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We present an investigation of various gauge-invariant definitions of the gg Bethe-Salpeter (BS) ampli-
tude for mesons in lattice QCD, and compare them to the Coulomb and Landau gauge BS amplitudes.
We show that the gauge-invariant BS amplitude is considerably broadened by the use of “fat” gauge
links (constructed by smearing the links of the original lattice). A qualitative demonstration of the
Lorentz contraction of the pion wave function at nonzero momentum is given. We also calculate
density-density correlations and discuss the limitations in extracting the charge radius of the pion from
these observables. Lastly, the polarization dependence of the BS amplitude for the p meson is exhibited,
and we extract the relative admixture of / =0 and / =2 states showing that simple hydrogenlike wave

functions provide a good fit.

PACS number(s): 12.38.Gc, 11.10.St

L. INTRODUCTION: BETHE-SALPETER AMPLITUDES

In the study of bound states in relativistic quantum-
field theory, commonly used tools are the Bethe-Salpeter
(BS) amplitudes. These give the probability amplitude for
finding some specified arrangement of fundamental com-
ponents within the bound state. In this paper we study
three different types of equal-time BS amplitudes for the
7 and p mesons and discuss whether one can extract an
experimentally measured quantity such as the charge ra-

J

A (x,t)=

dius from such probes.
A gauge-invariant definition of the BS amplitudes
(BSA’s) for, say, a pion of momentum p is

A (x)=1(0]d(0)y M (0, x)u (x)|7(p)) , (1.1

where JM(0,x) is a path-ordered product of gauge links
that joins points x and 0 and makes the amplitude gauge
invariant. This amplitude is given by the following ratio
of two-point correlators:

(0]d(0;2)y M0, x;8)u (x;1) S e ~P27(y;0)yd (y;0)[0)
¥

y

M may be defined in a number of ways. In this paper we
use the APE smearing method [1] to construct *“fat”
gauge links and thus obtain a nonlocal average of paths
for M. We also consider the Coulomb gauge (€®,) and
Landau gauge (£L,) BS amplitudes. These are obtained
by transforming the quark propagators to Coulomb (Lan-
dau) gauge, and then calculating the ratio given in Eq.
(1.2) with M =1, i.e., without including the links. The
pion decay constant f_ is related to A ,(0) and has al-
ready been calculated for this data set in Ref. [2]. Here
we are only interested in the behavior of A ,(x) as a func-
tion of x so it is expedient to work with the normalization
A (0,8)=1.

Calculations of BS amplitudes in lattice QCD began
with the 1985 study of Velikson and Weingarten [3].
Other calculations include the work of Chu et al. [4],
Hecht and DeGrand [5], Duncan et al. [6], and Kilcup
[7]. Most of this work has used the Coulomb or Landau
gauge, though there is some work on simple gauge-
invariant prescriptions [4,5]. A preliminary version of
the results presented in this paper have been reported
earlier in Ref. [8]. Another similar probe of the hadronic
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structure are density-density correlations, as suggested in
Refs. [9,10,4]. We discuss this method in Sec. V.

For gauge theories, the definition of BS amplitudes is
complicated by the problem of gauge dependence. In
QED the gauge dependence can be calculated and is typi-
cally O(a,,) [11]. Therefore one is free to choose a
gauge that makes calculations simple. This is why it is
common to choose Coulomb gauge for QED calculations
as it has the useful property of regulating infrared diver-
gences [12]. One does not expect such a simplification in
a strongly coupled theory such as QCD); instead to mea-
sure the distribution of constituents inside a hadron one
needs a probe that takes into account the chromoelectric
flux and ¢g pairs in addition to the valence quarks and
antiquarks.

In the case of mesons we imagine that the valence g
and g are effectively confined by a flux tube. (In this pic-
ture the effect of additional qg pairs from the vacuum is
to simply decrease the value of the string tension.) Since
it is known from experiments that the glue carries a
significant fraction of the hadron’s momentum, different
definitions of the BSA will give very different answers de-
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pending on the overlap of the probe with the physical
state. For this reason we characterize the “goodness” of
a probe by the magnitude of the amplitude.

