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We study the construction of free fermionic spin structure models with Z2(IZ4 boundary-condition
vectors. We argue that requiring chiral space-time fermions in the massless spectrum and the existence
of a well-defined hidden gauge group severely constrain the allowed boundary-condition vectors. We
show that the minimal way to obtain these requirements is given by a unique set of Z2 boundary-
condition vectors. We classify the possible extensions to this basic set. We argue that a result of this
fundamental set is that obtaining three generations in this construction is correlated with projecting out
all the enhanced gauge symmetries which arise from nonzero vacuum expectation values of background
fields. We propose that this correlation and the properties of the fundamental Zz subset suggest that
three generations is natural in this construction.

PACS number(s): 12.10.Gq, 11.17.+y

I. INTRODUCTION

It is by now well established that the number of light
left-handed neutrinos is only three. The experimental re-
sults obtained at the SLAC Linear Collider (SLC) [1] and
CERN e+e collider LEP [2] clearly show that the
width of the standard model Z boson can only accommo-
date three light left-handed neutrinos. This fundamental
observation is one of the clues in the study of physics
beyond the standard model. For over a decade it has
been known that the idea of gauge unification [3] and the
successful mass prediction for mb jm„ in this scheme can
only be obtained in the presence of three generations of
chiral fermions [4]. However, at present, we have no idea
how nature has chosen to have only three generations. It
could be argued more strongly that we do not even know
that indeed nature has chosen to have only three genera-
tions as there may exist more generations where the left-
handed component of the neutrino is for some reason
very heavy, or at least heavier than m L -45 GeV.

On the other hand, superstring theory [5] has been sug-
gested as a possible candidate for a consistent formula-
tion of all the known fundamental interactions, but so far
lacks experimental support for its existence. Initially it
was believed that to be consistent the superstring should
be embedded in ten space-time dimensions which are
then compactified on a Calabi-Yau manifold [6] or on an
orbifold [7]. Further study revealed that one could con-
struct a consistent string theory directly in four space-
time dimensions and the extra degrees of freedom which
are needed to cancel the conformal anomaly are inter-
preted as either [8] bosonic or fermionic [9] internal de-
grees of freedom. As a fundamental theory of nature,
superstring theory should explain the origin of the num-
ber of generations. A general string model can, in princi-
ple, have an almost arbitrary number of generations. In
the Calabi-Yau compactification of the heterotic string
[10], the number of generations in the low-energy spec-
trum is dictated by a topological quantity, the Euler

number y of the compactified internal space. The Euler
number of an arbitrary Calabi-Yau manifold can be very
large and the number is reduced by moding out the
comp actifie manifold by a freely acting symmetry
group. Several models with three and four generations
have been constructed in this way [11]. The most exten-
sive studies are of models with (2,2) world-sheet super-
symmetry and lead to E6XE8 gauge symmetry. The E6
gauge symmetry corresponds to the observable gauge
symmetry which is further broken by using the Hosotani
fiux-breaking mechanism [12]. Models with (2,0) world-
sheet supersymmetry compactification in the Calabi-Yau
framework have been proposed by Witten [13] as a way
of obtaining SO(10)XEs gauge symmetry and thus avoid-
ing some of the phenomenological problems that are en-
countered with E6 grand unification [13]. These models
have the theoretical problem that (2,0) compactification
may be unstable by the presence of world-sheet instan-
tons [14]. Several studies of these models have been car-
ried out in the literature [15]. In the orbifold formulation
[7] the extra dimensions are compactified on a fiat torus.
In this formulation, the number of generations is again
given by a topological quantity. Extensive studies have
been carried out and semirealistic models have been ob-
tained [16].

The most realistic string models [17]constructed so far
have been constructed by using the free fermionic formu-
lation [9]. In this formulation, the extra degrees of free-
dom which are needed to cancel the conformal anomaly
are interpreted as internal fermionic degrees of freedom
propagating on the string world sheet. Under parallel
transport around a noncontractible loop the fermionic
states pick up a phase and the specification of the phases
for all the fermionic states around all the noncontractible
loops constitutes the spin structure of the model. Requir-
ing the partition function to be invariant under modular
transformation leads to a set of constraints on the possi-
ble spin structures. A model is constructed by choosing a
set of boundary conditions that satisfies those constraints.
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The massless physical spectrum is then obtained by ap-
plying the generalized Gliozzi-Scherk-Olive (GSO) pro-
jections. Several models have been constructed by apply-
ing this formalism. However, in this formulation, the
geometrical insight that was gained in the Calabi-Yau
and orbifold formulations is lost. Therefore, the current
studies of these models lack the systematic approach
which was achieved in geometrical formulations of the
superstring. Moreover, in the fermionic formulation,
construction of models with any simply laced gauge
group with rank less than 22 is possible. Thus trying to
perform a systematic analysis seems intractable. Howev-
er, as we will show, the requirement that part of the
gauge group is hidden, is a strong constraint on this class
of models. We will argue that this requirement may be
correlated in this construction with the fact that only
three generations are observed in nature.

