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Lattice simulations of quark forces at finite temperature
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We have performed a systematic study of the static quark-antiquark potential in the presence
of light dynamical fermions. The potential has been extracted from measurements of Wilson line
correlation functions on a 16 x 4 lattice. In the low-temperature +CD phase the effects of dynamical
fermions on the confining quark potential are demonstrated. In the high-temperature plasma phase
we analyze the screening mass for different quark masses and different numbers of Bavors at a range
of temperatures. It is found that the inclusion of dynamical fermions enhances screening effects
significantly. The screening mass shows a strong temperature dependence and our results suggest
that J/g suppression might be efFective for temperatures T T, .

PACS number(s): 12.38.Gc, 12.38.Mh, 12.40.@q, 14.40.Gx

I. INTRODUCTION

A quantitative theoretical understanding of the heavy
quark potential based on @CD is of fundamental interest
for several reasons.

(I) Heavy quark systems such as those consisting of
charm or bottom quarks can be meaningfully described
as a nonrelativistic problem. Experimental spectroscopy
data of bound heavy quark systems such as charmo-
nium (J/g) and bottomonium (T) can be compared
with the bound states computed from a potential via the
Schrodinger equation. This also allows a prediction of
the anticipated toponium spectrum.

(2) The quantitative analysis of quark forces yields
important information about the mechanism of con6ne-
ment. According to our current understanding, the con-
finement of color charges is a consequence of the non-
Abelian character of the gauge interaction in @CD. The
structure of the @CD vacuum at low temperature is such
that the chromoelectric field lines between quarks are
concentrated within. narrow Aux tubes. As long as vac-
uum polarization effects do not screen the color charges
the potential of a quark-antiquark (qq) pair will increase
with distance between the two sources. At high temper-
ature, however, the system is in a deconfined phase and
the qq interaction takes the form of a Yukawa potential
characterized by a screening mass.

(3) According to one of the predictions of @CD a
quark-gluon plasma is formed when the vacuum is heated
to a temperature of a few hundred MeV. This state
is characterized by asymptotic freedom, deconfinement,
and chiral symmetry restoration. Efforts to create this
new form of matter in relativistic heavy ion collision ex-
periments are currently under way. An experimental sig-
nature for plasma formation might be the suppression of

J/@ particle production above the transition tempera-
ture [I]. The formation of a J/@ in the plasma depends
on the color screening length of the medium. To deter-
mine the screening length as a function of temperature
requires a detailed analysis of the long-distance behavior
of the potential.

In the temperature regime of interest perturbative
@CD is not applicable because of infrared problems.
Nonperturbative studies of @CD at finite temperature
can be performed by introducing a lattice regularization
of the theory.

In the following we will discuss Monte Carlo results for
the static qq system based on the Wilson line correlation
method. We have measured Wilson line correlations for
both the low-temperature confining phase and the high-
temperature deconfined phase, with the main focus on
the deconfined plasma phase. In our study we only in-
clude the spin-independent part of the potential.

In Sec. II we describe the computational method, Secs.
III and IV contain our results for the confined and plasma
phase, respectively, in Sec. V we analyze the main results
for the potential in the plasma phase, and in Sec. VI some
brief conclusions are given.

II. COMPUTATIONAI. METHOD

Our simulations were performed on a N, x Nq Eu-
clidean lattice with N, = 16 and Nq ——4. The gauge field
configurations are generated according to the Nf-Havor
lattice @CD action

where U~ is the product of the link matrices forming the
boundary of the elementary plaquette 'P. The Kogut-
Susskind Dirac operator is given by
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1
V(r) = — lim —ln W(r, T) .T~ oo

(2)

Since in Eq. (2) the Euclidean time extent stretches out
to infinity one obtains the potential at zero temperature
[2].

In the second method one measures the correlation
function

1
, ) P(n)P"(n+r))
s n

of two Wilson lines P to determine the free energy F~~(r)
of a qq pair separated by a spatial distance r:

I'(r) oc e « 'l

where U „and g „are the link matrices and Kogut-
Susskind sign factors associated with the link at site n
with direction p.

There are two commonly used methods to measure the
heavy quark potential on the lattice: Wilson loops and
Wilson line correlations. In the first method the poten-
tial between a qq pair is extracted, up to an additive
constant, from the expectation value of a planar Wilson
loop W(r, T) = Q&&& Ui whose contour C is a rectangle,
extending in the space direction a distance r and in the
time direction a distance T:

obtained after each trajectory of 2 unit of time.
The reported results are part of a series of finite

temperature simulations undertaken by the lattice QCD
group at Columbia. These studies were performed with
diferent numbers of quark flavors and the quark mass re-
gion was explored down to a value of m = 0.01. Details of
the numerical algorithms can be found in [4,5]. The cal-
culations were carried out on the 256-node Columbia par-
allel supercomputer, a two-dimensional array of proces-
sors with fast nearest-neighbor communication [6]. The
dynamical fermion algorithm runs at a sustained speed
of 6.4 Gflops. For four flavors with equal mass a first-
order phase transition was demonstrated for mass values
of m=0. 01, 0.025, 0.0375, and 0.05 [5]. The calculation
with three flavors of mass m = 0.025 shows also a first-
order transition [4].