The virtue of Coulomb and Landau gauges is that they
make color fields smooth by reducing the gauge fluctua-
tions, so the fixed gauge BSA measures that part of the
meson wave function corresponding to a smooth distribu-
tion of chromoelectric flux between the gg. The principal
disadvantage of calculations in these gauges is the poorly
understood effect of Gribov copies. A review of the Gri-
bov ambiguity in lattice calculations can be found in Ref.
[13]. On the other hand it is obvious from Eq. (1.1) that
in gauge invariant definitions each different choice of the
connection Al will give a different BSA. By using
smeared links to construct the path joining gg we are us-
ing a certain linear combination of paths on the original
lattice. There is, however, little control over the relative
weights of the different paths, and in this sense the smear-
ing process is not optimal. The usefulness of the smear-
ing process lies in the fact that the overall thickness of
the flux tube in the probe is controlled by the number of
smearing steps and that the method is computationally
simple.

It should be emphasized that while the BS amplitudes
are simple to measure, there is, for light quarks, no
demonstrated connection between a hadron’s size extract-
ed from them and the experimentally measured charge
radius. What BS amplitudes do provide is a qualitative
understanding of hadronic structure. This knowledge is
useful for lattice studies in designing better probes, i.e.,
those that have a larger projection onto a given state.
This technical improvement is crucial for improving the
calculation of the spectrum and of matrix elements be-
tween hadronic states.

This paper is organized as follows. In Sec. III we
present results for the gauge invariant BS amplitude as a
function of the smearing size of the links and show that
the amplitude becomes broader upon using “fat” links to
connect the gg. We also give a qualitative demonstration
of the Lorentz contraction of the wave function at
nonzero momentum. A comparison between Coulomb
gauge, Landau gauge, and gauge-invariant amplitudes is
made in Sec. IV. Calculation of density-density correla-
tions is presented in Sec. V along with a discussion of
why the charge radius measured in experiments is
different from similar quantities that can be extracted
from lattice data. In Sec. VI we show that the BS ampli-
tude for the p meson depends on the polarization axis.
We extract the relative admixture of / =0 and / =2 states
from this data and find that simple hydrogenlike wave
functions provide a good fit. Final conclusions are given
in Sec. VII.

II. DETAILS OF THE LATTICES AND PROPAGATORS

The calculation is done using 35 background gauge
configurations of size 16X 40 at 3=6.0. The Wilson ac-
tion quark propagators are calculated on doubled lattices
(163X 40— 163X 80) using Wuppertal sources. The
quark masses used are k=0.154 and 0.155, corresponding
to pions of mass 700 and 560 MeV, respectively. Further

3331

details of lattice generation and propagator inversion are
given in Ref. [2]. The main limitation of this calculation
is that the spatial lattice size, L =16, is not large enough
to reliably extract the asymptotic behavior for some BS
amplitudes and density-density correlations. We shall ad-
dress this issue at appropriate places in the analysis.

We use a stochastic overrelaxed (w=2) algorithm
for gauge fixing to either Coulomb or Landau gauge.
In the iterative process, the new gauge transformation
at a given site is set to either G,.,=AG*G,y or
Gow =AGxAGxG_,y with equal probability. The
change AG is the SU(3) matrix that maximizes Tr(AG s
where X is the sum of links originating from that site.
The convergence criteria used in both cases is
(3— TrAG)/3 <1078, Operationally, we first fix the lat-
tice to Landau gauge and then fix to Coulomb gauge as
this saves computer time.

III. GAUGE INVARIANT BS AMPLITUDE
WITH SMEARING

In an earlier calculation Chu et al. [4] investigated the
simplest version of the gauge-invariant BS amplitude; for
M(0,x), they used the straight-line path between points
that lie along one of the lattice axes. They found that
(r?), measured from the simplest gauge invariant BS
amplitude is smaller than that obtained in either
Coulomb or Landau gauge and that the latter estimates
are 0.3-0.5 of the charge radius measured in experi-
ments. Similar results have also been obtained by Hecht
and DeGrand [5].

The poor quality of these earlier gauge invariant results
is due to having used a straight-line path to join the
quark and antiquark: such a probe has a poor overlap
with the hadronic state because there is only a small
probability amplitude for the gluon field to be so local-
ized. The overlap can be improved significantly by using
a smeared gluon field, and the resulting gauge-invariant
BS amplitude is markedly enhanced.