In this paper we study the construction of models in
the free fermionic formulation with special attention to
the number of generations in these models. We argue
that in the class of models we are investigating there is a
correlation between the number of degrees of freedom
which are needed to cancel the conformal anomaly, the
final gauge group and the number of chiral families. We
present a first attempt to extract some general properties
of this class of models and to study how the number of
generations we observe in nature may be understood in
this construction.

II. THE NAHE' SET

In the free fermionic formulation in four dimensions
we need 18 left and 44 right real internal fermionic de-
grees of freedom. The gauge bosons of the low-energy in-
teractions come from the right moving part. The ex-
istence of chiral fermions in the massless spectrum leads
to the projection of the left-moving gauge bosons [18].
This would seem to give a rank 22 gauge group at the
string level. However, we certainly do not live in a rank
22 world. The standard model has a rank 4 group and
the idea of unification, which is supported by calculation
of sin 8~ and mblm„may increase the rank to rank 5

[SO(10)] or rank 6 (E6). Thus we need to find ways to
reduce the rank of the observable gauge group. In the
free fermionic formulation there are two ways to reduce
the rank. One is to construct the model in such a way
that part of the gauge group will be hidden. The matter
representations of the low-energy gauge group will not
transform under the hidden gauge group. The second
way is to couple left with right fermionic states to form
Ising model parity operators [19]. In this way the rank
can be reduced at the most by six because of the eighteen
left-moving fermionic states, six are combined to give the
supersymmetry generators. We are left with 12 left
movers which can be combined with 12 right movers
leading to a reduction in the rank by six. The second con-
straint on the gauge group is that the low-energies gauge
group, after the Gliozzi-Scherk Olive (GSO) projections,

Nahe means pretty in Hebrew.

has to be a gauge group that does not require adjoint rep-
resentations to break the gauge symmetry to the standard
model, as level 1 Kac-Moody algebras do not allow ad-
joint or higher level scalar representations in their spec-
trum [20,21] (while higher level Kac-Moody algebras do
have adj oint representations, their phenomenological
promise is very questionable [21]). The gauge group is
broken at the string level by using the generalized GSO
projections. A set of boundary conditions that satisfies
the modular invariance constraints and world-sheet su-
persymmetry is constructed. The set defines a set of pro-
jections on the physical massless spectrum. In this way
some of the gauge bosons will be projected out and the di-
mension of the gauge group will be reduced. For each
such sector there is a corresponding massless spectrum
that similarly gets truncated by the other GSO projec-
tions. For the sake of finiteness we confine ourselves to a
restricted class of models. We consider models of the
form Zz(SZ4. In this case the chiral generations come
from the Z2 vectors. This is the simplest choice which we
can consider. The Z4is used to break the symmetry from
an O(n) to a U(n) gauge symmetry. The supercurrent
gauge group 6 [22] is then SU(2), which is the only case
that allows X = 1 space-time supersymmetry [22]. It
should be stressed that even in this restricted class of
models, a priori there is a huge range of models that can
be contemplated [23,24]. Moreover, in the free fermionic
formulation all the degrees of freedom which are needed
to cancel the conformal anomaly have the same interpre-
tation. The advantage is that the formulation is directly
in four space-time dimensions. The disadvantage is that
the immediate geometrical information is lost and a sys-
tematic analysis is more difFicult.