III. HEAVY QUARK POTENTIAL
IN THE CONFINED PHASE

In the pure gauge sector of QCD the forces between
quarks can be well described in terms of a string model.
In the confined phase the qq potential is expected to rise
linearly with the separation of the quarks:

V(r) = Vp+ or .

The Wilson line correlation method has two advan-
tages over the use of Wilson loops: First, the potential
can be obtained at any temperature, and second, the
procedure of fitting and extracting the potential is more
straightforward since in practice it is usually diKcult to
subtract the self-energy contributions in Eq. (2). The dis-
advantage of this method is that the signal-to-noise ratio
becomes very small for large 1V& since (P) exp( —KzE~).
For the pure gauge theory there exists a "multihit"
method which reduces the noise significantly [3], so that
measurements for %& ——24 and beyond are possible. For
QCD with dynamical fermions no such variance reduc-
tion technique is known and the direct measurement of
Wilson line correlations beyond K& ——4 or 6 becomes
difBcult.

We have measured I'(r) for all r = (n, n„, n, ), with
0 & n, n„, n & 8, which gives us a set of 729 points
(because of the periodicity of the lattice the remaining
r's are equivalent). Although the inclusion of all differ-
ent r's makes the computation quite demanding for a
spatial volume of 16 points, the complete information
about the correlation function allows for detailed anal-
ysis and better statistics. It is possible to investigate
the rotational symmetry of the system and by consider-
ing diagonal points one can enlarge the fitting range of
r = ~r~ by a factor of ~3. Since the link variables are
gauge transformed into temporal gauge after each time
step by the updating program, the actual computation
involves correlating the traces of the SU(3) matrices in a
single time slice. Correlations are calculated between ev-
ery pair of space points in the lattice and then averaged
over pairs that are separated by a vector r. Measure-
ments have been performed on the gauge configurations

The proportionality constant o is usually referred to as
the string tension. To describe the short-distance behav-
ior a Coulomb potential term —can be added to Eq. (5).
As one of the main analytic results of lattice gauge the-
ory it can be proved that, for pure gauge theory, quarks
are confined in the strong coupling limit and the string
tension associated with the confining potential can be cal-
culated. There have also been a large number of Monte
Carlo simulations for pure QCD to extract a value for
the string tension numerically (see, e.g. , [7]).

For full QCD the situation is significantly different.
With the inclusion of dynamical fermions vacuum po-
larization eKects become important. When the distance
between static quarks becomes suKciently large, the cre-
ation of qq pairs is possible.

For the confined QCD phase we have Wilson line cor-
relation data for two and four flavors. In both cases the
value of the quark mass is m = 0.01. For four flavors
a first-order phase transition occurs at P = 4.95 [5]. At
this coupling we have runs, starting from ordered and
disordered configurations which remain in distinct phases
during the whole evolution. Correlation measurements of
the disordered start run provide information about the
system in the confined phase. For two flavors no tran-
sition has been observed [4], but a continuous crossover
between the two phases occurs around P = 5.265.

In Fig. 1 we show the static qq potential for two fla-
vors at P = 5.25. The data represent the last 400 units
of time of a run with 500 time units. The first 100 have
been discarded for equilibration. We should note that
the depicted interquark potential does not represent the
eKects of image charges that occur as a result of the pe-
riodic boundaries of the lattice. As such the potential is



LATTICE SIMULATIONS OF QUARK FORCES AT FINITE. . . 3321

~~gag!I SDS
gee

e

FIG. 1. Static qq potential for Nf = 2, m = 0.01, P = 5.25.
The asymptotic value predicted by the cluster theorem is 1.59.

represented in a range r, where r ( N, /2.
Figure 2 shows the potential in the confined phase for

four flavors at P = 4.95. It represents measurements from
250 units of time.

We can clearly see that V(r) rises near the origin and
then flattens out after 3 lattice spacings to reach an
asymptotic value. This value is predicted by the clus-
ter theorem which implies that V(r) = Tin(~(P) —

~ ) for
large r. Our measurements of this value give 1.59 for
Nf ——2 and 1.53 for Nf ——4.

The graphs show convincingly the effects of the dy-
namical fermions on the qq potential. In the quenched
approximation ( m = oo ) the potential plotted as a func-
tion of r gives a linearly rising curve (except near the ori-
gin where the linear potential is modified by a Coulomb
term) [8].

We can demonstrate the contrast between the full @CD
potential and the quenched potential by trying to fit our
data to the functional form used in the case of the pure
gauge theory:

(~(0)~e ( )) ) g —tJI'/T in(I)—
The sum includes the eight effective color charges. The

ln(r) term takes into account excitations at finite tem-
perature.

