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Relating physical observables in QCD using the extended renormalization group method
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We discuss the Stiickelberg-Peterman extended renormalization group equations in perturbative

QCD, which express the invariance of physical observables under renormalization-scale and scheme-

parameter transformations. We introduce a universal coupling function that covers all possible choices
of scale and scheme. Any perturbative series in QCD is shown to be equivalent to a particular point in

this function. This function can be computed from a set of first-order differential equations involving the
extended P functions. We propose the use of these evolution equations instead of a perturbative series
for numerical evaluation of physical observables. This formalism is free of scale-scheme ambiguity and

allows a reliable error analysis of higher-order corrections. It also provides a precise definition for A—
s

as the pole in the associated t Hooft scheme. A concrete application to R (e+e ~hadrons) is present-
ed.

PACS number(s): 12.38.Bx, 11.10.Gh, 11.15.Bt, 13.65.+i

I. INTRODUCTION

The scale-scheme ambiguity problem [l —3] remains
one of the major obstacles impeding precise QCD predic-
tions. Although all physical predictions in QCD should
in principle be invariant under change of renormalization
scale and scheme, in practice this invariance is only ap-
proximate due to the truncation of their perturbative
series.

Consider the 1Vth-order expansion series of a physical
observable R in terms of a coupling constant as(p, ) given
in scheme S and at a scale p:

R =r at' (p)+ r, (p)a~+'(p)+ . + r (p)a~+ (p) .

The infinite series R is renormalization scale-scheme in-
variant. However, at any finite order, the scale and
scheme dependencies from the coupling constant as(p)
and from the coefficient functions r, (p) do not exactly
cancel, which leads to a remnant dependence in the finite
series. Different choices of scale and scheme then lead to
different theoretical predictions. The availability of next-
to-next-to-leading-order results in QCD [4—7] has accen-
tuated the need for study on the scale-scheme depen-
dence.

There have been traditionally two positions on this
subject. The first one is to consider the scale-scheme am-
biguity as intrinsically unavoidable, and interpret the nu-
merical Auctuations coming from different scale and
scheme choices as the error in the theoretical prediction.
This point of view, aside from being overly pessimistic, is
also very unsatisfactory. First of all, in general we do not
know how wide a range the scale and scheme parameters
should vary in order to give a correct error estimate.
Second, in addition to the error due to scale-scheme un-

certainties there is also the error from the omitted
higher-order terms. In such an approach, it is not clear
whether these errors are independent or correlated. The
error analysis in this context can become quite arbitrary
and unreliable.

A second approach is to optimize the choice of scale
and scheme according to some sensible criteria. Com-
monly used scale setting strategies include the principle
of minimum sensitivity [1] (which also optimizes the
choice of scheme), the fastest apparent convergence
(FAC) criterion [2] and the Brodsky-Lepage-Mackenzie
(BLM) method [3].

In this paper we use the extended renormalization
group method to study the scale-scheme ambiguity prob-
lem. In this approach, a perturbative series only serves as
an intermediate device for the identification of scale and
scheme parameters. The ultimate prediction is obtained
through evolution equations in the scale- and scheme-
parameter space. This approach sets the ground for a re-
liable error analysis and also provides a precise definition
for A—

s, where MS denotes the modified minimal sub-
traction scheme. Renormalization scheme invariant
methods have been previously studied by Grunberg,
Dhar, and Gupta [2,8], and our approach is essentially a
reformulation of these methods in the language of a
universal coupling function by using the Stuckleberg-
Peterman equations. We believe this alternative language
makes the discussion of many issues on the scale-scheme
ambiguity problem more transparent.

II. POWER SERIES VERSUS
RENORMALIZATION GROUP

Throughout this paper we will consider the case of
QCD with Xf massless quarks. We will limit ourselves to
perturbative quantities that allow series expansion in the
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strong coupling constant. Nonperturbative effects such
as those from instantons and possible extra complication
involving structure functions or fragmentation functions
are beyond the scope of this paper. Given this premise, a
physical observable R in QCD can be expanded in a
power series like

N+1+ N+2+ (2)

where ap is the bare coupling constant. In general, R can
depend on several momentum scales: R =R ( I k; I ). We
will consider the I k, I to be fixed for the moment. In the
above equation, ro is the tree-level coefficient and Ã is the
tree-level exponent. It is well known that for a renormal-
izable theory such as QCD, all higher-order coefficients
I r, I, o, are divergent and ill defined; hence, the power
series in bare coupling constant should be considered
purely formal. In other words, QCD alone does not give
a direct prediction for R.

