5)

If quarks are given small masses, there will be terms
proportional to the identity in Dirac space with coefIi-
cients linear in quark masses. In order to have stable
and quark mass insensitive free correlators, which will
be used as the normalizations for the interacting correla-
tors, we multiply these baryonic correlators by a factor
of x„p" and. then take the trace in the Dirac indices.
Finally, a Fourier transform is necessary to obtain the
spectral density functions.

In order to divide out the lattice artifacts at small dis-
tances, the corresponding noninteracting lattice correla-
tors have been used for normalization. A small quark
mass has to be introduced to render the lattice quark
propagator well defined. . It can be verified that a finite
quark mass only afI'ects the propagator at distances larger
than the Compton wavelength. For a quark mass of the
order of 50 MeV, significant deviation from the massless
continuum quark propagator only occurs at distances be-
yond 4 fm. At distances less than 2 fm, the deviation is
at most a few percent, as discussed below.

Once the gauge interaction is turned on, we do not in
general know how to calculate the spectral density func-
tions. However, we do know their qualitative behavior,
based on experimental information and general proper-
ties of local field theories. So the natural strategy is to
parametrize the spectral density functions phenomeno-
logically and then determine the parameters by Gtting
them to lattice results. For the present application, it is
adequate to use the parametrization

in Table I, throughout the whole continuum region, and
treat the threshold so as a phenomenological parame-
ter which produces the correct integrated strength for
the low 8 nonperturbative region of the spectral func-
tion. Note that, as a result, the value of 80 need not
correspond precisely to the threshold for the first excited
state found in the particle data tables.

A sketch of a generic spectral function and its repre-
sentation by the parametrization of Eq. (2.6) with fp(s)
are shown in Fig. 1(a) by the light and heavy curves, re-
spectively. The single isolated resonance is represented
by a b-function at M . We have chosen the case of a
scalar or pseudoscalar channel, where the noninteract-
ing continuum spectral function grows linearly in 8. One
observes that the linear curve f p(s) joins the continuum
smoothly at large 8 and with the value of So shown, in-
cludes roughly the same strength as the full continuum
curve at low 8.

The same kind of approximation is widely used in @CD
sum rule calculations. It should be emphasized that us-

ing fp(s) to approximate f (s) is consistent with the lat-
tice approximation, since the resonance parameters and
continuum strength near threshold are determined by
physics well below the lattice cutoK p = (n/a)2 = 9
GeV . This is in contrast with the operator product ex-
pansion based @CD sum rule calculations, in which there
may not be an appropriate region to match the theoret-
ical calculations and the phenomenological results.

Given the spectral density described above, Eq. (2.6),
an inverse Fourier transform of Eq. (2.2) defines the phe-
nomenological correlators in coordinate space as a func-
tion of M, A, and sp. Note that the polynomial P(q2)
only contributes at the point x = 0 and can be ignored

R(x)

M So

f (s) = A 8(s —M ) + f (s)0(s —sp), (2.6) (b)

where M is the bound state mass, A denotes the coupling
of the current to the bound state, and 80 is the thresh-
old for the onset of a continuum contribution f,(s). Note
that in this parametrization, sharp resonances are treated
as pole terms, while broad and overlapping resonances
are treated as a continuum. The functional form of f, (s)
is in general very complicated. Because of asymptotic
freedom, we expect that f, (s) approaches the free result
fp (s) for sufficiently large s, and for intermediate s the
noninteracting result could be corrected perturbatively.
However, since the threshold ~sp is around 1.5—2.0 GeV,
which is still in the nonperturbative region, there is no
analytical means to accurately describe all detailed be-
havior near threshold. Hence, we will parametrize f (s)
by the functional form of the free result fp(s), listed also

FIG. 1. Sketch of generic spectral function and its Fourier
transform. The light solid curves in the left panel (a) show a
typical spectral function as a function of the mass squared, s,
comprising an isolated resonance and a region of broad over-

lapping resonances merging with the continuum. The heavy
lines show the parametrization, Eq. (2.6), where the isolated
resonance is represented by a b function at M with strength

and the continuum is parametrized by f&&(s) for the non-
interacting system (in this case linear in s) with a cutoff so.
The right panel (b) shows the coordinate space Fourier trans-
form of the parametrized spectral function. The resonance
b function produces the broad solid curve whose position is
proportional to M with height proportional to A . The con-
tinuum term produces the dashed curve which is normalized

1
to one at the origin with extent proportional to so '.
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(2.7)

and

d4 . V z u—rgb 9 "fy, x@7 K (~ )(2~) q' —s 4~'x' (2 8)

for spacelike x. In practice we always normalize R(x) by
the corresponding free correlator with massless quarks,
Rp(x),

1 1Rp" "(x) = — ds fp
" "(s)~sKg(v sx) —(2.9)

Rb aryan
( ds f, '" "(s)sK,(~ax) - —.(2.10)

at finite x. In doing the Fourier transform the following
two integrals are used:

An analogous normalization is also done for the lattice
data, as described more specifically in the next section.