From the plotted fitting data in Fig. 3 we can see that
the correlation function abruptly changes its behavior
near r=4—5. Within a few lattice spacings from the origin
there is a decrease but for r &4—5 the correlation data has
an almost constant nonzero value. This is in sharp con-
trast to the pure gauge theory case where the correlation
function in an exponential falloff smoothly approaches
zero [8,9].

By comparing Figs. 1 and 2 we can recognize a cer-
tain difference in the form of the potentials for two and
four flavors. The two-flavor potential flattens out more
slowly than the four-flavor potential. It reaches an ap-
proximately constant value near r 3.5, whereas in the
four-flavor case the plateau has already been reached near
r 3.0. This shows the effect of increased screening of
the color charges when changing the number of flavors
from 2 to 4.

We can distinguish two different regions: The region
r & 4 gives the potential between two colorless qq pairs.
The interaction between these two mesons can be de-
scribed by some effective exchange of light mesons, such
as m and p. In principle it should be possible to calculate
the masses of the exchanged particles from the data of
the potential at large distances and to compare it with
results of phenomenological models. From the graphs it
would appear that the string breaks if the quarks are
pulled further apart than 3 lattice units. In the re-
gion r ( 3 one might describe the physics of the static
qq system by some effective string picture. Although the
definition of the string tension assumes an asymptotically
large separation of the quarks we can Gt the functional
form

to the data points near the origin to obtain an effective
string tension. Here we have modified (6) by adding a
Coulomb term to account for the short-distance behavior
of the potential.

For two flavors of mass 0.01 at P = 5.25 we obtain

I I
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FIG. 2. Static qq potential for Nf = 4, m, = 0.01, P = 4.95.
The asymptotic value predicted by the cluster theorem is 1.53.

FIG. 3. String tension fit for Nf = 4, m = 0.01, P = 4.95.
The lower Gtting range is r; = 2.0. The data shown are
binned into intervals of Ar = 0.5.



3322 LEO I. UNGER 48

a. = 6.70 + 0.87, 0 = 0.14 + 0.10 for a fitting range that
lies between 1.8 and 4.0.

For pure gauge theory on a 24 x 4 lattice at P = 5.65
the string tension is o = 0.40 [9]. Both of these values of
P are slightly below P, . We see that the effective string
tension computed in full QCD is substantially lower than
the string tension of the pure gauge theory, consistent
with the idea that polarization by dynamical fermions
produces a significant weakening of the string.

Our results for the qq potential in the confined phase
match well with those obtained by Faber et at. [10]. They
have determined the confined potential on a 8 x 4 lattice
for three flavors and a series of quark masses from m = oo
down to m = 0.1. Their value of P is 5.2 (the transition is
at P, = 5.3). They observe increasing screening effects as
the quark mass is decreased. Our measurements for m =
0.01 agree within errors with their m = 0.1 results and.
extend them, showing that V(r) approaches a constant
for r & 4.0.

IV. COLOR SCREENING IN THE PLASMA
PHASE

plasma cools down. They go into open charm channels
which leads to the production of mesons with only one
charmed quark, such as cu and cu. One might therefore
expect J/Q suppression in the final state of the collision.

In the context of such a description of heavy ion colli-
sions it is therefore clear that an investigation of the tem-
perature dependence of the qq potential in the plasma
phase, and in particular of the screening mass p, is of
great interest.

At high temperature perturbation theory yields, for
the potential,

where [12,13]

(9)

However, the nature of the physical system near the
transition is highly nonperturbative and it is more ap-
propriate to use a general ansatz of the form

In this section we concentrate on the physics of the
high-temperature chirally symmetric phase of QCD. In
this phase, quarks and gluons are deconfined and may
form a weakly interacting gas. It is believed that this
state of matter existed at an early stage of the uni-
verse. Experimental efforts to create a quark-gluon
plasma in heavy ion collisions are under way at CERN
and Brookhaven.

At the QCD phase transition the heavy quark poten-
tial changes from a confining qq potential in the hadronic
phase to a Debye screened Coulomb potential in the
plasma phase. At low temperature the rising confining
potential discussed in the last section favors the forma-
tion of heavy bound quark systems such as the charmo-
niurn (J/g) and bottomonium (T) families. These reso-
nances may still exist in the deconfined phase as bound
states of a screened Coulomb potential until the tem-
perature and/or density become so high that increased
screening effects prevent binding.

A crucial question is what observable signatures can
provide information about the creation of a quark-gluon
plasma. One proposal is trying to relate the screening
properties of the dense hadronic system to a suppression
of J/@ production [1]. If nuclear collisions result in a
quark-gluon plasma the produced cc pairs find themselves
in a deconfining environment. The answer to the question
whether bound states exist in the plasma phase depends
on the size of the Debye color screening radius rD. If
r~ is smaller than the binding radius of the J/@ then no
such states are formed. A semiclassical analysis, using
the nonrelativistic Schrodinger equation, yields a critical
value of 0.53 GeV for the Debye screening mass p, = 1/r~
[11]. For larger values of p, no bound cc states should
exist.