To construct “fat” links we use the APE smearing
method, which was first introduced to enhance the signal
in glueball calculations [1]. In this method each link in
the spatial direction i is replaced by the sum

A 0 ud >
U;l)(x,x""i):?) Ui(X,X+i)+2 Si(x,x-i-i) )

i=1

(3.1)

where &; are the four spatial staples shared by the link
U;, and the symbol 7 implies that the sum is projected
back on to the group SU(3). As a result of this projection
the normalization of the BS amplitude on different
smeared levels is the same, so we can directly compare
the results. The smeared link represents locally averaged
gauge fields and has the same gauge freedom as the
original link, i.e., under U;(x)—g(x)U;(x)g(x +i)
the smeared link also transforms as U{"(x)
—g(x)UV(x)g (x +i). Note that the new lattice is the
same size as the original. One can iterate this smearing
step as many times as necessary, using the effective fields
at step (n —1) to produce still “fatter”” fields at step n;
for example, in the second smearing step the right-hand
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side of Eq. (3.1) is constructed from smeared links pro-
duced in step one. A straight-line path between the ¢ and
the g that is made up of smeared links is in fact an aver-
age over a large number of paths on the original lattice.
We specify the smearing level by a superscript on A,
which will be 0—6 corresponding to the original links and
six levels of smearing. We do not consider it appropriate
to go beyond six levels of smearing on a lattice of size 16
with periodic boundary conditions.

It is worth mentioning that we had hoped to show that
the chromoelectric flux is more spread out at small sepa-
rations and gets confined to a flux tube at large separation
by contrasting data at the different smearing levels. Un-
fortunately, the present data do not show any such effect.

We first study the behavior of the BS amplitude as a
function of the time slice ¢ from the source in order to
determine how fast it converges. In Fig. 1(a) we show
data for 945,6) for t =2, 5, 10, and 15, and similar data for
the p in Fig. 1(b). The qualitative shape of the BS ampli-
tude is similar for all ¢, though quantitatively it gets
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FIG. 1. (a) Gauge invariant BS amplitude for the pion at
various time slices from the source. The data are obtained after
the gauge links have been smeared six times as described in the
text. (b) Same as (a) for the p meson. The data are for the case
where the separation x is taken along the polarization axis.
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significantly broader, reaching an asymptotic value by
about ¢ =15 for both the p and the pion. (The difference
between ¢t =10 and ¢ =15 is significant for the pion but
not for the p.) This separation is somewhat larger than
t =10 at which we find the onset of the plateau in the
effective mass plots (which is taken as evidence that the
correlator is dominated by the lightest state) as shown in
Ref. [2] using the same set of lattices. The errors in the
data are independent of ¢ for the pion and increase with ¢
for the p. In Figs. 1(a) and 1(b) we show the jackknife er-
rors at all x at # =2 and for x > 10 at £ =15 as typical ex-
amples. We consider the ¢ =15 data best with respect to
extracting the ground state and the statistical signal, and
quote all subsequent results for this value of ¢.

In Figs. 2(a) and 2(b) we show data for A (x,t =15)
for the pion and the p as a function of the smearing level
i. We find that the BS amplitude falls off less rapidly as i
is increased. The statistical errors are similar for smear-
ing levels 1-6 and for clarity we only show these for
i =1. The data show a rough convergence by i =6; how-
ever, this is specific to the particular smearing method we
have used and even that needs to be confirmed on a larger
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FIG. 2. (a) The gauge-invariant BS amplitude at t =15 as a
function of smearing level. (b) Same as (a) but for the p meson.
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lattice and with further smearing levels. Given the suc-
cess of this simple-minded ‘“fat” J in increasing the
overlap with the pion state, we feel it is worthwhile to in-
vestigate other more physically motivated probes in the
future. For present we take the results at i =6 as our
best estimate for a gauge-invariant BS amplitude.

The data for the pion (Fig. 3) show that for A {~® the
large x behavior is fit well by an exponential for
6 <x <12, while such a behavior is hard to extract from
A'®. Our best parametrization of the asymptotic
behavior is A ~e 030MWx apd L)~ 0BMx 4t
k=0.154 and 0.155, respectively. We contrast this rate
of falloff with that obtained from density-density correla-
tions and the pion mass in Sec. V. Data for the p are ana-
lyzed in Sec. VI after we formulate the dependence of the
BS amplitude on the polarization axis.