Consider now another physical quantity:

S=soa +s u '+s n + + (3)

As in the case of R, QCD does not provide a direct pre-
diction for S since the coefficients ts; I;~, are also diver-
gent However, QCD does allow us to relate S to R. The
procedure is simple. We first invert Eq. (2) to obtain ao
in terms of R:

' 1/N

Ao=
ro

ri R
2/N

+ I ~ ~

ro ro
(4)

then we substitute this last equation into Eq. (3) to obtain

S=s R
o

0

M/N
Sp+ s — r1 ~ 1
rp

(M+1)/N
R
ro

+ ~ ~ ~

This quantity is known as the effective charge [2] or the
efFective coupling in the scheme R at the scales Ik, I. If
R is a single-scale process, then ex& will depend on only
one scale, but in general R and az can depend on more
than one scale.

For a renormalizable theory such as QCD, the expansion
coefficients in this new series are expected to be finite and
well defined. That is, the infinities in the divergent
coefficients such as r, and s, will conspire to cancel each
other, yielding a finite result.

Given a third physical quantity

T =toap+t1ap +t2ao +. . .

we can similarly expand it in terms of R or S, or vice ver-
sa. We do not have a direct prediction for R, S, or T.
However, if one of them is measured, QCD allows us to
predict the other two.

Notice that in Eq. (5), the quantity (R/ro)' appears
repeatedly. It is convenient to give a symbol to this
quantity:

1/N
R
ro

Since the tree-level coefficients (ro, so, ro) and exponents
(M, N, P) are finite and well defined, the efFective charges
a~, ~z, and aT are therefore also well defined.

In terms of effective charges, what QCD allows us to
do is to relate one effective charge to another. (By put-
ting back the tree-level coefficients and exponents, we can
relate one physical observable to another. ) For instance,
Eq. (5) in terms of effective charges will have the form

~s =~a +f~z +g~ii + '

where the expansion coefficients f,g, . . . are expected to
be finite.

More conventional coupling constants such as aMs(p)
can also be regarded as effective charges. In fact, in di-
mensional regularization we have

~Ms(&) =~o &o &o+ in@ ap+ .
4~a

(10)

(where I /e = 1/e+ yz —ln4m, e= (D —4) /2, dtlo
= 11

—2%I/3. The bare coupling constant ap is dimensionful
in dimensional regularization. In this formula, cap and p
have been expressed in a preestablished mass unit. ) We
can regard this last equation as describing an "observ-
able" with unit tree-level coefficient and exponent. We
can expand aMs in terms of a~, a&, or aT, or vice versa.
In this context, there is no distinction between effective
charges coming from physical observables or efFective
charges coming from more conventional coupling con-
stants. Stretching this language, one can in fact refer to
a—s as the effective charge of the "MS process. "

Our discussion so far is valid to all orders. Realistical-
ly, we can only compute a finite number of terms in an
expansion series. The direct evaluation by using a trun-
cated series may not be the best strategy under these cir-
cumstances. Suppose we have a physical process R with
az(Q)=0. 2 at Q =3 GeV, and we wish to evaluate the
effective charge as(P) of another single-scale process
S(P) at some large scale, say, P =10 GeV. The truncat-
ed series

a~(P) =a~(Q)+f (P, Q)a~(Q)

will have a large value of f (P, Q) and higher-order con-
tributions cannot be neglected. In fact, it is known that
for a large enough value of I', this truncated series will
give a negative value for az(P).

%"hat if S =R in the above discussion? That is, what if
we want to evaluate az (10 GeV) from az (3 GeV)? The
answer is clear: we should use the renormalization group
equation to evolve az(Q) from Q =3 GeV to Q =10
GeV. Given the P function

Similarly we can define the effective charges of S and T
(or efFective coupling in the schemes S and T) as

1/M

7

Sp

1/P

tp
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d
d lnQ' 4~

a p—o

2

+ ~ ~ ~ (12)

we can use it for the evolution of a~. To first order we
obtain

oR(Q)
aR(P)=

1+(Po/4')(zR(Q) ln(P /Q )
(13)

This result is much more reliable than the one given by
the truncated series. In fact, aR (P) now remains positive
for arbitrarily large values of P.

Why is the renormalization group method better than
the direct evaluation of the truncated series? The answer
is that along the evolution trajectory the scale is changed
in a continuous fashion, thus avoiding the presence of
dissimilar scales and large coefficients.