We start to build a set of basis vectors. The first is the
vector 1, with only periodic boundary conditions. This
vector must be in the basis to keep the modular
in variance rules. The second is the vector
S=(+,y, 2, y34+$6~0g ), the space-time supersymmetry
generator, which generates X =4 space-time supersym-
metry. X =4 space-time supersymmetry has to be broken
to N =1 space-time supersymmetry. This is done by add-
ing more vectors to the basis. For any vector b with only
periodic and antiperiodic boundary conditions
b S=Omod2. The requirement of N=1 space-time su-
persymmetry gives that if b 'S =0 or 4, then b does not
contribute to the massless spectrum unless (b )I =0, in
which case the vector gives additional gauge bosons.
Therefore, only vectors with b. S =2 will contribute to
the massless matter spectrum. For a vector of this form
to give massless states, (bl bl )=4. Therefore, in these
vectors I+,y, 2], I@,y34], or I+,y56I plus some
[y, w]L will receive periodic boundary conditions. In
this way the number of the supersymmetries is reduced to
N =2 and 1 space-time supersymmetry. The vectors that

~We follow closely here the notation of Ref. [19];the fermions
in the brackets have periodic boundary conditions and the rest
are antiperiodic. The vertical line separates real from complex
fermions.
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lead to the chiral generations must have (b b)L =—4. In
this case from the modular invariance rules, only
(b b)z =0,4, 8 will give massless states. For the case
(b b)z =0, this vector will give rise to more gravitinos
and will increase the number of space-time supersym-
metries. The case (b b }z=4 gives vector representations
and therefore only the case (b b)R = 8 will give rise to the
generations of chiral fermions. The chiral generations of
the low-energy spectrum cannot carry quantum numbers
under the hidden gauge group which has to be, as we will
argue below, in this case, rank 8 [25]. They must trans-
form under the low-energy gauge group which, because
of the, level 1 Kac-Moody algebra, no-adjoint theorem,
can include at the most a rank 4 simple group. There-
fore, five of the periodic fermions in the vector b,„must
transform under the low-energy gauge group and form
the weight vector of SO(10). Five is a minimal number in
this case because three have to give rise to SU(3)c and
two to SU(2)I. Of the remaining six periodic real fer-
mions in b,„, two have to be complexified to keep the
two components of the Weyl spinor in the spectrum, and
must take the value —,

' in the Z4 twist. We are left with
two complex periodic fermions, or four real periodic fer-
mions in the right sector of b,„and four real periodic
fermions in the left sector.

The next vector in the basis, bI, gives rise to a one gen-
eration vector. Without loss of generality it is taken to be

This vector breaks the number of supersymmetries
from X =4 to 2. All the left movers are real and of the
right movers f, ~, g are complex and y ' ' ' are

—1

real. The next vector b2 must have either Ig",F34] or
[Q,y5~] periodic to reduce % =2 to 1 space-time super-
symmetry. Take, for example, the first choice. The super
current condition then dictates that the remaining left
periodic fermions must come from the I12II [56]L trip-
lets. Now, to obtain from a given vector a full spinorial
16 representation of SO(10) with the same chirality we
need in the basis a second vector for which [g",g,
are periodic in both vectors and the intersection between
the remaining boundary conditions is empty. If this con-
dition is not satisfied then, as long as the SO(10) symme-
try is not broken, a given vector bg,„will give an equal
number of 16 and 16 and thus will not contribute to the
net number of generations. We refer to this condition as
the "chirality condition" and it will be of importance to
the following discussion. Therefore, without loss of gen-
erality we can take

(2)

We emphasize that up to this stage the analysis is com-
pletely general. For the phases

b,-

C
J

we take

b;
c = —1b

for a11i and j. For

5
c

J

S
c =1

b

SO(10) will give rise to the low-energy standard model
gauge symmetry and the SO(6) corresponds to horizontal
symmetries of the observable sector. The SO(22) gauge
symmetry has to be broken to a hidden, rank 8 group
[25], and a rank 3 part. In Ref. [25] it is shown that the
hidden gauge group lattice has to be self-dual in order for
the whole string lattice to be so. This confines the al-
lowed hidden group lattices to be E8=D 8+, E8 & E8, and
D &&. Furthermore, it is shown that a grand unifiable stan-
dard model with an arbitrary number of generations,
with or without the usual choice of the Higgs bosons, will
be nonchiral if the hidden gauge group is of dimension
16. Therefore, the hidden gauge group must be rank 8.
We use their result as a guideline to argue that in the con-
struction we are investigating there is a unique way to
achieve this result for the hidden gauge group. The
second requirement is that we need to have at least three
generations of chiral fermions. Each of the vectors b, and
b2 gives 16 generations, a total of 32, which is not divisi-
ble by 3. There exists the possibility that one of the vec-
tors b& or b2 will give two generations, while the other
will give one generation. We view this possibility as un-
natural. There is a simple and unique way to obtain both
of these points by constructing the vector

&3 =(t/J, +,co co, co co, ci) co, co co lf ' ', ) (3)