In order to analyze the data at large x we have to take
into account the effects of working in a finite box with
periodic boundary conditions. It is easy to see that @(x)
and L(x) get, for a fixed location of the quark’s end
point, a sum of contributions from all mirror images of
the position of the antiquark. Thus the maximum separa-
tion that can easily be probed is limited to L /2=28 in any
direction. In fact the effects of mirror contributions be-
come noticeable in our data already for x; >6. In the
case of the gauge-invariant BSA also, there are artifacts
due to (anti-)quark paths that wind around the lattice,
but the presence of path-ordered product of gauge links
makes contributions of mirror points inequivalent. We
therefore expect artifacts as x approaches L. The data
shown in Fig. 3 do show some curvature for x > 12 which
can be explained as the contribution of mirror images. In
addition, such an effect would also be induced by a power
law correction that we have neglected to the simple ex-
ponential fit. We discuss this point later.

A measure of lattice discretization effects can be ob-
tained by calculating these amplitudes at nonzero
momentum with the separation x taken to be parallel or
perpendicular to the direction of p. If the BS amplitude
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FIG. 3. Exponential fit to the gauge invariant BS amplitude
for the pion at large x. The rate of falloff is extracted from a fit
to points 6 <x =< 12 at each of the two masses.
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FIG. 4. Comparison of the pion BS amplitude at zero and
nonzero momentum. The data show Lorentz contraction when
x||p and pa =(0,0,27/16).

of a meson at rest is characterized by ¥(x,y,z), then un-
der a boost in, say, the Z direction the measured ampli-
tude should be given by ¥(x,y,yz) where y =[1.45,1.66]
is the Lorentz contraction factor at the two values of «.
We show the data for the pion at «=0.155 in Fig. 4.
Jackknife errors are shown only for the cases x||p and
p=0 for clarity. The data for the case xlp are consistent
with those for p=0 as expected. The falloff for the case
x||p is much faster and the signal extends only to x =6 at
either value of «. This range is not long enough to ex-
tract an effective y; all we can say at present is that quali-
tatively it is consistent with the expected Lorentz con-
traction.

IV. COMPARISON BETWEEN GAUGE INVARIANT,
LANDAU, AND COULOMB GAUGE BS AMPLITUDES

We have measured the Coulomb and Landau gauge
amplitudes for the following relative separations: the
antiquark’s position is varied in a cube of size L /2 with
respect to the position of the quark which is taken to be
at (0,0,0). For each of these relative separations we sum
the quark’s position over the time slice to produce a
zero-momentum state. We find that the data for x >6
along any of the axes show that there is a significant con-
tamination from wraparound effects due to periodic
boundary conditions. These effects can be taken into ac-
count by subtracting the contributions of all the mirror
points. In this paper we only use the Landau and
Coulomb gauge data for comparison; for this purpose it
suffices to choose data with |x; <6| to avoid significant
finite size effects.

The data show that A‘® is approximately the same as
L and slightly broader than . On the other hand we
find L2 @>A consistent with the earlier results of
Ref. [5]. These two features are illustrated in Fig. 5(a) by
data for @,, A'?, and A'®. Similarly, in Fig. 5(b) we
show L, AY, and A®. The slight increase in £, and
@, at large x is most likely due to mirror contributions
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that arise due to the use of periodic boundary conditions.

Using six levels of smearing on a 163 lattice with
periodic boundary conditions produces a linear combina-
tion of paths in J that corresponds to a fairly smooth
distribution of gauge fields across the complete time slice.
It is therefore not surprising that @, .£, and A'® give
very similar results. It is still advantageous to work with
gauge-invariant BS amplitudes as one can probe larger
separations (up to x =15) without having to worry about
J

p(x)= [ d3 (O|J (T)a(y,O)T u (y,0)d(x+y,)T pd (x+y,)7,(0)|0)

where J_ is a pion source and #(y,?)T ,u (p,t) probes the
u quark at spacetime point (y,#). In particular, the corre-
lation between charge density operators, I', =T g=1y,, is
a measure of the charge distribution as a function of sep-
aration between quarks [9,10]. The charge radius mea-
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FIG. 5. (a) Comparison of @, A, and A" at k=0.154.
The data for @, at large x have not been corrected for contribu-
tions from mirror sources. (b) Comparison of .£,, A, and
ALY, Rest is same as (a).
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contributions of mirror sources, and even more impor-
tantly because there are no ambiguities associated with
Gribov copies.