In Fig. 1(b) we sketch the corresponding two-point
function in coordinate space, normalized by the free cor-
relators with massless quarks. To distinguish the physics
in difference regions, we plot the resonance and contin-
uum contributions separately. Because of asymptotic
freedom, the continuum piece, denoted by the dashed
line, starts at 1 and then gradually decays to zero with
its width characterized by 1/~sp. In contrast, the res-
onance starts as a power of x at small x and reaches its
maximum at around 1/M with a height proportional
to A2. Although the full correlation function is the sum of
these two contributions, it is important to note that both
in this example and in many of the physical calculations
it is possible to distinguish the resonance and continuum
contributions to a large extent and thereby understand
the physical origin of the numerical results.

For later convenience we list all the spectral functions
and their corresponding parametrized correlators.

In the vector channel

f ()=3k 6(s —M )+ 0(s —s), (2.11)

R (*)/Ro(*) = —
I M, I

(M~x)'K~(M. x)+—
SpX

dn n Ki(n) . (2.12)

The factor of 3 in front of A is due to contraction of indices p, v from q g„„—q„q .
In the axial vector channel

f (s) = 3k~, S(s —M~, ) —f M b(s —M ) + 0(s —sp), (2.13)

R (x)/Rp (x) = —I,'
I (M~, x) Ki(M~, x) ——

I I (M x) Kg(M x) + — dnn Kg(n). (2.14)24qM) 16

In this channel there are two invariants, q g~ —
q&q and q„q, which have independent spectral functions; the first

includes the Aq pole and the second includes the pion pole. The relative minus sign between the A~ and m pole terms,
arising from kinematics, explains why the correlator in this channel becomes negative at very large distances. The
continuum contributions from the two invariants have the same asymptotic form and are expressed as a single term.

In the pseudoscalar channel

f (s) = A b(s —M ) + 0(s —sp),8' 2
(2.15)

R (x)/Rp (x) = —
I I

(M x) Ki(M x) +—
12 (M2) 16 SpX

dnn Kg(n). (2.16)

In the scalar (isovector) channel

f (s) = , 0(s —so), (2.17)

R'(*)/R,'(*) =
SpX

dnn Kg(n). (2.1S)

Since there is no known resonance in this channel, only the continuum part is included in the spectral function.
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In the nucleon channel

2

f (s) = q„p" A~8(s —MN) + 0(s —so)64~4 (2.19)

where the ellipsis represents terms with other Dirac structure and

OO

B (x) /Ro (x) = —
i i (M~x) K2 (M~x) +

96 (M„') 3072
dnn K2(n) . (2.20)

In the 4 channel,

2

f (s) = q„p 2A~S(s —M~) + 0(s —so)p, 2 3s
256~4 (2.21)

where again the ellipsis stands for terms with other Dirac structure and

R (x)/Ro (*) = —
I M. I (M»)'~2(M») +

SODOM q 3072 SpX

dn n K2 (n) . (2.22)

The factor of 2 in front of A~& comes from g„multiplying
the Rarita-Schwinger tensor:

1 1 2 g~g~
gpv Ygc Yv + (7pq~ f~qp )

with q2 = M~2.
Because the local currents we have used are not con-

served on the lattice, we need, in principle, to know the
relevant finite renormalization factors before we can as-
sign a definite meaning to the fitted values of A. Al-
though in the mesonic channels these renormalization
factors were estimated in some cases in the literature [2],
there are no similar estimates in the baryonic channels,
as far as we know. To circumvent this problem, we have
fitted the pole term relative to the continuum term and
ignored the overall normalization. As long as the currents
are multiplicatively renormalized, which we assume, this
scheme should be a good way to avoid the explicit renor-
malization factors. The primary limitation is that, due
to the relatively poor knowledge of the continuum con-
tribution f,(s), we introduce a systematic error when we
approximate f, (s) by fo(s). However, we do not expect
the systematic error to be too large, since f (s) does not
have pronounced peaks near the threshold. Ultimately,
a consistency check should be made with other fitting
schemes.

III. LATTICE CALCULATION

The lattice calculations were performed on a 16 x
24 lattice in the quenched approximation with Wilson
fermions at an inverse coupling 6/g2 = 5.7, correspond-
ing to a physical lattice spacing defined by the proton
mass of approximately a = 0.17 fm. Lattice spacings
defined by the string tension or the rho mass would be
15% higher or lower, respectively. The motivation for
using such a large coupling, which is crude by current
standards, is the fact that the necessary propagators for
point sources were available from Soni and co-workers [3],