The expected lifetime of the plasma is on the order of
10 s. If one assumes that the c and c quarks thermal-
ize then it will be unlikely for them to recombine as the

(10)

Previous calculations [9,14,15] have shown that for tem-
peratures not much higher than T, n = 1 gives the best
agreement with the numerical data. Since our calcula-
tions focus on temperatures near the transition region
we choose in the following to fix n = 1 and fit our data
to the potential:

In order to extract the long-distance behavior of the
potential it is important to fit the data for distances as
large as possible.

A. Fitting procedure

~
- [c(r) —f(r)]'

[Ac(r)]2
(12)

c(r) is the correlation data, f (r) the fitting function, and
Ac(r) the error of the data (S does not take into account
the fact that the errors at different values of r are cor-
related). The fitting function includes the effects of the
seven image charges stemming from the periodicity of the
lattice.

Before presenting results we describe here our fitting
procedure.

Since our N, = 16 lattice is periodic, the minimum
distance between the two Wilson lines can only vary be-
tween r = 1.0 and r = 8.0 ~3. After discarding the
nonequilibrium part (usually 100—200 units of time), the
raw data is averaged into 729 data points and their cor-
responding errors. We perform a least-squares fit of all
points which fall within the specified range [r;„,r „].
The function to be minimized is
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FIG. 4. Dependence of p on the minimum fitting radius
r;„. Wilson line correlation data for Nf ——4, m = 0.05,
P = 5.04 are fitted to the potential g exp( —pr)/r.

B. Two Qavors

Errors are calculated with the jackknife method. The
correlation data is averaged into N=8—10 blocks and N
separate fits are performed by leaving out the first, the
second, etc. , of the N data blocks. The error on the
fitted parameters is calculated from the distribution of
those parameters obtained from each of the N fits.

The fitted parameters p and g depend on the fitting
range, i.e., on the minimum and maximum fitting radii
r;„and r . The main dependence is on r;„. Since
we are interested in the asymptotic behavior of the fitting
function we should choose r;„as large as possible. This,
however, is impeded since the errors of the correlation
data become very large for large distances (see, e.g. , Fig.
7), resulting in large errors on the fitted parameters. We
hope to find a series of intervals [r;„,r „]for which the
fitting results are stable and have small errors. This is
generally the case for 2.0 & r;„&4.0. By plotting the
parameters as a function of r;„(or r „)one attempts
to determine the fitting range that yields the best results.
An example of this procedure is shown in Fig. 4. As is
generally the case, for r;„=1.0 the fitting results are
larger than for r;„=2.0. For r;„&5.0 the error bars
on the fitting parameters become very large. The fitting
results for 2.0 & r;„&4.0 look stable, have small error
bars, and are within the error bars of the points with
larger r;„. We therefore generally choose the fitting
interval r;„=3.0 and r „=13.0 for the result of p
aild g

phase. The correlation measurements at these four dif-
ferent values of P should give an indication of the tem-
perature dependence of the heavy quark potential, and
in particular of the screening mass, in the plasma phase.

Table I shows the parameters g and p of the potential
(11) at P = 5.293 for several fitting ranges. This value
of P is close to P = 5.291, where the largest Huctuations
of (gvP) and the expectation value of the real part of
the Wilson line (ReP) have been observed [4,16]. The
ordered start P = 5.293 run has 1000 units of time of
which 800 have been included in the fitting process. . The
screening mass is relatively small which indicates that we
are close to the transition region where long correlation
lengths occur.

The P = 5.3 run has 1000 units of time, of which the
first 200 have been discarded. for equilibration. The evo-
lution of (Re P) for P = 5.3 still shows some remnants
of the large 8uctuations at P = 5.291. Figure 5 shows
the heavy quark potential at P = 5.3 near the origin.
The parameters of the fitted potential for several fitting
ranges are listed in Table II.

The evolutions of (@g) and (ReP) for P = 5.4 are
very stable. The heavy quark potential at P = 5.4 can
be seen in Fig. 6, and Table III shows the fitting results
for this value of P. The correlation data and the fitted
function for a range 1.0 & r & 13.0 is shown in Fig. 7.
It is clear that the function does not match the data too
well; especially the data points in the third and fifth bin
are significantly higher than the fitting function. This
situation is much improved if the fitting range starts from
r;„=2.0 as is noticeable from Fig. 8. This behavior is
typical for all fits.

The P = 5.6 potential is shown in. Fig. 9. The data
includes 900 units of time out of 1000. The resulting
fitting parameters are listed in Table IV.

By looking at the potential close to the origin one can
notice that points r which do not lie on one of the main
axis of the lattice give a systematically di8'erent contri-
bution to the potential than on-axis lattice points. An
example of this is shown in Fig. 5 for the potential close
to the origin at P = 5.3. Off-axis points such as the sec-
ond and the third which correspond to r = gl + 1 and
r = v 1+ 1+ 1 lie beneath the curve expected from on-
axis points such as r=1.0, 2.0, and 3.0. This behavior is
a manifestation of the significant breaking of rotational
symmetry by the potential at short distances.