V. COMPARISON WITH DENSITY-DENSITY
CORRELATIONS

The density-density correlation for a charged pion is
defined by

(5.1

I

sured in experiments is defined as

_69F (gD

’ (5.2)
aqz g2=0

2 —
<rexpt>_

where F(gq?) is the pion form factor. It was shown in
Ref. [14] that the Fourier transform of p*(x) is

1
pH9=3

> W(w(pZOHh(x*—"O)ln(q))

XA n(@)|J,(x=0)|7(p=0)) , (5.3)

where n(q) is a complete set of states. Assuming that
only n =7 intermediate state contributes, one can show
that

~A4 2
% (g (2 ) =2————‘3F(‘12 ) . (5.4)
dq q2=0 dq ¢2=0

However, because of the contributions of, say, excited P-
wave states there is no simple relation between the charge
radius and p* [15,16]. It is not known whether these
corrections enhance or decrease the rms radius calculated
from p* with respect to the experimental value of the
charge radius. Using the data for p* presented below we
find a value that is too large, but we remind the reader
that the lattice calculation has a number of systematic er-
rors that are not accounted for.

We calculated p**(x) using Wuppertal source quark
propagators. The meson sources are at time 7 =0 and
T =40 corresponding to forward and backward propaga-
tion on our lattice. Even though we have measured
p**(x) for both the pion and the p, we only present results
for the pion as the signal for the p is too noisy. To im-
prove the signal we present results for the ratio
RB(x)=p*P(x)/p®(0). By dividing by the correlation
function at zero separation we have also removed uncer-
tainties due to renormalization of operators on the lattice
and can concentrate on effects which depend on the sepa-
ration between the two density operators.

The Wick contractions for the density-density correla-
tion yield the three types of diagrams shown in Fig. 6.
Figure 6(a) shows both insertions on valence quarks, Fig.
6(b) shows the correlation between insertion on a sea
quark loop and a valence quark within the pion, and Fig.
6(c) shows the correlation between two sea quarks within
the pion. All three diagrams can be estimated in the
quenched approximation; however, in order to include di-
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(b)

@

FIG. 6. The three different Wick contractions that contribute
to the density-density correlation. The filled circles denote the
meson source and sink while the filled rectangles are the density
insertions.

agrams in Figs. 6(b) and 6(c) we require additional calcu-
lation of quark propagators from every spatial point.
This is beyond the scope of the present calculation. Fur-
thermore, each of these three diagrams is modified by sea
quark contributions; these remain a source of systematic
error that we cannot yet estimate.

We expect the effects of diagrams shown in Figs. 6(b)
and 6(c) to be suppressed. Consider the case of Fig. 6(c)
where the valence quark lines are shown to be far from
the position of density insertions. In that case the ex-

change is suppressed by e " /e "™ where my is the
mass (~1 GeV) of the mixed glueball meson state with
the appropriate quantum numbers. On the other hand
when the pion propagates as shown schematically in Fig.
7(a) (with the density insertions on valence quark lines re-
placed by disconnected loops), the short-distance interac-
tion through gluon exchange of ¥y, loops with a
valence quark in the pion is suppressed by powers of c,.
Needless to say, it is primarily for computational reasons
that we restrict ourselves to the connected diagram of
Fig. 6(a) which can be labeled as the valence density
correlation in the quenched approximation.

The asymptotic behavior of the connected density
correlation is governed by amplitudes which fall most
slowly as a function of spatial separation x. In our setup,
the time separation between the source (sink) and the
density probes is > 10a, so, based on our analysis of the
spectrum and the BSA, we are probing the lowest state in
the pion channel. This ¢ separation is also larger than the
maximum spatial separation allowed between the density
probes, i.e., x; =8, so we neglect transient effects due to
the spatial position and character of the pion source
(sink). The leading contributions are then described
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FIG. 7. The two different types of diagrams that give the
leading large x behavior for the density-density correlation.