Let us come back to the case of two different processes.
Given two effective charges aR(Q) and as(P), each one
of them can be characterized by its respective /3 function:

III. THE UNIVERSAL COUPLING FUNCTION IN QCD

In this section we will set up the appropriate notation
and define the universal coupling function. Given an
effective charge aR =aR ( [k; ] ), we define its fundamental
p function (or scale p function) to be

(a )= d
d ink,

aR([Ak, ])
4m

2 3 4

estimation. Conventionally one can estimate the error of
a finite series by estimating the next-order coefficient.
However, when the power series is unreliable due to
largely mismatched scales and schemes, so the corre-
sponding error estimate will be. We will see that in the
extended renormalization group method we can first esti-
mate the next-order scheme parameter, and then
translate the scheme uncertainty into the error estimate
for a physical observable.

d
d lnQ 4~

'2 3 4

po— R

4~
+ ~ ~ ~

(16)
CXg= —po

d ~s
d lnP 4~s(~zg ) =

2
cxs= —

po

3

pR R

4~

pS
4~

4

+ ~ ~ ~

(14)

+ ~ ~ ~

The universality of the first two p-function coefficients /3O

and /3i is a well-known fact. Stevenson [1] has shown that
a scheme can be parametrized by its higher-order p
coefficients. Therefore, the R scheme is characterized by
[p„]„&z, and the S scheme by [p„]„2. In the expansion
series of as(P) in terms of aR ( Q)

a (P)=o (Q)+f(P, Q)~'(Q)+g(P, Q)a'(Q)+

Pl +R PoaR=, 1= ink,
o 17

The rescaled P function takes the canonical form

(17)

The first two coefficients po and pi are universal, whereas
all higher-order coefficients [p„]„&2are process depen-
dent. It will be very convenient to use the first two
coefficients of the beta functions to rescale the coupling
constant and the scale parameter Ink . [The quantity A.

effectively parametrizes the overall scale of a process.
For single-scale processes, the derivative with respect to
the scale parameter can be replaced by the derivative
with respect to the scale of the process, as given in Eq.
(14).]

Let us define the rescaled coupling constant and the
rescaled scale parameter as

we know that we need a scale Q -P to have a reasonable
expansion coefficient f (P, Q). However, this may not be
enough to guarantee a good convergence if S and R are
very difFerent schemes. That is, if the p function
coefficients P2 and P2 are very different, then the expan-
sion coefficients such as g (P, Q) can still be large, render-
ing the truncated series useless. (The detailed depen-
dence of the expansion coefficient on the scale and
scheme parameters will be obtained later. )

The strategy to follow is now clear. We should evolve
aR(Q) "adiabatically" into as(P), not only in scale but
also in scheme. Along the evolution trajectory, no dis-
similar scales or schemes are involved; thus, we can ex-
pect the result to be more reliable. We need new equa-
tions and p functions that allow us to evolve the scheme
parameters [p„] into [p„].This will be the subject of the
next section.

Let us conclude this section with a comment on error

PR(aR ) = = —aR(1+aR+c2aR+c3aR+ ),
(18)

/30= 11——', Xf,

/3, = 102—", Ef, —
(19)

Ms 2857
2 2

5033 325
)g f g4 f '

with c„=/3Rpo '/p", for n =2, 3, . . . . This rescaling
process serves to "unitarize" the expansion coefficients.
(Our definition of the scheme parameters differs slightly
from Stevenson's [1].) For a well-behaved scheme in

@CD, we would expect its P-function expansion to rough-
ly resemble a geometrical series, at least for the first few
coefficients. In fact, for the MS scheme we have

cz =Pz Po/P„where [9]
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and for X& =0, 1,2, 3,4, 5, 6 we have, respectively,
c2 = 1.5103, 1.4954, 1.4692, 1.4147, 1.2851, 0.92766,
—0.33654. We can clearly see that indeed c2 is of order
of magnitude unity.

The universal coupling function a(r, {c;]) is the exten-
sion of an ordinary coupling constant to include the
dependence on scheme parameters. It is required to satis-
fy the scale evolution equation

a ( t (c;))

p(a, {c;])= = —a (I+a+cza +c3a3+ )
5a 2 (20)

for all values of {c,].
The scheme P functions are defined as

5a
p(„)(a, {c, ] ) —=

Cn
(21)

FIG. 1. Pictorial representation of the universal coupling
function a (r, {c; [ ), where r is the scale parameter and {c; I the
scheme parameters.