The set [1,S,b„b2, b3] will give SO(6) XSO(10)XEs,
with N=1 space-time supersymmetry, where E8 is the
hidden gauge group. What is meant here by hidden is
that the representations which are identified with the
low-energy rnatter representations, namely, the 16 repre-
sentations of SO(10), do not transform under the hidden
Ez gauge group. Practically from the point of view of the
spin structure the sectors which lead to the 16 represen-
tations of SO(10) and which do not break the SO(10) sym-
metry, cannot have periodic fermions under the Ez hid-
den gauge group (P'' ' =0 in these sectors). At a later
stage in the spin structure construction, in particular
when the SO(10) symmetry is broken, the hidden Es sym-

for all j to insure X =1 space-time supersymmetry. The
rest of the phases are fixed by the modular invariance
rules. In the choice of the next vector in the basis we
have several possibilities. However, we argue that there
exists only one realistic possibility. The gauge group after
the b

&
and b2 projections is

SO(10)XSO(6) XSO(22) .
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metry is broken to a subgroup of E8 which will depend on
the specific model. In the case we are investigating the
SO(10) symmetry is broken by the Z4 twist. This break-
ing has many phenomenological consequences. One ex-
ample is the presence of fractionally charged states in the
massless sector of the string model [26]. With respect to
the hidden sector, it will lead to states which may mix the
observable sector with the hidden sector. However, the
states which are identified with the chiral generations do
not transform under the hidden gauge group and, in this
respect, it is hidden.

Overall, there are 48 spinorial 16 representation of
SO(10) at this step which do not transform under the hid-
den gauge group. (Here, instead of identifying how the
states from a given vector 6,„ transform under the hor-
izontal symmetries, as was done in previous discussions,
we simply count the total number of 16 representation of
SO(10) from a given vector bs,„.)

Let us examine how the 44 right-moving internal fer-
mions and 18 left-moving internal fermions are divided.
Eight complex right-moving fermions P' '' give rise to
the hidden gauge group. Five complex right-moving fer-
mions P'' ' give rise to the low-energy observable
gauge group. This number is minimal and maximal be-
cause of the no-adjoint theorem and because we must
have three complex fermions to give rise to SU(3)c and
two complex fermions to give rise to SU(2)i, a total of
five. Three complex fermions q', g, and g will give rise
to three horizontal U(1) symmetries. They are needed in
the spectrum to keep the two components of the Weyl
spinor of the chiral generations in the spectrum and must
receive the value —, for their boundary condition in the Z4
twist. Thus we are left with 12 real right-moving fer-
mionic states. Of the 18 left-moving fermions, six give
rise to the supersymmetry charges y' ' and we are left
with 12 real left-moving states. These 12 right-moving
and 12 left-moving fermionic states completely determine
the number of spinorial 16 representation of SO(10) and
thus completely determine the number of generations in
the model. It is interesting to note that from the point of
view of the number of generations, the same number of
degrees of freedom that determines this number in boson-
ic formulations, namely, the 6 bosonic compactified di-
mensions, is the same in this free fermionic construction.
This point is further clarified by adding the vector

x= Io oly' (4)

to I 1,S,b „bz,b 3 I, which extends the gauge symmetry to

EsXU(1) XSO(4)

The sectors (b&, b +XI), (bz, bz+X), and (b3;b3+X)
each give eight 27 of E&. The (XS;AS+X) sector gives
in addition to the vector bosons and spin two states, three
copies of scalar representations in 27+27 of E&.

In this model the only internal fermionic states which
count the multiplets of E& are the real internal fermions
Iy, wly, w]. This is observed by writing the degenerate
vacuum of the sectors b in a combinatorial notation. The
vacuum of the sectors b contains twelve periodic fer-
mions. Each periodic fermion gives rise to a two-

dimensional degenerate vacuum l+ ) and
l

—) with fer-
mion numbers 0 and —1, respectively. The GSO opera-
tor is a generalized parity operator, which selects states
with definite parity. After applying the CxSO projections,
we can write the degenerate vacuum of the sector b, in
combinatorial form:

0+ 2

4
+

X '
0

5
+

5 5

2 4

2 I 5
+

0

5

3

5 1

5 1

(5)

where

4= Iy'y' y'y', y'y', y'y'I, 2= Ig",X"I,
5 =

I g' ' ' ' '
] and 1 =

I
g' j. The combinatorial factor

counts the number of l

—) in a given state. The two
terms in the curly brackets correspond to the two com-
ponents of a Weyl spinor. The 10+1 in the 27 of E& are
obtained from the sector b +X. From Eq. (8) it is ob-
served that the states which count the multiplicities of E&
are the internal fermionic states

CO
' ''

CO

respectively, which suggests that these 12 states corre-
spond to a six-dimensional compactified orbifold with
Euler characteristic equal to 48. The number of genera-
tions in the fermionic language, from each sector, corre-
sponds to the number of zero modes of the periodic fer-
mions with definite chirality, being positive in Eq. (5).
The remaining 16 right-moving complex fermions corre-
spond to the 16-dimensional torus of the heterotic string.
In the language of toroidal compactification, the three
SO(4) horizontal symmetries arise from nonzero vacuum
expectation values (VEV's) of the background fields at the
critical point [27].