schematically by the two diagrams shown in Figs. 7(a)
and 7(b). The diagram in Fig. 7(a) shows that the pion
can propagate by preserving its identity all the way, so
R*(x) should falloff as x "¢ '™ as x — . The factor
x ~" comes from the superposition of momentum excita-
tions in the propagation of any state created by a local-
ized source, and in three dimensions the asymptotic form
is x 73/2. In Fig. 7(b) only one of the quarks propagates
in the spatial direction, effectively forming a flavor singlet
meson with a y; point source (under a rotation of axis
Y4—7v;). Thus the falloff is expected to go as

x 732" "#% for large x. So for pions the scenario in Fig.
7(a) produces the dominant behavior at large distances,
while for the p both diagrams falloff at the same exponen-
tial rate, i.e., e 7%,

We measure pi*(x) at all x in the first Brillouin zone.
Nevertheless, we find that it is necessary to account for
the leakage between adjacent Brillouin zones due to the
spatial periodicity of the lattice [17,18]. The lattice
correlation, for a cubic lattice of side L, denoted by
p(x)y, is an infinite sum of all the mirror images:

o

p(x) = 2

ny,ny,ny=—o

p(x+Ln), . (5.5)

In practice we truncate the sum and consider contribu-
tions only from [x,- —n;L |<L. This truncation is
justified since the density correlation falls exponentially
at large separations with a decay rate equal to the pion
mass; thus the contribution from the nearest images is
roughly e_”"’L::e_s'6 with a maximum degeneracy fac-
tor of 8..To perform the correction for the periodic im-
ages we parametrize p**(x)~e " (we ignore the addi-
tional power law factor as our data are not sensitive to it)
self-consistently until it gives the best fit to the data. Fur-
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ther details of this method for image corrections are
given in a forthcoming paper [17].

The raw data for the density correlation and the
Bethe-Salpeter amplitude are shown in Fig. 8. To inter-
pret these results we first define and extract an rms radius
from each quantity and then discuss the physical mean-
ings of these. Assuming Eq. (5.4), the charge radius is
given in terms of the density-density correlation by

(r%)D)=%fd3xx2p44(x) , (5.6)

where x is the relative separation of the d and u. Similar-
ly, we define an rms radius from the BSA amplitude as

, 1 fd3xx2[.>4(6)(x)]2
risa) =3, [dx[A®x) 7

where the factor w translates the relative separation to
separation from the center of mass. The two limiting
cases are w =4 for a two body system with degenerate ¢
and g, and w =2 if the ¢ and § move independently about
the center of mass. The real situation is somewhere in be-
tween, and at present we do not have a way of estimating
it [15]. We shall calculate rzg, assuming w =4 and com-
ment on this uncertainty later.

To calculate these rms radii from our data requires
that we make an ansatz for the asymptotic falloff. For
the density-density correlations we use both e " and
x 3% " where m . is the pion mass extracted from
the 2-point function. We regard the difference between
the results from the two Ansatze a measure of the uncer-
tainty induced by this process. For the BSA we simply
use the fits shown in Fig. 3.

The final results are given in Table I, and these are to
be compared with the experimental value r_=0.636
+0.037 fm [19]. We also include for comparison results
on 16* lattices at 8=5.7. A description of this data set is
given in Ref. [18], and we have reanalyzed it as described
in this paper. A comparison of rpp obtained at the two
values of B is particularly significant because the pion
mass is roughly the same in physical units. This is true at
each of the two values of the quark mass. The data show
a significant variation with the quark mass and extrapo-
lating to the physical pion mass will give an rpp that is
significantly larger than the experimental value at both
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FIG. 8. Comparison of the square of the BSA for the pion
with the density-density correlation p*(x). The data are at
k=0.154.

values of B. Chiral perturbation theory predicts that r
has a logarithmic singularity in the chiral limit [20]. In
the quenched approximation, however, the pion loop that
gives rise to this singularity is absent, so we expect a finite
value for the rms radius in the chiral limit. The data also
show that the deviation is significantly reduced on going
from 3=5.7—6.0; to get the continuum result one needs
to work at still weaker coupling or to use an improved ac-
tion. Also, the effects of the disconnected graphs, i.e.,
Figs. 6(b) and 6(c), and quenching need to be investigated
before we can quantify the effects of the neglected (n+)
states in Egs. (5.3) and (5.4).

In contrast to density-density correlations, rgg, is not
very sensitive to the quark mass over the small range in-
vestigated here and it is roughly a factor of 2 smaller than
the experimental value. As discussed above, using a more
realistic value for w will reduce this deviation. Neverthe-
less, based on the argument given below we expect the
rms radius measured from the BSA to be smaller than the
experimental value.