The efFects of rotational symmetry violation on the
screening mass can be studied quantitatively by directly
calculating p from the potential V(r) for a series of lattice
points r. For two nearby lattice points the screening mass

For two degenerate light quark flavors on a 16 x
4 lattice there is a continuous crossover from the
low-temperature chirally broken phase to the high-
temperature plasma phase in which chiral symmetry is
restored [4]. For a mass of m = 0.025 the center of the
continuous transition curve is at P = 5.291.

For two quark fI.avors of mass m = 0.025 we have Wil-
son line correlation data of ordered start runs at P=5.293,
5.3, 5.4, and 5.6. Our evolutions show that for P = 5.3
the system is essentially in the chirally symmetric plasma

Fitting range
1.0—13.0
2.0—13.0
3.0—13.0
4.0—13.0

g
0.212 + 0.015
0.145 + 0.023
0.155 + 0.048
0.233 + 0.153

IJ

0.609 + 0.056
0.457 + 0.070
0.468 + 0.097
0.530 + 0.151

S
8.7
4.0
3.8
3.7

TABLE I. Fits of the heavy quark potential in the plasma
phase for Wy = 2, m = 0.025, P = 5.293, 800 units of time,
ordered start.
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PIG. 5. Static interquark potential near the origin for
Nf = 2, m = 0.025, p = 5.3.

FIG. 6. Static interquark potential for Nf ——2, m = 0.025,
p = 5.4.

TABLE II. Fits of the heavy quark potential in the plasma
phase for Nf = 2, m = 0.025, P = 5.3, 800 units of time,
ordered start.

I I
I

Fitting range
1.0—4.0
1.0—5.0
2.0—5.0
3.0—6.0
1.0—13.0
2.0—13.0
3.0—13.0
4.0—13.0

g
0.210 *0.012
0.204 + 0.013
0.108 + 0.018
0.100 + 0.015
0.199 + 0.015
0.097 + 0.018
0.076 + 0.013
0.082 + 0.003

P
0.934 + 0.079
0.907 + 0.087
0.589 + 0.106
0.554 + 0.099
0.887 + 0.095
0.541 + 0.109
0.482 + 0.085
0.495 + 0.098

S
8.2
10.4
1.5
2.3
17.0
6.4
5.7
5.4

)
~ 0

L

CL

O
O

V

I I I

TABLE III. Fits of the heavy quark potential in the plasma
phase for Nf = 2, rn = 0.025, P = 5.4, 1800 units of time,
ordered start.

0

Fitting range
1.0—4.0
1.0—5.0
2.0—5.0
3.0—6.0
1.0—13.0
2.0—13.0
3.0—13.0
4.0—13.0

0.188 + 0.002
0.187 + 0.002
0.134 + 0.015
0.061 + 0.030
0.187 + 0.002
0.129 + 0.017
0.063 + 0.035
0.051 + 0.099

P
1.471 + 0.015
1.467 + 0.017
1.183 + 0.053
0.904 + 0.146
1.466 + 0.018
1.165 + 0.061
0.913 + 0.174
0.857 + 0.418

S
29.6
31.3
2.7
1.9

40.5
11.7
9.8
9.3

} I I I 1
I I

FIG. 7. Wilson line correlation fit for Nf ——2, m = 0.025,
P = 5.4. The lower fitting range is r~;„= 1.0. The data
shown are binned into intervals of Ar = 0.5.

TABLE IV. Pits of the heavy quark potential in the plasma
phase for Nr = 2, m, = 0.025, P = 5.6, 900 units of time,
ordered start.

V
}0

A

Fitting range
1.0—4.0
1.0—5.0
2.0—5.0
3.0—6.0
1.0—13.0
2.0—13.0
3.0—13.0
4.0—13.0

g
0.135 + 0.005
0.135 + 0.005
0.121 + 0.031
0.219 + 0.203
0.135 + 0.005
0.129 + 0.034
0.260 + 0.212
0.255 + 0.253

P
1632 + 0038
1.629 + 0.038
1.419 + 0.121
1.559 + 0.292
1.630 + 0.039
1.449 + 0.130
1.612 + 0.270
2.696 + 0.649

S
19.2
19.7
1.9
2.5
32.0
15.0
14.2
13.0

O
CL

0
I I I I ) I, I

FIG. 8. Wilson line correlation fit for Nf ——2, m = 0.025,
P = 5.4. The lower fitting range is r;„= 2.0. The data
shown are binned into intervals of Ar = 0.5.
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FIG. 9. Static interquark potential for Ny ——2, m = 0.025,
p = 5.6.

can be obtained from ratios of the potential at distances
py and p2.

p(ri, r2) = 1 rg V(ri)
r2 —ri r2 V(r2)

(13)

Values for p obtained from formula (13) are listed in Ta-
ble V.