while propagators for larger lattices and a correspond-
ingly larger inverse coupling constant are normally cal-
culated from distributed sources to optimize the overlap
with hadronic wave functions and are thus unsuitable
for the current application. This inverse coupling con-
stant is large enough to give a semiquantitative approx-
imation and has allowed us to make a thorough study
of the finite lattice efFects described below. Point prop-
agators for 16 configurations were used for five values
of the hopping parameter, r = 0.154, 0.160, 0.164, 0.166,
and 0.168. To think about these propagators in phys-
ical units, it is convenient to associate a quark mass
m~ = (1/2v —1/2r, ) a with each value of K, where
r = 0.1692, yielding the five values of mq, 317, 199, 110,
67, and 25 MeV, respectively. Extrapolation to the value
of K which reproduces the pion mass then corresponds
to extrapolation to mq = 5.2 MeV. Because the quark
propagators had hard-wall boundary conditions in the
time direction, all correlation functions were calculated
on the central time slice containing the source. Finite
size efFects in the spatial direction are discussed below.
In order to calculate the ratio of interacting to free corre-
lation functions, corresponding free quark lattice propa-
gators were calculated for m~a = 0.05 on a (48) lattice,
which was suKciently large to eliminate finite volume ef-
fects for spatial separation less than 4 fm. The effect of
the small quark mass mq was estimated in the continuum
by evaluating the ratio of noninteracting quark correla-
tion functions (JJ) /(J J), with the result that the
finite mass overestimated the ratio at x/a = 5 by factors
ranging from the smallest value of 0.3% in the vector
channel to the largest value of 5.5% in the axial channel.
Preliminary analysis of the same lattice calculation has
been reported in Ref. [4].

A. Lattice anisotropy

In order to obtain a physical approximation to the
continuum correlation functions, it is necessary to un-
derstand and correct for all relevant lattice artifacts. A



CORRELATION FUNCTIONS OF HADRON CURRENTS IN THE. . . 3345

particularly important lattice effect for the present appli-
cation is the anisotropy introduced into the rotationally
invariant continuum correlation functions by the Carte-
sian lattice.

The effect and a means for dealing with it are clearly
displayed for the case of noninteracting quarks on the
lattice. In the hopping-parameter expansion, it is clear
that points in Cartesian directions can be reached with
fewer steps than equidistant points in other directions.
Although at very large separations entropy effects should
favor wiggly paths which approach the continuum result
in all directions, one clearly expects propagators and thus
correlation functions to be larger than the continuum re-
sult for points near the Cartesian axes, and for this effect
to become more pronounced at short distances. These ex-
pectations are clearly borne out in the case of the vector
meson correlation functions shown in Fig. 2. The solid
line in the upper curve denotes the continuum result for
noninteracting quarks. All discrete lattice results have
been calculated on the central time slice (to avoid com-
plications from hard-wall boundary conditions) and aver-
aged over equivalent permutations of the axes, so we will
denote sites by (n, n„, n ) with n & n„& n, . By the
previous argument, the Cartesian sites (n, 0, 0) should
lie furthest above the continuum, and as shown by the
diamonds in the figure, these points indeed do lie the
highest. The diagonal directions (n, n, n) should sufFer
least from the lattice artifacts, and we observe that these
points, denoted by circles, do approximate the contin-
uum well throughout. The subdiagonal direction (n, n, 0)
denoted by squares, is intermediate between the two ex-
tremes.

By asymptotic freedom, one would expect the @CD
solution on the lattice to approximate the free solution
at short distances, and one observes from the lower curve
in the top portion of Fig. 2 that the qualitative structure
of the @CD solution, including its spatial anisotropies, is
remarkably similar to the free case plotted above it. Note
that for clarity, statistical error bars have been omitted
but are comparable to the symbol size. We therefore have
every reason to believe that the diagonal sites should give
a good approximation to the continuum, and furthermore
that much of the anisotropy will in fact cancel out when
we calculate the ratio of the @CD correlation function to
the free correlation function.

The ratio of the @CD to free correlation functions is
plotted in the lower section of Fig. 2. Here, the error bars,
which are still omitted for clarity, are typically of the or-
der of 2'%%uo at 2:/a = 5 and 15'%%uo at x/a = 10. In principle
one would like to normalize the ratios at an infinitesi-
mally small separation. Although in Fig. 2 we arbitrarily
norinalized the data at the closest point (0,0,1), since we
have argued that the diagonal points are most reliable,
we have normalized all our subsequent physical results
at the first nonzero diagonal separation (1, 1, 1), corre-
sponding to a physical separation of 0.29 fm. Note
for future reference that we are considering the ratio of
quantities which separately are varying over 6 orders of
magnitude. As one would expect, at small x, the lattice
anisotropy is nearly identical in the interacting and free
case so that the ratio is nearly isotropic. At intermedi-