5a 5a
5~5c„5c„5~

implies

&p(. ) Sp
5~ 5cn

(22)

(23)

As shown by Stevenson [1], these extended p functions
can be defined in terms of the fundamental p function.
Indeed, the commutativity of second partial derivatives

In the next section we will explain how to use the
universal coupling constant and the scale and scheme p
functions to relate various effective charges. To conclude
this section, let us point out that any physical quantity R
can be expressed as a power series in terms of the univer-
sal coupling constant. The invariance of R with respect
to change of scale and scheme parameters is described by
the equations

5R
5.

(„)——p(„)p' —a "+',
where PI„)=BP(„)/t)a and P' =BP/()a. From here

(24) 5R
5cn

(29)

n+2 (25)

These equations have first been studied by Stiickelberg
and Peterman [10].

therefore

a a &n+2
p(„)(a, {c;])= = —p(a, {c;])I dx5c„' '

o p (x, {c ])
(26)

where the lower limit of the integral has been set to satis-
fy the boundary condition

p —O(a n+1) (27)

That is, a change in the scheme parameter cn can only
affect terms of order a"+' and higher in the evolution of
the universal coupling function [1].

We define the universal coupling function a (r, {c; ] ) as
the solution to the evolution equations (20) and (26) with
the boundary condition

a(0, {0])=~. (28)

Notice that the evolution equations contain no explicit
reference to QCD parameters such as the number of
colors or the number of Aavors. Therefore, aside from its
infinite dimensional character, a (r, {c; ] ) is just a
mathematical function such as, say, Bessel functions or
any other special function. Truncation of the fundamen-
tal P function simply corresponds to evaluating a (r, {c; ] )

is a subspace where higher-order c; are zero (Fig. 1).

IV. RELATING TWO EFFECTIVE CHARGES

We will call ~z the scale parameter of R. Notice that, al-

though the scheme parameters {c; ] can be obtained
from QCD by computing the coefficients in the funda-
mental p function, the value of the scale parameter rz is

not provided by the theory. This is expected since we
know QCD alone does not give a prediction for a~. A
measurement of az will allow us to obtain ~z.

Once az (and therefore rz) is measured, QCD allows
us to predict the value of other effective charges. In or-
der to evolve the universal coupling function from az to,
say, az, we need to know the scale and scheme parame-
ters (rs, {c; ] ) of as. As we know, the expansion series

a& =aIt +f2ag+f 3ag + (31)

is unreliable for evaluating a& directly. However, this
series will allow us to obtain the scale and scheme param-
eters of a~ from those of az.

Any given effective charge az can be expressed in

terms of the universal coupling function. Since aR( {k;])

and a(r, {c; ] ) satisfy the same scale evolution equation
[compare Eq. (18) to Eq. (20)], there exists a value of

for which

(30)
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To make this contact transparent, let us expand the
universal coupling function in Taylor series around the
point (rR, j c, ] ):

as=a(rs, Ic; ])=a(rz+r, Ic; +c;])

&s =~~ f—2
c,'=c,' f—, f—', +f, ,

c 3 C 3 2f 2 c z +f2 +4f 2
—6f2f&

+2f~

(36)

6a=a~+
R

5a
5r

5aT+ Cn
n

25a
6~5c„

35a
5~

where

+S +R

Cn Cn C

5a+
5 6 cncm

Cn Cm

VC„

(32)

(33)

Let us summarize here the necessary steps to evolve aR
to az.

(1) Obtain the scheme parameters of aii by calculating
the coefficients of its fundamental p equation. [In the
case of MS scheme these parameters are known. See Eq.
(19).]

(2) By Feynman diagram calculation, obtain the expan-
sion series of as in terms of aR. [See Eq. (31).]

(3) Identify the scale and scheme parameters of as in
terms of those of az. [See Eq. (36).]

(4) Evolve az to as by using the Stuckelberg-Peterman
evolution equations (20) and (26). The final result will not
depend on the choice of the evolution path.