A vector that contributes to the generations of chiral
fermions will not transform under the hidden gauge
group. It must have

b,.„(W,X, l
f' ', 8, ) =1

[where j denotes the following sets
=

t (X,z l ri I ); (X34 l 7) Q ); (y5~ l g3 ) ] ]. Thus, to satisfy the mass-
less condition each vector b,„must have four right-
moving real fermionic states and four real left-moving
states. We see that the number of such vectors is natural-
ly 3. To summarize, the vectors b„bz, and b3 perform

A similar result is obtained from the sectors bz and b3
with

1,2 5, 6l
—1,2 s, 6]

and



ALON E. FARAGGI AND D. V. NANOPOULOS

three functions.
(1) They give rise to the generations of chiral fermions

and the number of exactly 3 such vectors hints to the fact
that in this construction three generations can naturally
be obtained.

(2) They separate the hidden gauge group from the ob-
servable gauge group through a "comb mechanism. " By
adding b&+b2+b3 we get a vector for which
b [P, s}=0 and the rest of the fermionic states receive
periodic boundary conditions.

(3) They provide the necessary "chirality projection"
for each other.

This set was first constructed by Antoniadis, Ellis,
Hagelin, and Nanopoulos [17] in the construction of the
flipped SU(5) XU(1). We will refer to it as the NAHE
(Nanopoulos, Antoniadis, Hagelin, and Ellis) set. At this
stage, we postulate it to be a unique set and deviations
from it will be studied in future work.

III. BKYO)ND THE NAHK SET

At this stage we ask the following questions.
(1) Is there a maximum to the number of vectors that

can lead to full spinorial representations of SO(10), which
do not transform under the hidden gauge group and obey
the "chirality condition, " so as to maximize the number
of generations?

(2) Is the number of 3 such vectors favored?
We work in the original flipped SU(5) X U(1) construc-

tion [19] in which the 12 real left movers are coupled
with the 12 real right movers to form 12 real Ising model
fermionic states.

For a vector to contribute full spinorial representation
16 of SO(10) it must satisfy the "chirality condition, " it
must have

and it cannot carry any quantum numbers under the hid-
den gauge group. Regarding the number of generations,
the problem is reduced to examining the 12 Ising model
states. The other constraints which we impose are the
following.

(1) We want to break the SO(10) symmetry to a group

which does not use adjoint representations. This is done
by using the Z4 twist. [The alternative is to break the
SO(10) gauge symmetry to SO(6)XSO(4) by using only
periodic and antiperiodic boundary conditions. The re-
sults will be similar to the results presented here. ]

(2) We want to break the horizontal SO(6) symmetries,
at the most to factors of U(1)'s, as there is no evidence for
those horizontal symmetries in nature. g - will be
separated due to the Z4 twist and will give rise to three
U(1) horizontal symmetries. To break the symmetries of
the real fermions we need a minimum of three vectors;
otherwise, we will be left with either a gauge symmetry or
a residual Z2 symmetry. In the minimal case of only
three vectors, the breaking of all the horizontal sym-
metries which arise from the real fermions forces the
number of 16 representations of SO(10) from b„b2, and
b3 to be exactly 3. In the minimal case we cannot add
more vectors that will obey the "chirality condition" and
with all the horizontal symmetries broken. Thus, the
minimal case must be Z2(3Z2Z4 and the number of 16
representations of SO(10) from each vector is reduced by

No. of gen(bj )

Z, XZ, XZ, 2X2X4 (6)

Thus in the minimal case the existence of only three gen-
erations is correlated with the breaking of all the horizon-
tal symmetries that arise from the part of the real fer-
mions. In the toroidal compactification language it cor-
responds to projecting out all the gauge bosons which
arise from the nonzero VEV's of the background fields at
the critical point.

Let us now examine how the basis may be enlarged to
include more vectors that lead to additional full spinorial
16 representation of SO(10). These vectors must obey the
"chirality condition" and must be of the form described
above.