The pion wave function on any given spacelike surface
can be schematically decomposed into its Fock space
components made up of quarks and gluons:

TABLE I. Results for the pion’s rms radius calculated from the BSA amplitude and the density-
density correlations p¥*(x). The results are given in both lattice units and in physical units. We use
a=0.2 fm and @ =2/19 fm for the lattice scale at =5.7 and 6.0, respectively. The estimate for rggs
has 20% uncertainty. The experimental value is 7, =0.636%+0.037 fm.

B K mg, rpple mﬂx] rDD[x_a/ze m"x] rpsale "]
6.0 0.154 0.365a 6.8(1)a 6.5(1)a 3.0la
700 MeV 0.72(1) fm 0.68(1) fm 0.32 fm
6.0 0.155 0.296a 7.6(1)a 7.02)a 3.08a
560 MeV 0.80(1) fm 0.74(2) fm 0.33 fm
5.7 0.160 0.6944 3.8(1)a 3.8(1)a
694 MeV 0.76(1) fm 0.76(1) fm
5.7 0.164 0.527a 4.5(1)a 4.5(1)a
527 MeV 0.89(1) fm 0.89(1) fm
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|y =\|dysu)+clldysu(ng))+c)ldysugqg(ng))+ -+ .
(5.8)

On the lattice the higher Fock states are present because
the quark propagator, even in the quenched approxima-
tion, has an overlap with multiquark and gluon states due
to the back and forth propagation across any spacelike
surface. The BSA only probes those Fock states in which
dysu is traced over spin and color to match the quantum
numbers of a pion, while the density-density correlation
has no such restriction. This distinction is crucial be-
cause the charge radius gets enlarged if the strong force
between the d and u can be screened by popping q7 pairs
from the vacuum. This is shown schematically in Fig. 9
for the density-density correlation with both the u and d
forming a color singlet state with a g pair produced ei-
ther by a “Z excursion” or by vacuum polarization. Be-
cause of the restriction of spin and color trace on dysu
only those higher Fock states which factorize, for exam-
ple |dysugq(ng)) —|dysu )|gg(ng)) or those that can be
rearranged into this form by spin and color Fierz trans-
formation, will contribute to the BSA. For this reason
the rms radius calculated from BSA is expected to be an
underestimate of the experimental value.

Using the same set of propagators and image correc-
tion scheme, we have measured the pseudoscalar correla-
tion R3(x) for the pion. The radial distribution
x2R3(x) at k=0.154 is plotted in Fig. 10. The asymp-
totic behavior of #(x) is simpler to analyze than
R*(x); since the y insertions are unchanged under a
Wick rotation the exponential decay of 27°(x) for large x
is controlled by the pion mass. The data in Fig. 10 show

(a)

(b)

FIG. 9. We show two examples of how the color force can be
saturated in the density-density correlation. The filled rectan-
gles are the density insertions and the shaded blobs are a
schematic representation of a color neutral object. The thick
line in (a) shows a “Z excursion” by the quark propagator.
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FIG. 10. The falloff with x of the p®>(x) density-density
correlation inside a pion. The correlator has a node at x =~8.7a.
The lattice is not large enough to verify the expected asymptotic
behaviore 7.
that a 16° lattice is too small to observe this asymptotic
decay. In Ref. [18] it was shown on 16* lattices at
B=5.7, corresponding to a physical volume larger by a
factor of two, that the asymptotic behavior is consistent
with the expected behavior.

The volume integral of p*> characterizes interactions
between quarks. For example in the MIT bag model, Lis-
sia et al. [21] have shown that for hadronic systems con-
structed from noninteracting quarks, i.e., where the com-
posite wave function is a direct product of S-wave single-
quark wave functions that satisfy the Dirac equation, the
volume integral [ d*xx2p3’(x) is zero. Deviations of this
volume integral from zero result from interactions be-
tween the quarks. The present data show the requisite
node but we cannot estimate the integral with sufficient
accuracy due to the finite size cutoff, so we cannot test
the above hypothesis.