A concrete application of this procedure to
R (e+e —+hadrons) will be presented later. But first, let
us explain the meaning of the 't Hooft scheme and the
't Hooft scale.

and the subscript R next to the partial derivatives means
they are evaluated at the point (rz, Ic; ] ). To order a",
we only need the partial derivatives

=P= —a —a —c2a +0(a ),

V. THE 't HOOFT SCHEME AND SCALE

The universal coupling function adopts a particularly
simple form when all the scheme parameters are zero. In
fact, the 't Hooft scheme [13] coupling constant
a.,H(r) =a (r, tO] ) is exactly given by the solution of

5a =P(p):0 +0 (0 )
5C2

1

1+a,H
(37)

5a
5c3

6a
6~

6a
5~5C2

=p(3i:—0 +0(Q )

=2a +Sa +0(a ),

= —3a +0(a'),

(34)

(The optimization of QCD perturbative series in this
scheme has been studied by Maxwell [11].) Notice that
because of the boundary condition a(0, [0])= ~, the
't Hooft coupling constant presents a singularity at ~=0.

For any single-scale effective charge a„(p) there exists
a scale p =A& for which the scale parameter

~~ =2PoP, ' log(p, /A~ ) vanishes. We will call AzH the
't Hooft scale' of the R scheme. To understand the
meaning of the 't Hooft scale, let us consider the MS
scheme coupling constant as an example:

5a 4
3 = —6a +0(a ) .

5~
2 2

~Ms(~) =~ og(~~AMs) Ic
1

(38)

After grouping all the terms in powers of a =aR, we ob-
tain

as =a+ ra~+(c2 r+r—)a~—
+( c3 (c2 +3c2)r+ —,'r —r )az +0 (aii ) (35)

where ~ and c„are as given in Eq. (33). The coefficients of
this formula have been previously obtained by Maxwell
and Stevenson in a slightly different notation [11,12].
Notice the occurrence of ~ and c; in all higher-order
coe%cients. By using the evolution equations, we are
effectively performing a partial resummation of the per-
turbative series to all orders. By matching this last equa-
tion with Eq. (31), we can identify the scale and scheme
parameters of az order by order. For instance,

Notice that a priori we do not know the behavior of
aMs(p) at p=AMs. it could be infinite, finite or simply
not well defined. However, p=AMs is the pole in the
't Hooft scheme associated with the MS scheme:

For multiple-scale processes, the submanifold where the scale
parameter vanishes defines the "'t Hooft surface. "

There are an infinite number of 't Hooft schemes, dift'ering
only by the value of the 't Hooft scale A~™.The word "associat-
ed" here means we are choosing the particular 't Hooft scheme
that shares the same 't Hooft scale with the MS scheme:
~'tH p'tH

MS'
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a (x)

input
experimental „
error

scheme

tion

az (Q) =a Ms(Q)+ 1.1176aMs(Q)
—8.05426a Ms(Q) .

(41)

Notice that in the right-hand side the scale argument of
aMs(p) has been set to be p, =Q. In general, this needs

not to be the case. When p is left to be free, the relation
between az (Q) and aMs(p) is given by

a~ (Q) =a—s(p)+ [1.1176—3.0402 in(Q/p) ]a Ms(p)

error in
't H 't H

+ [ —8.05426 —9.8358 ln(Q/p)

+9.2430 in'(Q/p)]aMs(p) . (42)

FIG. 2. Graphical representation of the various errors in-

volved. For the measurement of AM$ (or equivalently AR ) the

input experimental error must be combined with the scheme un-

certainty. For the prediction of aR(~), the error in AM$ must be
combined with the scheme uncertainty.

213o
(p) —=a — log(p/A —'s), [0]

1

(39)

because a (0, [0] ) = ae by boundary condition. Since the
't Hooft scheme is completely free of higher-order correc-
tions, this provides a precise definition for AMs.

As stated before, an experimental measurement of az
leads us to the measurement of ~z, which in turn gives a
value for Az . In Fig. 2 we show the various experimen-
tal and theoretical errors involved in the analysis. For
the measurement of Az, the input experimental error
must be combined with the scheme uncertainty to give
the error estjmate for A~ . Sjmilarly, for the prediction
of a~(r) the error from Az must be combined with the
scheme uncertainty in order to give the prediction error.

Applying the formulas in Eq. (36) and knowing that
rz =2Po13, ' 1n(Q/Az ) and rMs=2@3, 'ln(p/AMts), we

arrive at the relations

A' =1 4443A —' c = —9 49 (43)

a„(31.6 GeV) =0.0665+0.0063 . (45)

We will now use this information to obtain values for
A—'.We have to take into account the scheme uncertain-MS'

ty in addition to the experimental error in order to quote
a correct error estimate for AMs (see Fig. 3). The scheme

uncertainty of R can be quantified by a reasonable esti-

Notice that, as one would expect, these results are in-

dependent of the scales Q and p that we started with. In
fact, we could use any scale and scheme in the right-hand
side of Eq. (42), and always arrive to the same values of
scale parameters for az and a consistent ratio of the
't Hooft scales.