ate distances x/a 5, the cancellation is not complete,
but an order of magnitude effect in the @CD correla-
tion function is reduced to a 50% efFect in the ratio. In
this respect the vector case we show in Fig. 2 is a worst
case, and most other channels have much greater cancel-
lation. At large x, the anisotropy becomes negligible in
both numerator and denominator. In order to increase
the statistics, while maintaining a good approximation
to the continuum, we have adopted a prescription of in-
cluding not only the diagonal sites d = (n, n, n) denoted
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PIG. 2. Vector meson correlation functions. The upper
curve shows the correlation function for noninteracting mass-
less quarks calculated in the continuum (solid curve) and lat-
tice results for ma = 0.05. Diamonds denote the Cartesian
directions (n, 0, 0), squares denote the directions (n, n, 0), cir-
cles denote the diagonal directions (n, n, n), and the crosses
denote all other points. The lower curve in the upper panel
shows the corresponding lattice results for interacting quarks
with m~ = 110 MeV, shifted by an arbitrary normalization
factor. There is no longer an exact continuum curve, but all
other symbols have the same meaning and clearly show the
similarity of lattice artifacts in the free and interacting cases.
The lower panel shows the ratio of interacting to free cor-
relation functions normalized to 1 at the first point, where
the circles, squares, and diamonds denote the same lattice di-

rections as above. The fancy crosses denote all other lattice
points lying within a cone of opening angle 26 surrounding
the diagonal directions. The smooth solid curve defined by
these fancy crosses and the circles represents the physical ra-
tio of correlation functions.
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by the circles, but also all sites r = (n, n,„,n, ) such
that r" d & 0.9. That is, we include all sites falling
within a cone surrounding the diagonal with opening an-
gle 0 = arccos(0. 9) —26 . The rationale for this pre-
scription is that propagators to these points sample the
same general class of quark paths as the diagonal points,
and one observes that the fancy crosses in Fig. 2 denoting
these sites indeed define a smooth curve which includes
the circles representing the pure diagonal points.

The behavior shown in Fig. 2 is representative of all the
meson and baryon channels we have calculated. In par-
ticular, data measured within the 26 cone surrounding
the diagonal always lie on a universal curve for all chan-
nels and the anisotropy associated with the Cartesian
directions is smaller in all other channels. The analogous
correlation functions for nucleon currents are shown in
Fig. 3, where all the symbols and plots are defined as
in Fig. 2. The primary difference with respect to the
meson case arises from the fact that the correlation func-
tions contain three quark propagators and include the
contraction p~xl" so that the free case falls like x in-
stead of x . The anisotropies have the same behavior as
before, are extremely similar in the interacting and non-
interacting case, and cancel out even more completely
than before in the ratio. The locus of points specified
by circles and fancy crosses again defines a smooth curve

1'0

10-6

which we believe to be a good physical approximation to
the continuum.

B. Image corrections

Because of periodic boundary conditions for quarks at
the spatial boundaries, the large distance behavior of
quark propagators is affected by the presence of image
sources in adjacent unit cells. The correction for im-
ages in correlation functions of the form considered in
this work is discussed in detail in Refs. [5,6]. The main
point is that because (0 J(2:)J(0) 0) involves a gauge-
invariant closed loop of propagators, any cross terms in
which the contraction of one propagator involves different
fundamental and image currents than the other propaga-
tor necessarily has the topology of a Wilson line encir-
cling the entire lattice and thus is negligible in the confin-
ing phase. Hence, only diagonal terms involving images
occur, and the effect of all first images is to yield the
desired infinite volume correlation function summed over
all first image sources. Special symmetry points may be
corrected trivially. For example the center of a face of the
unit cell (—,0, 0), where N is the linear dimension of the
unit cell (16 in our case), is equidistant from two sources
and the correlation function at this point is thus multi-
plied by 1/2. Similarly, the center of an edge ( 2, —,0) is
equidistant from four sources yielding a factor 1/4, and
the corner ( 2, —,2 ) is equidistant from eight sources
yielding a factor of 1/8. For all other points, one must
numerically subtract the image contributions, which is
done iteratively by approximately correcting for images
using an appropriately defined parametric curve, least
squares fitting the parameters to the corrected data, and
iterating to self-consistency. In practice, this procedure
always yields a smooth universal curve at large distances
for the cases of interest here, and the lattice @CD data
in Fig. 2 and Fig. 3 have been corrected in this way.
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C. Extrapolation
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FIG. 3. Nucleon correlation functions. All quantities are
de6ned as in Fig. 2.

Because it is impractical to calculate quark propaga-
tors at a quark mass light enough to produce a physical
pion, it is necessary to perform a sequence of calcula-
tions at a series of heavier quark masses and extrap-
olate to the quark mass corresponding to the physical
pion mass. Nearby lattice data are grouped in bins of
n & x ( n+ 1 lattice spacings, and data within each bin
are combined to a single value by means of a statistically
weighted average, with each correlator datum y, given a
weight tv; = 1/o;, where 0; is the statistical uncertainty
of the datum. In the pseudoscalar channel, where the fits
are particularly sensitive to the abscissas, we determine
these abscissas by the statistically weighted average. In
all other channels, the abscissas of the binned data are
approximated by the central values n+ 0.5. The binned
data at each separation, computed from the lightest four
quark masses enumerated above, are extrapolated using
a least squares quadratic fit. In the pseudoscalar channel
we extrapolate the logarithm of the correlator, and in the
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other channels the correlator itself is extrapolated.
The extrapolation of the correlator in the pseudoscalar