In Tables I and II we have classified all the vectors that
have empty real intersection with one of the sectors b„
b2, or b3 and thus may lead to additional full generations.
Additional vectors may have empty real intersection with
only one of the vectors b&, b2, or b3. In the notation of
Tables I and II, the upper index indicates with which vec-

2 2TABLE I. In the notation used here y, j denotes the sets [(y,z~q ), (y34~q ), (y,6iq ) },the upper in-
dex i indicates that the given sector has empty real intersection with the sector b; In all this. sectors lij„—1, . . . , 5 —1, . . . , 5 1 2 3
and g

' '''
are periodic. To obtain the sectors j; the sector jg

'' ',g, g, 7i } is added top;.

3
X12

3
734

3
756

3333 3434 X5X5 Sa 6 ~2X2 ~5~5 ~6~6 6)1' 1 C02C02 603C03 C04C04

2
X12

2
734
X56

1
712

1
734

1
X56
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TABLE II. Additional vectors with empty real intersection. The notation of Table I is used. In
these vectors an odd number of internal fermions are periodic.

3
X12

3
X34

&33 3 X4X4 &23 2 ~5~5 ~6~6 CO 1 CO 1 C02C02 C03C03 C04C04

2
712

2
X56

734
1

X56

tors of the NAHE set the given vector has an empty real
intersection. The lower index indicates which of the
three y pairs is periodic. To obtain the vector y,. , the vec-
tor

is added to the vector g~. The number of generations can
be enlarged by adding one or a combination of such vec-
tors that satisfies the modular in variance rules and
world-sheet supersymmetry. We investigate in detail the
addition of vectors from Table I. Adding vectors from
Table II will yield similar results. From Table I we see
that only one vector from each group 1, 2, or 3 could be
added. Otherwise we have one of the two cases: (1)
X126(3X34 ( ) X126SX56 nd X346(1X56

3 3. 3 3 3 3

Case (1) will not satisfy the canonical condition
g,.m, b; =0 if m, —=0, as can be seen by taking
y12+ y34+ b1+ b2 =0.

In case (2), by taking b, +X34+X56 we will get a vector

(0L ~W 91 92 03)

This vector will enlarge the observable gauge group to
E6XU(1) XSO(4) . The vector X gives 16+16gauge bo-
sons, which are needed to enlarge the gauge symmetry
from SO(10) to E6. The 5, 5 and the singlet which are
needed to enlarge the 16 representation of SO(10) from a
vector b to 27 representation of E6 come from the vec-
tors b +X. In principle, we could enlarge the gauge sym-
metry to E6 by simply adding the vector X to the set

1 5 b 1 62 b 3 I . However, it is interesting to note again
how the vectors of the form b,„give rise to the genera-
tion structure and at the same time determine the gauge
symmetry. (The extension of the NAHE set to include an
E6 gauge symmetry is an interesting exercise in its own
right as it may be easier in this case to understand the
correspondence with the geometrical formulations. ) For
similar reasons, at the most two vectors can be added
from Table I to the NAHE set. We have classified all the
possible combinations. Overall, from Table I there are 33
combinations. We generated all possible combinations by
using a simple computer program and checked the
equivalence of the additive groups of all those combina-
tions. There are four different models with the addition
of two vectors to the NAHE set and three different
models with the addition of one vector to the NAHE
set. After using the cyclic symmetry between
b, —+b2~b3~b, the number is reduced to 2 possible

models with the addition of 2 vectors and 1 possible mod-
el with the addition of 1 vector: (1) NAHESX12, ' (2)
NAHE@X12I33X56, (3) NAHESX566sX34.

Overall, case (1) will give

23 13 3 3
+12 +34 12 +12 +34

Z2 Z2 Z2 Z2
+56

for a total of 48 generations. Case (2) will give

23 13 12 3 3 2 2
+12 +34 +56 +12 +34 +12 +34

Z,
+

Z,
+

Z,
+

Z,
+

Z,
+

Z,
+

Z,
for a total of 56 generations. Case (3) will give

23 13 12 3 2 1
+12 +34 +56 +56 +34 +12

Z2 Z2 Z2 Z2 Z2 Z2

for a total of 48 generations.
In addition to the vectors of the for b,„, there are in

the spectrum vectors of the form b =y . For example,

X56=(W X X 3' 3'~7

These vectors give rise to the representations 5, 5 and
singlets of SO(10).