Experimentally [16]we have

r (31.6 GeV) =
—,', R (31.6 GeV) = 1.0527+0.0050, (44)

which gives

VI. APPLICATION TO R (e+e ~ HADRONS)

In this section we present a concrete application to the
total hadronic cross section in e +e annihilation
R (Q)=R(e+e ~ hadrons) recently calculated to order
a [4,6]. (See also the recent analysis in Refs. [4], [14],
and [15].) From Refs. [4,6], for five light-quark fiavors
we have

a( & (c;))

0.07276

0.06646

c

a—(Q)
R (Q) = —", 1+ +1.4092

L

2
aMs«) 0.06016

—12.8046
a—(Q)

C f C2 7 3 C4

=11 1+
3

7T

(40)

Let us perform some preliminary analysis. By rescal-

ing the effective charges appropriately [see Eq. (17)], we

obtain the relation

FIG. 3. Measurement of AM$ from the experimental result of
aR(31.6 GeV). %'e have parametrized the scheme uncertainty
with a value c3 =100. The scheme, experimental and total er-
rors are, respectively, given by h„h = (~5—~3)/2,
kezp ( v6 T2 ) /2 and Stot ( T7 T] ) /2. There ss a one-to-one
relationship between r and Ag given by r=2@8& ' log(31.6
6eV/1. 4443AMs).
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mate of its next scheme parameter: c 3. West [17] has
put an estimate r4 = —158.6 for the coefficient of
(aMs(Q)/7r) in Eq. (40). After rescaling, this leads to a
value c3=c3 —c3 = —99.474. Assuming c3 is of or-
der unity, we conclude that ~c3 ~

—100. Although we have
some reservation on West's estimate (see Ref. [18]), we
shall nonetheless use it to illustrate our procedure. A
better estimate of c3 will lead to a better error estimate
for %—'

In Fig. 3 we show the universal charge for
ao(7.)=a(7., tc2=c2, c3=c~= . =0] ) and its evolution
under a scheme uncertainty c3 =+100 to
a+(r) =a (7., Ic2 =c2,c3 =+100,c~ =cs = . =0] ).

The evolution in the scheme parameters are dictated by

Sc, '"
o p2

=P 2
= P—J dx -a +O(a ),

5

=P~3i= —PJ dx —
—,'a +O(a ) .

(46)

For our region of interest (a -0.07) the first term in each
expansion series suffices. But we should use the full
integro-differential equation whenever we want to evolve
a to a higher-value region. This will not only improve
the accuracy of our result, but also will respect the com-
mutativity of the second-order partial derivatives of a
and thus ensure the independence of the result on the
choice of integration path.

To obtain the various scale parameters in Fig. 3, we
can evolve their corresponding values of aR to the
't Hooft scheme (switching off all scheme parameters) and
then use Eq. (37) to get the value for the particular 7.. Let
us illustrate the procedure for ~7. If we denote

a+ =a (7.7, cz, c3,0, . . . ) =0.06016,
Rao=a(77 c2,0,0, . . . ),

a,,H =a (r7, 0, 0, 0, . . . ),
(47)

Using these equations and Eq. (37), we obtain a value of
~7=13.379. Other scale parameters can be calculated in
a similar way. In Fig. 3 we show the various errors in-
volved in this analysis. Numerically we find the experi-
mental, scheme, and total errors for w to be

b.7,„p,= (76—72)/2= 1.41,

b.7„h=(r,—7.3)/2=0. 22,

b, 7.„,=(r7 )/72=1. 63 . —
(49)

These errors can be translated into uncertainties in AMs
since there is a one-to-one correspondence between ~ and

then the solutions to the evolution equations in (46) are
given by

a+a0=
(1+—'c a' )'i

2 3
(48)

a0
(1+2c'a')'"

AMs. [The ratio between Az and AMs is given in Eq.
(43).] We can see that most error comes from the experi-
mental error in aR. We can also see that the experimental
error and the scheme error are highly uncorrelated since

w„ t+ A~„h. Numerically we obtain
~I = 10.129,~4 = 11.666, and ~7 = 13.379. Knowing that

2Po 31.6 GeV
log

Pi 1.4443A—' (50)

we arrive at the following result for A—'
MS'

g'tH 472+310 Me@MS 204 (51)

1

r„.+log(1+ 1/a, h)
(52)

(2) Evolve a,,H to ao =a (r„,c2,0, . . . ) by displacing
ln c2'.