channel is displayed in Fig. 4. In this channel, the height
of the resonance peak diverges as A /M and the posi-
tion of the peak also diverges as I/M . Despite these
difFiculties, we believe that we have performed our calcu-
lations over a sufFicient range of quark masses to obtain a
reasonable picture of the pion correlator at the physical
pion mass since the plot shows that our extrapolation is
indeed smooth. The pseudoscalar channel is the worst
case of the extrapolation; the other channels contain no
Goldstone bosons, and consequently the extrapolations
are well behaved in the chiral limit.

We have shown the extrapolation as a function of the
quark mass in all the channels for two typical separa-
tions in Fig. 5. This figure shows that the data at a
given current separation vary smoothly as a function of
quark mass. A quadratic fit to all five data points gives
a reasonable description of the mass dependence over a
range of 300 MeV, and the quadratic fit to the lowest
four masses used for the actual extrapolation is seen to
provide an excellent fit to all the data. Thus we have
confidence in the extrapolation of the correlators from
heavier quark masses to the quark mass corresponding
to the physical pion mass.

D. Fitting with phenomenological
spectral function

100.0 I

]
I i 1 i

]
I

m=5

50.0

10.0

m=110-

1.0

0.5
0.5 1

x(fzn)

m=199

351

FIG. 4. Quark mass dependence of pseudoscalar correla-
tion function. Open circles denote binned lattice data at five
values of the quark mass. Extrapolation to the quark mass
5.2 MeV, which corresponds to the physical pion raass, yields
the points denoted by solid dots with the associated statis-
tical errors. The solid lines are three-parameter 6ts to the
data, and the dot-dashed line indicates the phenomenological
result of Ref. [1].

The hadronic current correlators for the six channels
shown in Table I, which have been computed for all geo-
metrically independent separations near the body diago-
nal and combined into bins of one lattice unit of separa-
tion, are fitted using the dispersion forms based on the
phenomenological spectral functions described in Sec. II.
Where possible, we have minimized y with respect to
all four parameters: the arbitrary normalization, the res-
onance mass M, the coupling A of the current to the res-
onance, and the continuum threshold so. As described
below, in some channels the lattice data do not allow us
to freely fit all four parameters so we fix some of the pa-
rameters to values independently known from previous
lattice calculations or phenomenology. In the axial chan-
nel there are two additional parameters associated with
the pion resonance term, f and M, and the fit is per-
formed by allowing three of the six available parameters
to vary in the minimization of y . As noted previously,
we set the lattice spacing to a = 0.17fm using the well-
established value for the proton mass [7,6], with which
our fitted proton mass is consistent.

Using this fitting procedure, we extract the physical
parameters of the spectral functions. The resonance
masses, M, which are the energies of the lowest eigen-
states with the quantum numbers of the current, will be
shown to be consistent with the masses measured accu-
rately by the asymptotic decay of two-point functions at
large time separations [7,6]. From the ratio of the res-
onance to continuum terms, we directly determine the
physical coupling constants which can be compared with
experimental data and the values used in existing models

and sum rule calculations. As discussed previously, the
threshold so does not correspond precisely to the first
excited state in the data tables since it parametrizes the
integrated strength in the low energy region of the con-
tinuum. In the graphs presented below, the correlators
are normalized to one at the separation ~3a = 0.29 fm.

E. Error analysis

The lattice correlator measurements at different cur-
rent separations at a given quark mass are highly corre-
lated, particularly at large separations, and we compute
the errors in the binned data directly using the single
elimination jackknife method. In the quadratic extrapo-
lation to the quark mass mq ——5.2 MeV, the uncertainty
in the extrapolated values is taken to be the range of the
values for which y changes by less than one. Correla-
tions between data for different quark masses are not in-
cluded in the calculation of the standard deviations of the
extrapolated data so it is possible that these statistical
uncertainties are underestimated. Unfortunately, even
with binned data, the correlation matrix is so poorly con-
ditioned that the fitted parameters for the phenomeno-
logical spectral function have to be determined neglect-
ing the correlations between the binned data points. The
valley of y in parameter space is in general rather com-
plicated, and for several channels and quark masses two
nearby minima of y occur in parameter space. Hence,
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we search directly for the range in each fitted parame-
ter for which a fit can be found that increases y by less
than one from the minimum value. This search is ac-
complished by repeatedly fixing one of the parameters in
which y is minimized and finding the minimum y in the
space of the remaining parameters. In general the sta-
tistical range of each parameter is not symmetric about
its best fitted value, and we present optimal values and
asymmetric ranges for the fitted physical parameters.