The screening masses obtained from on-axis points
[p(1, 2), p(2, 3), and p, (3, 4)] agree quite well with the
fitted values of Table II. It is clear, however, that for
1 ( r ( 2 rotational symmetry is strongly broken. The
value for p in the lattice diagonal is 50'%%uo higher than the
value on axis. For p between 2 and 3 the discrepancy
has somewhat diminished. The point +32 + 1 which is
close to the axis agrees better with p, (2, 3) than the points
which are further out towards the diagonal. Going out to
three lattice spacings it seems that rotational symmetry
has been mainly restored; at this distance, however, the
errors become very large.

In consistency with the fi.tting range dependence of the
potential parameters we can conclude that in order to ex-
tract the asymptotic behavior of the potential we have to
go out at least to three lattice spacing (r;„)3.0). Re-
sults for p that include points near the origin should be
regarded as giving some e0'ective, short-distance screen-

ing mass.
A similar two-flavor calculation with a mass of m =

0.025 on a 12 x 4 lattice was carried out by Karsch and
Wyld [12]. They measured Wilson line correlations for
P=5.3, 5.4, 5.6, and 5.8.

There is very good agreement between the Karsch-
Wyld and our data points for the heavy quark potential
at P=5.3, 5.4, and 5.6 (our values are systematically a lit-
tle lower, which can be explained by our bigger volume).
There is, however, a rather large discrepancy between
the values for the screening masses at P = 5.4 and 5.6.
Karsch and Wyld obtain p, = 1.015 +0.03 at P = 5.4 and
p = 1.210 + 0.003 at P = 5.6 by fitting from r = 1.0 to
r = 3.5. This is to be compared with our values for p in
Tables III and IV.

After a detailed investigation it turned out that the
discrepancy seems to come from a difFerence in the error
bars between the two calculations. It seems that our
relative errors for the first few points in Fig. 8 are smaller
than those of Karsch and Wyld. By starting the fit with
the parameter values of Karsch and Wyld one can watch
the fitting routine minimize the function S by converging
to our larger value for p.

As pointed out above, rotational symmetry is broken
near the origin. Because of their smaller lattice Karsch
and Wyld have to include points near the origin in their
fi.ts which can significantly a6'ect the results. Their values
for p can be considered as efI'ective screening masses near
the origin. We think that points close to the origin should
be discarded for the fitting process and regard the values
obtained for r;„& 3.0 as the results for the screening
mass p.

C. Three Havors

For three quark Havors of mass m = 0.025 we have
Wilson line correlation data at P=5.14, 5.24, and 5.44.
The P values for Ny = 3 have been chosen to correspond
to the Ny ——2 values such that they difFer by the critical
couplings. This way a comparison between two and three
fl.avors can be made.

The potentials for P = 5.14 and 5.44 are shown in Figs.
10 and 11. For every value of P we have 2000 measure-
ments taken at the end of each trajectory of 2 unit of
time; the first 200 measurements are part of the equili-
bration process and have not been included in our data.
In Tables VI—VIII we list the fitting results for the qq

TABLE V. Rotational dependence of the screening mass for Ny = 2, m = 0.025, P = 5.3.

p(1 2)

p(1, Ql + 1)

p(1, v 1+1+1)

p(l, Q2 + 1)
p(3 4)

p(3 +32 + 32)

p(3, g3' + 2' + 22)

p, (3, +32 + 32 + 1)

0.84 + 0.10
~

1.42 a 0.05

1.26 + 0.15

0.93 + O.ll

p, (2, 3)

p(2, /2s + 1 + 1)
p(2 +22 + 22)

p(2, g3' + 1)

0.70 + 0.22

1.09 + 0.20

1.03 + 0.27

0.65 + 0.27
0.46 + 0.51

0.42 + 0.61

0.47 + 0.49

0.59 + 0.76
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TABLE VI. Fits of the heavy quark potential in the plasma
phase for Nf = 3, m = 0.025, P = 5.14, 900 units of time,
ordered start.

0.-
~ ~0

I0
()

) (5)
()

Fitting range
1.0—13.0
2.0—13.0
3.0—13.0
4.0—13.0

g
0.211 + 0.012
0.103 + 0.022
0.042 + 0.018
0.025 + 0.015

P
1.254 + 0.078
0.837 + 0.136
0.569 + 0.123
0.476 + 0.129

S
14.5
6.2
5.4
4.9

I
C)

TABLE VII. Fits of the heavy quark potential in the
plasma phase for Ny = 3, m = 0.025, P = 5.24, 900 units
of time, ordered start.

FIG. 10. Static interquark potential for Nf —— 3,
m = 0.025, P = 5.14.

Fitting range
1.0—13.0
2.0—13.0
3.0—13.0
4.0—13.0

g
0.200 + 0.007
0.146 + 0.060
0.190 + 0.407
0.323 + 2.529

P
1.713 + 0.038
1.403 + 0.187
1.423 + 0.615
1.514 + 0.748

S
115.7
60.8
56.3
54.6

0--
C)

e

TABLE VIII. Fits of the heavy quark potential in the
plasma phase for Nf = 3, m = 0.025, P = 5.44, 900 units
of time, ordered start.