(1 2cMsa2 )1/2C2 tH

(53)

(3) Evolve ao to a~, =a( cd, c~ =1,0, . . . ) by
displacing ln c3'.

In terms of the definition of AMs as given by the Particle 13ata
Group [19] (see also Sec. VI), the corresponding values are
+Ms 411+1~8 MeV and AMs 411+~~ MeV.

If there were no experimental error, the estimated
scheme uncertainty would lead to AMs=472+33 MeV.

As a second application of our formalism, we will show
next how to use the experimental result of a7t (31.6 GeV)
to predict other effective charges. Specifically, we will
give a prediction for aMs(Mz), where Mz =91.173 GeV
is the mass of the Z boson. The evolution of ait(31.6
GeV) to aMs(Mz ) is illustrated in Fig. 4. Notice that the
experimental and the scheme uncertainties confine the
correct result for aR into an approximate parallelogram
ABCD. We can then evolve this parallelogram into any
other scheme and scale. We will use c3 =+100 and
c 3

=+ 1 to estimate the scheme uncertainties in aR and
aMs. For aMs(Mz), the parallelogram ABCD is evolved
into the parallelogram 2 'B'C'D'. Notice the inversion of
the orientation of the new parallelogram due to the oppo-
site signs of c 2 and c 2 . Notice also the absence of
scheme uncertainty in the 't Hooft scheme.

From ~~ =10.129 and ~c=13.379 and knowing that
with 7.=2PoP, '[log(Mz/AMs) —log (31.6

GeV/A7't )]=4.339, we find rz =14.468 and
rc = 17.718. To evaluate a~.=a (7.„,c 2 =0.92766,
c3 = 1,0, . . . ) and a , =a(7.c,c2 =0.92766, c3—1,0, . . . ) we can use the following steps. We will show
the procedure for a ~ ..

(1) Generate the 't Hooft scheme coupling
a.,H =a(7 „,0, . . . ) by solving iteratively
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a(x

R scheme ..

experimental
error
in a (31.6 GeV)

R

2P0
aR(Q) =a log(g/AR"» [0I

1

2P2
a—s(p) =a log(p/AMs), I0}

1

(59)

MS sch
and absorb the uncertainty from scheme parameters into
our theoretical error. However, the last two equations
imply that

g'tH
MS

a (g)=a —,p=, , Q (60)

C2

ap

(1 3 MS 3 )1/3
—,C3 aP

(54)

From here we obtain a~ =0.05772 and a&.=0.04818.
Hence, we arrive at the prediction

FIG. 4. Prediction of aMs(Mz) from the experimental result

of az(31.6 GeV). By using the extended renormalization group
equations, the quasi-parallelogram ABCD is evolved into the
quasiparallelogram A'B'C'D'. Notice that inversion of the
orientation of the parallelograms due to the opposite signs of c 3

and c3 . Notice also the absence of scheme uncertainty in the
't Hooft scheme.

Hence, by setting the coefficient r in Eq. (57) to zero,
we obtain the correct ratio for the two scales. Actually,
this holds true in general: by applying the FAC criterion,
we always obtain the correct ratio of the definition
R—:Tp(xg has the advantage that I"p and p are renormal-
ization scale and scheme invariant quantities.

However, the FAC definition of effective charges az by
R —= rpa~ is not the only possibility. Other definitions
have been discussed in Ref. [21]. As we have shown in
this paper any convenient choice of effective charge can
be used to relate physical observables. In fact, we can ap-
ply the extended renormalization group technique to the
efFective BLM charge [3] defined in the following manner.
Given two physical quantities R and R' computed in a
particular scheme,

& (Q) =ro(g)aR(p)+ [r,o(Q)+ r» (Q, p)P0]a~+'(p, )

a Ms(Mz ) =0.0530+0.0048,

or equivalently,

aMs(Mz ) =0. 132+0.012 .

(55) + ~ ~ 0

&'(Q')=ro(g')a~ (p')

+I rio(Q')+r»(Q' p'»0]~' "(p')+

(61)

VII. RELATED COMMENTS
where po= 1 1 ——', X& is the first p function coefficient, we
can define their "effective BLM charges" by

Let us show next that our formalism is closely related
to the FAC criterion when only the next-to-leading-order
coefFicient is known. We define FAC here as the condi-
tion of a vanishing next-to-leading-order coefficient.