(1) X56.
—1 —1 —2 3
X56 X34 X34X56 '

—1 —1 —2 —2 —3 —3
X34~ X56~ X12~X56~ X12tX34

Vectors of this form mix between generations from
different vectors. Therefore, they may be used in the con-
struction of realistic mass matrices by using the 5 and 5
as Higgs fields.

At this stage, each horizontal symmetry is broken to
factors of SO(2)"X SO(4)~, which we break further. We
can now add vectors that will obey the "chirality condi-
tion" with b4 or b5. We must, however, keep in mind
that in the Z4 twist, to keep the full 16 representation of
SO(10), there must remain a Z2 symmetry from the part
of the real fermionic states, which must be broken when
the Z4 twist is applied. Otherwise, only part of the 16
will remain in the spectrum. [This will also be true in the
case where the symmetry is broken to SO(6) XSO(4). The
conclusion is that in a vector that breaks the SO(10) sym-
metry there must exist a Z2 symmetry from the real part
to insure that the full spinorial 16 of SO(10) will remain
in the spectrum. ] Therefore, we can add at the most one
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more vector of the form bg,„.
Thus the conclusion is that in this construction, a max-

imum of six vectors of the form b, to give an additive
group of Z2Z4, can be constructed. In cases (2) and (3)
we cannot add more vectors that obey the "chirality con-
dition. " Therefore, in these models, after the breaking of
the horizontal symmetries, we mill have one generation
from each of the vectors. Therefore, in these two cases we
wi11 have 7 and 6 full spinorial 16 representation of
SO(10), respectively, after all the horizontal symmetries
are broken. In the case of model 1, we may add the two
vectors

The model spanned by this basis will have 11 vectors of
the form b,„ that obey the "chirality condition" and
therefore after the application of the Z4 twist and the
breaking of all the horizontal symmetries, this model will
lead to 11 generations of chiral fermions. This is the
maximal possible number of generations in this construc-
tion with all the horizontal symmetries broken.

It is clear that phenomenologically the extension of the
NAHE set along the lines suggested above is not realistic,
as perturbative unification will be impossib1e in these
cases. However, can we find a reason why the string wi11

not choose to go in this direction? The consistency re-
quirement implemented by requiring modular invariance
and vanishing of the conformal anomaly does not forbid
those extensions. It is interesting to note that even
though models with more vectors which obey the "chiral-
ity condition" are possible, the NAHE set which is postu-
lated here to be a unique set, forbids the construction of
models with only four such vectors and therefore a mode1
with only four b,„ is impossible. If a vector from Table I
or Table II, which obeys the "chirality condition, " is add-
ed to the NAHE set, then there will always be another
vector which is a combination of this vector and a com-
bination of the vectors b„b2, and b3 which obeys the
"chirality condition" as well. Therefore, the extensions
will always be of at least five vectors which obey the
"chirality condition" and a model with the NAHE set
and only four generation vectors is not possible. The
only way to obtain a four generation model is by not us-
ing the full NAHE set and leaving some of the horizontal
symmetries unbroken, as is done in some of the examples
in Ref. [24], in which case there is not a well-defined hid-
den sector. The second reason why the string does not go
in this direction may be the following. The NAHE set es-
tablishes a cyc1ic symmetry between b„b2, and b3, ex-
tending the basis to include more vectors which obey the
"chirality condition" and therefore constructing more
vectors that may lead to additional generations destroys
this cyclic symmetry. To preserve this symmetry we ei-
ther cannot add more vectors which obey the "chirality
condition" or we have to add at least two such vectors
and therefore we will always have either only the NAHE
vectors which obey the "chirality condition" or we will
have five or more such vectors.

So far we have avoided the question of what is the ob-

servable gauge group which emerges from the string after
the application of the GSO projections. In the case of the
minimal basis the net chirality of three generations is true
irrespective of the choice of the observable gauge group
after the GSO projections. The no-adjoint theorem re-
stricts the observable gauge group to gauge groups which
do not use adjoint representations, at the field theory lev-
el, to break the gauge symmetry to the standard model.
Only three possibilities are permitted: SU(5) XU(l),
SO(6)XSO(4), and SU(3)XSU(2)XU(1) . In the first
two cases there are four 16 and one 16 representations of
SO(10), a net chirality of three generations. The addition-
al 16 and 16 are coming from vectors which do not obey
the "chirality condition. " In the third case there are ex-
actly three 16 representations of SO(10) and no 16.
Therefore, a net chirality of three generations is a unique
characteristic of the NAHE set and the breaking of all
the real horizontal symmetries in the minimal basis. In
the language of toroidal compactification these sym-
metries arise from the nonzero VEV's of background
fields. Thus, in the minimal basis a net chirality of three
generations is correlated with the projection of all the
enhanced gauge symmetries, due to the nonzero VEV's of
background fields at the critical point. We would like to
remark that even though there exist many models with a
net chirality of three generations in the Calabi-Yau and
orbifold formulations, most of these models have genera-
tions and mirror generations that cancel out. It is at
present not clear what the role of these generations and
mirror generations is and whether they can survive the
phenomenological scrutiny.