IV. RESULTS

This section presents the results of our lattice calcula-
tions, their parametrization in terms of the resonance and
continuum spectral functions described in Sec. II, and
comparisons with phenomenological analyses of experi-
mental data and theoretical calculations based on @CD
sum rules and instanton models. The principal results
for correlation functions are presented in Figs. 6—8 and
the fitted parameters are tabulated in Table II. We will
present and discuss the results channel by channel.

A. Vector channel (p)

The results for the vector channel are shown in the
upper portion of Fig. 6, and provide a good example of
a successful four-parameter fit to the lattice results. As
is evident from the figure, the continuum term, denoted
by the long dashes, and the resonance term, denoted by
the dotted curve, are separately well determined and the
sum fits the lattice data, denoted by solid circles, quite
well.

The p mass extracted from this fit agrees well with
the mass measured from the exponential decay of the
two-point function in Euclidean time [7]. This agree-
ment between the resonance mass determined by the
intermediate-range behavior of the correlation function
and the asymptotic decay, which occurs systematically
in all the channels we have investigated and is a signif-
icant test of the consistency of the parametrization of
the spectral density, will be discussed subsequently in
connection with Fig. 9. As is well known, however, at
P = 5.7 the p mass on the lattice is lighter than the ex-
perimental mass. As shown in Table II, both the values
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FIG. 5. Extrapolation of correlation func-
tions in the quark mass for nucleon (N), A
(D), scalar (S), axial (A), vector (V), and
pseudoscalar (P) channels. Binned lattice
data for x in the intervals of 3—4 lattice units
and 7—8 lattice units are shown as a function
of the quark mass in MeV. Where error bars
are not visible, they are smaller than the dot
size. Quadratic least squares fits to the last
four and Ave data points are shown by solid
and dashed lines, respectively.
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of the coupling constant A and the threshold 80 are close
to the phenomenological values.

The lattice result for the vector correlation function is
reasonably close to the phenomenological result obtained
by Shuryak [I] from a dispersion analysis of e+e -+even
number of vr's. The fact that the phenomenological re-
sult lies below the lattice result follows from the fact that
resonance peak scales as A /M and the lattice mass lies
below experiment while the coupling constant agrees with
the phenomenological value. The result of the instanton
model is qualitatively similar, although lower than phe-
nomenology.

The most salient physics result in this channel is the
fact that although the free correlator falls by 4 orders of
magnitude, the ratio of the interacting to non-interacting
correlators remains close to one. Although the ratio must
approach unity very close to x = 0 by asymptotic free-
dom and there is no leading order 't Hooft instanton in-
duced interaction in this channel, the ratio remains close

to unity for much larger distances than any simple ar-
guments suggest. This feature, which has been called
superduality, arises in this work as a "conspiracy" of the
parameters of the resonance and continuum terms of the
spectral function.

B. Pseudoscalar channel (m)

The pseudoscalar channel exhibits the most dramatic
dependence on the quark mass, reflecting the special role
of the pion as a Goldstone boson. In this case, the extrap-
olation is slightly sensitive to the fact we extrapolated the
log of the correlator, and logarithmic extrapolation in x
as well would give a slightly higher result.

The successful four-parameter fit shown in the lower
panel of Fig. 6 provides strong support for our method
of determining the resonance and continuum terms. Note

2' 4
I

x/a

10
4

I

x/a

10
I

P

I

0

C4

(s)

10

0

0.5
I

1

x (fm)
1.5

—1
0 0.5 1

x (fzn)
1.5

FIG. 6. Vector (V) and pseudoscalar (P) correlation func-
tions are shown in the upper and lower panels, respectively.
Extrapolated lattice data are denoted by the solid points with
error bars. Fits to the lattice data using the phenomenolog-
ical form discussed in the text are given by the solid curves,
with the continuum and resonance components denoted by
short-dashed and dotted curves, respectively. The empirical
results determined by dispersion analysis of experimental data
in Ref. [1] are shown by the long-dashed curves. The open cir-
cles denote the results of the random instanton vacuum model
of Ref. [8].

FIG. 7. Scalar (S) and axial vector (A) correlation func-
tions are shown in the upper and lower panels, respectively.
Extrapolated lattice data and empirical results from disper-
sion analysis of experimental data are given by solid dots and
long dashes as in Fig. 6. The results of the random instanton
vacuum model are denoted by open circles which have been
shifted slightly to the right where necessary for clarity. The
fit to the scalar lattice data includes only a continuum term,
denoted by the solid curve. The fit to the axial lattice data
includes Aq and vr resonance terms of opposite signs, denoted
by the dotted curves as well as the short-dashed continuum
curve, yielding the total result given by the solid curve.



3350 M.-C. CHU, J. M. GRANDY, S. HUANG, AND J. W. NEGELE

that because of the light pion mass, the peak of the reso-
nance occurs far outside of the range in which the data is
Bt. Nevertheless, the extracted mass and coupling con-
stant agree well with the empirical results. Because of
the overlap of the resonance and continuum regions, the
threshold ~so is not fully determined. Rather, we only
obtain a bound of 1.0 GeV by the criterion that y in-
crease by at most 1. The fact that this is somewhat below
the first excited state is consistent with the fact that it
must represent the integrated strength included in the
peaks of low-lying resonances.