Given

(Q) = ro«)~R —BLM(Q)+ r io(Q)~R —BLM(Q)+

(Q ) ro(Q )+R' —BLM(Q )+r 10(Q )~R' —BLM(Q')

+ ~ ~ ~

(62)

a„(g)=aMs(p) —ra Ms(p)

with

r=2P0P1 '[log(g/AR )
—log(p/AMHs)],

(57)

(58)

4This value is higher than the world average

+Ms(MZ) =0.1134+0.0035 quoted by the Particle Data Group

[19] but still consistent with other quoted values for aMs(Mz).
For instance, aMs(MZ)=0. 118+0.008 is obtained by OPAL
[20]. The detailed analysis of consistency between the various
experimental results is beyond the purpose of this paper.

and assuming a complete lack of knowledge of the
scheme parameters Ic; ] and [c; J, we cannot do much
better than to approximate

with aR BLM(g)=cr(p*) where p* is the solution of
r»(g, p*)=0, and similarly aR. B„M(g')=a(p'*) where
p' is the solution of r 11 (g', p'*) =0. With this choice of
scale, vacuum polarization contributions are associated
with the charge rather than the expansion coefFicients,
and the scale tends to reflect the mass of the virtual
gluons. The BLM method is particularly advantageous
for setting the scale when one only has low-order calcula-
tions available since it automatically resumes the higher-
order contributions associated with vacuum polarization
insertions.

We can now apply the evolution equations to
aR BLM(g) and evolve it to aR BLM(Q'). The evolution
in the scheme parameters maintains the BLM condition
that the next-to-leading-order coefFicient is Aavor in-
dependent. In fact, both the FAC and BLM definitions
are consistent with evolution in the scheme and scale pa-
rameters.



3318 HUNG JUNG LU AND STANLEY J. BRODSKY 48

By noting that the scheme p function are higher
powered in a, p/„) -0 (a"+'), and thus scheme efFects be-
come negligible at large ~, one can obtain a compact for-
mula that gives the universal coupling function a (r, Ic;] )

implicitly in terms of the scale and scheme parameters.
This has been done by Grunberg [2] and Dhar and Gupta
[8] in their study of renormalization scheme invariant
method. In our notation the formula is given by

1 a~= —+ln
a 1+0 + GX

a 1 +
2

1

o P(x, Ic;I) x (1+x)

~Ms(l') = 4~ P, 1n[PoP, ' in(p /AMH )]1—
Poin(/tt /AMs ) Poln(p /AMs )

+ ~ ~ ~ (64)

This differs from the definition as given by the Particle
Data Group [19], where AMs is defined so to make the
coeKcient inside the double logarithm unitary:

(63)

Finally, let us obtain the relation between A—'s and a
commonly used definition of AMs. The expansion of
aMs(/tt) can be obtained by inverting the above formula
iteratively by using the scale and scheme parameters of
tzMs(/tt). Noting that rMs =2PoP, '

1n(/tt/A~&), we obtain

A tH
Ms

p —
/3 ( /2/3O

2 Ms
po

(66)

+f w ha AMs 47 AMs' thus, the
difference between the two definitions is small in practice.

VIII. CONCLUSIONS

To summarize, we have explained the use of extended
renormalization group equations to relate physical ob-
servables. This approach provides a new and transparent
interpretation of the Grunberg-Dhar-Gupta scheme-
invariant method [2,8] in the language of a universal cou-
pling function. The most distinctive feature of this for-
malism is that, in this approach, the perturbative series of
a physical observable only serves to identify the scale and
scheme parameters. The final prediction is obtained by
the evolution of a universal coupling function. The pre-
diction is scale-scheme independent in the sense that
given the initial perturbative series in any scheme at any
scale, we will always obtain its correct scale and scheme
parameter and hence arrive at the same prediction. We
have shown that this formalism sets the ground for a reli-
able error analysis, and that AMs can be unambiguously

defined as the pole in the associated 't Hooft scheme. Fi-
nally, we have shown that this formalism is equivalent to
the fastest apparent convergence criterion in the absence
of information on scheme parameters.

~Ms(&) = 4m.

Po ln(/M /AMs)

P, in[in(/M /AMs)]

Po ln(/tt /AMs)

+ I ~ ~

The relation between AMs and AMs can be found to be

(65)
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