I

O ()
(f ()

() "

Fitting range
1.0—13.0
2.0—13.0
3.0—13.0
4.0—13.0

g
0.145 + 0.004
0.239 + 0.049
0.476 + 1.778
0.00033 + 1.48

P
1.813 + 0.029
1.864 + 0.106
1.988 + 0.557
1.477 + 0.194

S
87.2
45.6
43.8
42.6

FIG. 11. Static interquark potential for Nf —— 3,
m = 0.025, P = 5.44.

TABLE IX. Fits of the heavy quark potential in the plasma
phase for Nf = 4, m = 0.025, P = 4.99, 3000 units of time,
ordered start.

I

C)
N

A

I I I
I

I I
I

Fitting range
1.0—13.0
2.0—13.0
3.0—13.0
4.0—13.0
5.0—13.0

g
0.213 + 0.008
0.069 + 0.019
0.017 + 0.004
0.011 + 0.003
0.009 + 0.007

P
1.53? + 0.043
0.880 + 0.133
0.477 + 0.084
0.408 + 0.066
0.376 + 0.098

S
20.3
5.3
3.5
3.3
3.1

V

I

C)
A

a

C) an

C)

V

0
() ()

I I I I

10

FIG. 12. Wilson line correlation fit for Nf ——3, m = 0.025,
P = 5.14. The lower fitting range is r;„= 2.0. The data
shown are binned into intervals of Ar = 1.0.

Fitting range
1.0—13.0
2.0—13.0
3.0—13.0
4.0—13.0
5.0—13.0

g
0.188 + 0.006
0.064 + 0.008
0.035 + 0.008
0.032 + 0.019
0.028 + 0.101

P
1.334 + 0.044
0.742 + 0.055
0.568 + 0.066
0.547 + 0.122
0.527 + 0.316

S
16.7
4.1
3.1
2.9
2.8

TABLE X. Fits of the heavy quark potential in the plasma
phase for Nf = 4, m, = 0.0375, P = 5.02, 2200 units of time,
ordered start.
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TABLE XI. Fits of the heavy quark potential in the plasma
phase for Nr ——4, m = 0.05, P = 5.045, 2250 units of time,
ordered start.

0--
0

n
I0

()
()

() ()
(»()

()
())(fI()

5)
'&)

4 6

FIG. 13. Static interquark potential for Ny —— 4,
m=0025, P =499.

potential of the form (11) for the three values of P. A
fitting example is shown in Fig. 12.

D. Four Aavors

For four quark Havors on a 16 x 4 lattice a first-order
transition is seen for mass values of m = 0.01, 0.025,
0.0375, and 0.05 [5,17].

We have measured Wilson line correlations in the
plasma phase for m = 0.025, 0.0375, and 0.05 right at
or very close to the transition.

For m = 0.025 the transition is at P = 4.99. At this
value we have measurements from 3000 units of time
starting from an ordered configuration.

For m = 0.0375 the transition is at P = 5.02. Here
we have 2500 units of time from which the first 300 have
been discarded for the fits.

For a mass value of m = 0.05 we first ran each 1000
units of time with an ordered and disordered start at P =
5.04 and the evolutions stayed apart. As we extended the
ordered start run, however, it tunneled to the disordered
phase after 1500 units of time. In order to avoid tunneling

Fitting range
1.0—13.0
2.0—13.0
3.0—13.0
4.0—13.0
5.0—13.0

9
0.144 + 0.015
0.054 + 0.017
0.044 + 0.019
0.045 + 0.033
0.054 + 0.063

P
0.889 + 0.125
0.447 + 0.162
0.405 + 0.167
0.407 + 0.205
0.429 + 0.238

S
12.2
2.2
1.8
1.7
1.6

V. COMPARISONS

In this section we summarize and compare our main
results for the interquark potential in the plasma phase.

For two and three flavors we have listed in Table XII
and XIII the temperature dependence of the screening
mass p near the transition region. For four flavors the
values of p, for difFerent quark masses at the transition are
shown in Table XIV. For the two- and four-Havor tables
we have selected the fitting range [3.0—13.0]. For three
flavors the fitting range is [2.0—13.0]. For these ranges
the fitting results are stable and have the smallest error
bars.

we raised P by 0.005 and ran a ordered start run at P =
5.045 for 2500 units of time. We have included 2250 units
of time in our fits. The values of p for the 1000 units of
time at P = 5.04 and the 2500 units of time agree within
errors (the values for P = 5.04 are 25% lower than
those for P = 5.045).

Tables IX—XI summarize the fitting results for the
three diferent masses.

Figures 13 and 14 show the qq potential for m = 0.025
and 0.05 in the plasma phase right at or very close to
the transition. For m = 0.025 the Wilson line correlation
data and the fitted function for a range 2.0 & r & 13.0 is
shown in Fig. 15.