As already noted in connection with Fig. 4, the lattice
result is close to the phenomenological result from the
dispersion analysis of Ref. [1]. It is also quite close to
the results of the random instanton vacuum model [8]
and consequently the parameters in Table II agree well.
Physically, this is the most attractive channel and the
leading order 't Hooft interaction is attractive in it.

C. Scalar channel

The results in the scalar channel are shown in the up-
per panel of Fig. 7. By the general dispersion analysis,
the correlator should be non-negative in this channel, and
one observes that the lattice results fall rapidly to zero at
roughly 1 fm, albeit with large errors at large distances.
There is no evidence for resonances, either experimen-
tally or in the lattice calculation, and the results are R.t
adequately by the continuum term with a single thresh-
old parameter.

Physically, since the 't Hooft interaction produces a re-
pulsive interaction from instantons to leading order, one
expects a rapid falloK. However, the lattice results fall
oK much more slowly than the random instanton vac-
uum model as shown in Fig 7. The overall behavior in
the scalar channel is consistent with that of two non-
interacting "very massive" quarks.

D. Axial vector channel (Aq)

4

2

2

4
I

x/a The axial vector channel is unique in that it is the only
channel for which the general dispersion analysis does not
restrict the spectral function to be positive. As shown in
Eqs. (2.13) and (2.14), the axial and pseudoscalar contri-
butions enter with opposite sign, so we expect resonance
terms of opposite sign in addition to the continuum con-
tribution. As expected, one indeed observes that the lat-
tice data in the lower panel of Fig. 7 go negative at
large distances. Although one may wonder about the
statistical significance given the large error bars from ex-
trapolation, the negativity is unambiguous in the lattice
measurements at each unextrapolated quark mass (see
for example the axial channel data at x = 7.5 in Fig.
5). Because the data are insuKcient to determine six pa-
rameters, we fixed the masses of vr and Aq, specified the
coupling of Ai to be the same as the p, and fit the norm,
threshold, and pion coupling.

In this channel, the extrapolated lattice result agrees
quite well with the phenomenological result derived
partly from experimental w-decay data [1] and with the
results of the random instanton vacuum model [8].

E. Nucleon channel

1

x (frn)

FIG. 8. Nucleon (N) and A (D) correlation functions are
shown in the upper and lower panels, respectively. As in
Fig. 6, extrapolated lattice data are denoted by solid dots,
the phenomenological fit is given by the solid curve with
continuum and resonance components given by dashed and
dotted curves, respectively. The results of the random in-
stanton model are given by the open circles, again shifted
slightly where necessary for clarity. The results from the
QCD sum rule calculation of Ref. [9] are indicated by the
double-dot-dashed lines.

The results for the nucleon channel are shown in the
upper panel of Fig. 8. In this case the lattice data have
relatively small error bars, and we obtain a good Bt yield-
ing the correct nucleon mass. The Gt is relatively insen-
sitive to the threshold Bo, and the fit shown in the figure
is performed with ~sp ——1.2 GeV. The upper bound of
1.4 GeV in Table II is determined by the highest value
for which y is increased by less than 1. In connection
with Fig. 5, one should note that, with the exception of
the pseudoscalar channel, the nucleon correlator has the
strongest quark mass dependence of any channel.

One observes that the lattice results are quite consis-
tent with the sum rule result of Ref. [9], shown by the
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TABLE II. Fitted parameters.

Channel

Vector

Pseudoscalar

Nucleon

Source

Lattice

Instanton

Phenomenology

Lattice

Instanton

Phenomenology

Lattice

Instanton

Sum rule'

Phenomenology

Lattice

Instanton

Sum rule'

Phenomenology

M (GeV)

0.72 + 0.06

0.95 + 0.10

0.78

0.156 + 0.01

0.142 + 0.014

0.138

0.95 + 0.05

0.96 + 0.03

1.02 + 0.12

0.939

1.43 + 0.08

1.44 + 0.07

1.37+ 0.12

1.232

(0.41 + 0.02 GeV)

(0.39 6 0.02 GeV)

(0.409 + 0.005 GeV)

(0.44 + 0.01 GeV)

(0.51 + 0.02 GeV)

(0.480 GeV)

(0.293 + 0.015 GeV)

(0.317 + 0.004 GeV)

(0.324 6 0.016 GeV)

(0.326 + 0.020 GeV)

(0.321 + 0.016 GeV)

(0.337 + 0.014 GeV)

~so (GeV)

1.62 + 0.23

1.50 + 0.10

1.59 + 0.02

( 1.0

1.36 + 0.10

1.30 + 0.10

( 1.4

1.92 + 0.05

1.5

1.44 + 0.04

3.21 + 0.34

1.96 + 0.10

2.1

1.96 + 0.10

Instanton liquid model [8].
Phenomenology estimated by Shuryak [1] and from the particle data book [10].