VI. POLARIZATION DEPENDENCE
OF THE p MESON BSA

The p meson wave function is a linear combination of
1 =0 and / =2 orbital angular momentum states. On the
lattice, where rotational invariance is absent, the BS am-
plitude decomposes into irreducible representations of
the cubic group:

(old(x)y,M(0,x)u (0)|p(0,5))

_m x? 1
_——p— 8ij¢Al(x)+8ij ;’2——3—

o N

$E(x)

, (6.1)

xix]'
+(1—8,-j)7¢72(x)

where |p(0,)) is a state of momentum O and polarization
J. The functions ¢ 4, $g, and ¢T2 are scalars which mul-
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FIG. 11. The BS amplitude for the p at k=0.154 with polar-
ization axis i || and 1 to separation x.

tiply tensor transforming under the cubic group as the
A, E, and T, representations (of dimensions 1, 2, and 3,
respectively). As is clear from the tensor structure, 4,
corresponds to the / =0 state while E and T, together
form the decomposition of the / =2 state.

Lattice calculations therefore allow us to investigate, as
a function of the quark mass, the relative mixture of / =0
and /=2 states (A4, vs E or T,), and the restoration of
rotational symmetry (degeneracy of E and T,) by study-
ing the three cases: (A) i =j and x along i (]|), (B) i =j
and x perpendicular to i (1), and (C) i#}.

At present we only measure the BS amplitude for i =,
and the results for cases (A) and (B) at «=0.154 are
shown in Fig. 11. The data show that for large separa-
tion the falloff is extremely well fit by an exponential in
both cases, with a rate of falloff given by m=0.226(8)
and m; =0.263(7), respectively. It is interesting to note
that the large x falloff is governed by a mass that is
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FIG. 12. Results for ¢ 4 l(x) and ¢z (x) using the data shown
in Fig. 11. The fits are described in Eq. (6.2).
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roughly m,/2=0.23. Such a behavior would be expect-
ed if the rms radii defined in Egs. (5.6) and (5.7) were the
same.

From the data shown in Fig. 11 we extract ¢ 4 (x) and

¢g(x). The results, shown in Fig. 12, are fit to simple hy-
drogenlike radial wave functions:

¢Al(x)=l.6le—0.242x ,

(6.2)
b (x)=0.029x2¢ ~0375*

These functions give a good fit to ¢ A](x) for x 26 and

¢g(x) for x Z2. The results at £«=0.155 are qualitatively
similar. The data for both ¢ Al(x) and ¢z(x) are slightly

broader, though the difference is smaller than the statisti-
cal errors.

VII. CONCLUSIONS

We show how to define gauge-invariant BSA using
smeared links that have similar overlap with meson wave
functions as those in Coulomb or Landau gauges. We use
the gauge invariant BSA to calculate the rms radius for
the pion and qualitatively demonstrate the Lorentz con-
traction along the direction of motion for a pion.

For the p meson the wave function is characterized by
three different orbital functions ¢ Ap ¢g, and ¢T2. These

correspond to the A4,, E, and T, representations of the
cubic group, which in the continuum limit become the
/=0 and / =2 representations. We show how each of
these three functions can be extracted by choosing the
polarization and separation axis appropriately. A test of
restoration of rotational invariance can be made by com-
paring ¢y and ¢ e With the present data we can only

calculate ¢ 4, and ¢ and show that these are well de-

scribed by simple / =0 and / =2 hydrogenlike wave func-
tions, respectively.

The rms radius of the pion measured from the BSA is
roughly 0.5-0.7 of the experimentally measured value.
The large uncertainty is due to the lack of knowledge of
the position of the center of mass with respect to the
valence d and u due to the motion of the glue and addi-
tional ¢gg pairs. We attribute the remaining discrepancy
to the following two factors. First, the BSA does not ful-
ly probe those parts of the wave function in which there
is a saturation of the color force between the valence
quarks and ¢@ pairs in the sea. Second, in the quenched
approximation, sea quark contributions of the type
shown in Fig. 9(b) are absent.

Present data show that the pion’s radius extracted
from density-density correlations has a significant varia-
tion with the quark mass. An extrapolation to the physi-
cal pion mass gives a significantly larger value than the
experimental number. This is not a cause for concern as
rpp is not simply related to the experimentally measured
charge radius. Furthermore a comparison of data be-
tween S=5.7 and 6.0 shows that the deviation decreases
with the lattice spacing and suggests that taking the con-
tinuum limit would give a result much closer to the ex-
perimental value. Lastly, one needs to evaluate the
effects of using the quenched approximation, excited state
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contamination, and the disconnected diagrams that have
been neglected in this calculation.
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