Before turning to the conclusion, let us brieAy com-
ment on the question of the number of generations in
string theories in general. In the geometrical formula-
tions of the superstring the number of generations is re-
lated to the Euler characteristic of the compactified
space. Once this is realized a systematic classification,
with respect to the number of generations is easily
achieved. The free fermionic formulation has the advan-
tage of being formulated directly in four space-time di-
mensions and has led to the most realistic string models
to date. Its disadvantage is that the geometrical informa-
tion, with respect to the number of generations is lost.
Therefore, the ability to perform a systematic
classification is weakened. As progress is made in the un-
derstanding of string theory, the diA'erent formulations
are expected to unify. Then, a complete understanding of
the geometrical origin behind the free fermionic con-
struction, and the number of generations, will be gained.
At the moment, why free fermionic constructions natu-
rally lead to three generations, and most realistic models,
is still a puzzle. One possible reason behind it may be the
fact that the free fermionic formulation is formulated in
the most symmetric point in the moduli space. Where the
gauge symmetries are enhanced from U(l) to SU(2).

IV. CONCLUSIC)N

In this paper we have investigated in detail the con-
struction of free fermionic spin structure models with
Z2Z4 boundary conditions, with special attention to
the number of generations in these models. The number
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of generations of chiral fermions has been observed to be
only 3. We have shown that in the restricted class of
models that we examined the number of 3 generations is
a natural consequence of the following.

(I) The initial number of degrees of freedom which are
needed to cancel the conformal anomaly.

(2) As a consequence of 1 and low-energy observations
the low-energy gauge group has to be split to a hidden
rank 8 gauge group and an observable part. This, as we
have shown, naturally introduces three vectors of the
form b,„ into the model construction.

(3) Requiring minimality of the basis and the breaking
of all the horizontal symmetries that arise from the part
of the real fermions.

From the point of view of gauge theories and point
field theories, the nu. mber of light left-handed neutrinos
has been observed to be only 3. Dynamical calculations
of mblm are in agreement with experimental observa-
tions only in the presence of three generations of chiral
fermions. However, in unified gauge theory there is no
understanding of how nature has chosen to have only
three generations. Moreover, in unified gauge theory, be-
cause of the nonobservation of proton decay and the big
desert picture, the origin of the number of generations
must have an explanation at the scale which is above the
grand unified theory scale, or at the Planck scale. Indeed,
in the geometrical formulation of the string the number
of generations is determined by the Euler characteristic
which is an intrinsic characteristic of the compactifi-
cation scale, or of the Planck scale. The question is how
does the string choose three generations. In this paper
we have investigated this question in detail within the
framework of the free fermionic formulation with
Zz(SZ4 boundary condi. tions. As the number of chiral
generations depend only on the choice of boundary con-
ditions, it is a characteristic of the chosen string spin

structure. Therefore, the number of generations of chiral
fermions could provide circumstantial evidence for the
string. At this stage it is safe to claim that in the free fer-
mionic formulation of the superstring with Z2 g Z4
boundary conditions, 3 generations is the most natural
number. Models with 3 generations are simpler, more
elegant, and more economical than models with a
diferent number. Further investigation is required to see
if 3 generations, in this formulation, is practically unique.
In this respect, our work here may be instrumental in
identifying the real string vacua. One way to enhance
our understanding is by constructing the NAHE set (or
its E6 extension) in the geometrical formulations of the
string as those formulations will give a geometrical un-
derstanding of the correct string vacua.

Further and elaborate investigation is required to
alarm the claims made in this paper. %'e hope that we
have been able to convince the reader of the value of such
investigation. What we may gain is twofold. On the one
hand, we may develop an understanding of the origin of
the three generations. On the other hand, the experimen-
tal observation of only three generations, because of the
reasons discussed above, is the first experimental observa-
tion that we may be able to connect to the string. In this
respect the somewhat disappointing result at LEP and
SLC may eventually turn out to be one of the most funda-
mental observations ever made.
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