'QCD sum rule by Belyaev and Ioffe [9].

double-dot-dashed curve. In addition, although there are
substantial statistical errors at large distance, the ran-
dom instanton vacuum model is also close to the lattice
results [8].

in each channel, it is useful to observe the dependence
of these parameters on the quark mass. Hence, we have
fit the correlators calculated for each quark mass, and
summarized the results in Figs. 9 and 10.

F. A channel

The results in the 4 channel are shown in the lower
panel of Fig. 8. In this case, we obtain a good four-
parameter fit, with well-determined continuum and res-
onance contributions shown in the Ggure. The mass is
slightly higher than the APE result, and will be discussed
in connection with Fig. 9 below. The coupling constant is
consistent with the value determined from the sum rule.

The results of the random instanton vacuum model are
qualitatively similar, but do not display as pronounced
a resonance term and also fall oK more rapidly at large
distance. In plotting the sum rule result in this chan-
nel, denoted by the double-dot-dashed line, we have used
the mass determined from the sum rule analysis itself,
rather than the experimental mass, to make the theory
internally consistent. This has the eKect of reducing the
height of the resonance peak somewhat from Ref. [I].
Note that in the trace we have calculated for our corre-
lator given in Table II, there are spin-2 contaminants, so
one should not expect complete agreement with the sum
rule result. To the extent that excited states are heavy,
the eÃect of these contaminants should not be too large.

G. Mass dependence of parameters

Having discussed the parameters characterizing the
spectral function for the fits to extrapolated lattice data
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FIG. 9. Comparison of the masses extracted from the res-
onance term in the spectral function, denoted by solid points
with error bars, with masses determined from the asymptotic
decay of two-point functions by the APE Collaboration [7],
shown by the solid curves. The systematic agreement as a
function of quark mass m~ in the vector (V), pseudoscalar
(P), K (D), and nucleon (N) channels is a significant consis-
tency check of the present analysis.
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that there is nothing pathological happening in the chi-
ral limit. For reference, the experimental or model results
from Table II are denoted by arrows at the physical pion
mass.
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FIG. 10. Dependence of the coupling constant A for the
resonance term on the quark mass, m~, in the vector (V),
pseudoscalar (P), A (D), and nucleon (N) channels. The
five data points to the right indicate lattice measurements
which clearly extrapolate smoothly to the chiral limit. The
left point denotes the results extrapolated to mq ——5.2 MeV,
the quark mass corresponding to the physical pion. Note that
these results compare well with the phenomenological results
denoted by the arrows for the vector and pseudoscalar chan-
nels and with the sum rule results denoted by the arrows for
the nucleon and A channels.

Figure 9 shows the resonance mass as a function of
quark mass for the vector, pseudoscalar, L, and nucleon
channels. For comparison, the mass dependence deter-
mined by the APE Collaboration [7] from extremely ac-
curate measurements of the exponential decay of two-
point functions at large time separations is also shown
by the solid curves. The detailed agreement between the
fits to the resonance masses and the APE results is strik-
ing and provides a strong confirmation of the consistency
and efFectiveness of the parametrization and fitting pro-
cedure. The agreement of the pion mass is particularly
significant, since the peak of the resonance is not even
contained in the region of the fit. One statistical fIuke
worth noting is the fact that the 4 mass is slightly high
at mz ——25 MeV, which also carries over into a high value
for the extrapolated data.

Figure 10 shows comparable mass dependence for the
coupling constants. Although there is no smooth refer-
ence curve in this case, one observes that the coupling
constants vary quite smoothly with the quark mass, so

V. CONCLUSIONS

In summary, we believe these results demonstrate the
feasibility and utility of lattice calculations of these vac-
uum correlation functions and of the phenomenological
analysis of the results.

Even for the relatively large lattice spacing in this
work, we have understood and controlled the lattice ar-
tifacts associated with the finite volume and anisotropy
of the lattice. For those channels in which empirical re-
sults are available from dispersion analysis of experimen-
tal data, we have shown that our results are in semi-
quantitative agreement with experiment.

The phenomenological analysis of the lattice results in
terms of a four-parameter characterization of the spectral
function has been shown to be successful in parametriz-
ing the data and in understanding its physical content.
The analysis has been shown to be reliable in the sense
that the fit parameters are systematically consistent with
other lat tice measurements of masses and with phe-
nomenology.

These results strongly motivate more definitive cal-
culations on larger lattices with 6/g = 6. Having es-
tablished the reliability of lattice results in channels for
which experimental data exist, we may then use the lat-
tice calculation as a tool to study correlation functions
in channels in which experimental measurement are not
feasible or are unavailable. In addition, it is instructive
to perform companion calculations with cooled configu-
rations in which the contributions of instantons alone can
be compared with the full lattice results and instanton
based models. Work in these directions is in progress.
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