I
I I

0--
0

I0

()(~'()

())
'»~)()

a2~)

Q
I

y 0

A

O
CL

o
CL 4

I

y O

I I I I

10

FIG. 14. Static interquark potential for Ny ——4, m = 0.05,
P = 5.045.

FIG. 15. Wilson line correlation fit for Ny ——4, m = 0.025,
P = 4.99. The lower fitting range is r;„= 2.0. The data
shown are binned into intervals of Ar = 1.0.
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TABLE XII. Temperature dependence of screening masses
for Ny ——2, m = 0.025. Fitting range 3.0—13.0.

TABLE XIV. Quark mass dependence of screening masses
for Ny ——4 at the transition. Fitting range 3.0—13.0.

5.3
5.4

P
0.482 + 0.085
0.913 + 0.174
1.612 + 0.270

m
0.025
0.0375
0.05

4.99
5.02

5.045

P
0.477 + 0.084
0.568 + 0.066
0.405 + 0.167

For both two and three flavors we recognize a strong
temperature dependence of p, . This dependence seems to
be stronger than previous results suggest [15,12]. Taking
scaling violations into account, the P values for Ny = 2
correspond according to [12] to T/T, 1.1, 1.4, and 2.0.
If we define m~ = p/a then the perturbative form in
Eq. (9) predicts that mD/T const. Since mrs/T = 4p,
it follows that p should be constant. This, however, is
clearly not the case for our values of the lattice screening
masses so that the perturbation theory results and our
lattice calculations do not seem to be compatible in the
temperature regime close to the transition.

According to [ll], perturbation theory predicts that for
T/T, = 1, p, = 0.42, and that cc becomes unbound for
T 2T which corresponds to p = 0.75. Our results for
Ny = 3 and P = 5.14 give p, = 0.837 + 0.136, suggesting
that J/@ suppression might be effective for temperatures
T =T.

Screening masses for pure QCD have been measured
on a 24 x 4 lattice with the Columbia 64-node machine.
These are some of the results: p = 0.162 + 0.017 for
P = 5.6925, p, = 0.313 + 0.033 for P = 5.70, and p =
0.635 + 0.039 for P = 5.75.

If we compare the screening masses at P = 5.70 for
pure QCD and at P = 5.3 for Ny = 2 QCD (in both
cases P —P, 0.008) we see that the value for p is 50%
larger in the full theory than in pure gauge theory. This
is quite comparable to the 30% found by [15]. For larger
values of P (T 2T, ) we find for Ny = 2 that p/T 6.5
whereas for pure SU(3) gauge theory p/T 3 [18].

This shows that the inclusion of light dynamical
fermions enhances the screening effects significantly.

This behavior is confirmed by comparing the screening
masses between %y ——2 and Ny ——3. As expected we see
an increase of p when changing from two to three flavors
at comparable values of P [P(Ny = 2) /3(Nf: 3) +
0.16]. The addition of a ferrnion flavor causes stronger
color screening of the heavy quarks.

As Table XIV shows there is no clear variation of p for
four flavors as the quark mass is lowered from rn = 0.05
to I = 0.025.

In fact, the results are consistent with p, being con-
stant. This suggests that we have reached the chiral
limit in our lattice calculation; that is, our value of
p = 0.477+ 0.084 is within errors very likely equal to
the m = 0 value of p.

VI. CONCI. USIONS

High statistics measurements of Wilson line correla-
tion functions have us allowed to obtain some detailed
information about the heavy quark potential.

We have studied interquark forces in both the confined
and plasma phase of QCD on a 16 x 4 lattice. In the
low-temperature phase the important effects of dynami-
cal quark loops manifest themselves in the cutoff of the
linearly rising interquark potential for a lattice distance
r & 4. In the chirally symmetric high-temperature phase
we have performed a systematic study of the tempera-
ture, flavor, and mass dependence of the screening mass
p.

The screening mass is one of the quantities accessible
by lattice QCD which is most likely to directly afFect
heavy ion experiments. Our analysis yields p, = 0.837 +
0.136 for three quark flavors at T T, which suggests
that J/g suppression might be effective for temperatures
slightly above the transition.

We also were able to demonstrate that color screening
enhances the value of p by 50% for Ny = 2 full QCD
over that in pure gauge theory. This effect increases if
additional quark flavors are added.

Our results about the heavy quark potential are con-
sistent with earlier work and extend it in several ways.
We have a larger lattice, smaller quark masses, and more
statistics than in previous calculations. The larger lat-
tice and increased statistics have allowed us to include
larger distances in our fits and thereby better incorpo-
rate the asymptotic behavior of the interquark potential.
In addition, we were able to investigate the restoration
of rotational symmetry on the lattice.

5.14
5.24
5.44

P
0.837 + 0.136
1.403 + 0.187
1.864 + 0.106

TABLE XIII. Temperature dependence of screening
masses for Ny ——3, I, = 0.025. Fitting range 2.0—13.0.
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