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The seesaw mechanism of neutrino mass generation may enhance lepton mixing up to maximal even if
the Dirac mass matrices of leptons have a structure similar to that in the quark sector. Two sets of con-

ditions for such an enhancement are found. The first one includes the seesaw generation of heavy Ma-

jorana masses for right-handed neutrinos and a universality of Yukawa couplings which can follow from

the unification of neutrinos with new superheavy neutral leptons. The second set is related to the lepton
number symmetry of the Yukawa interactions in the Dirac basis of neutrinos. Models which realize

these conditions have a strong hierarchy or strong degeneration of Majorana masses of the right-handed

neutrinos.

PACS number(s): 12.15.Ff, 14.60.Gh, 96.60.Kx

I. INTRODUCTION

mMaj m ~—lm T (2)

An attractive feature of this mechanism is that the Dirac
matrix mD can be similar (in scale and structure) to that
in the quark sector which is naturally implied by quark-
lepton symmetry and grand unification. The difference in
scales of neutrino masses, and probably in lepton mixing,
follows from the structure of expression (2) and from the
Majorana mass matrix which has no analogy in the quark
sector.

Mixing of leptons in the seesaw mechanism has been
widely discussed previously [2—14] (see [2] for review).
For mD(leptons) -mD(quarks) the lepton mixing turns
out to be typically of the same order of magnitude as
quark mixing [3—13]; i.e. , lepton mixing is relatively
small at least between the first two generations. This was
illustrated, in particular, by Monte Carlo studies of
different configurations of the Dirac and Majorana mass
matrices [8], although some textures of matrices result in
large mixing [4,6,8].

At the same time it is dificult to expect that lepton
mixing coincides precisely with quark mixing. Mixing is
related to masses but the masses of the charged leptons

The seesaw mechanism of neutrino mass generation
naturally relates the smallness of the neutrino masses
with the neutrality of neutrinos [1]. According to the
seesaw mechanism the following mass terms are intro-
duced in the fermion family basis:

= —
vL mDv~ —v„C —,'Mv~ +H.c.T —1&

Here mD is the Dirac mass matrix (Dirac sector) and M
is the majorana mass matrix for right-handed neutrino
components (Majorana sector). At M &)mD the terms
(1) generate the Majorana mass matrix for left (active)
components (=vL ) [1]:

and down quarks from the same fermion generations are
different. Neutrino masses, if they exist, are much small-
er than the masses of up quarks. The results of the galli-
um experiments [15] with solar neutrinos show that Ca-
bibbo mixing cannot explain the solar neutrino problem.

Moreover, there are several hints that lepton mixing
might be much larger than that in the quark sector. The
solar neutrino problem [15,16] can be solved by long
length vacuum oscillations ("just so") [17,18] or by reso-
nant flavor conversion, the Mikheyev-Smirnov-
Wolfenstein effect [19,20]. The former requires the
values of neutrino mixing angles 0 and masses squared
difference bm: sin 20=0.85 —1.0 bm =(0.8 —1.1)
X 10 ' eV [18]. The latter picks up two regions of neu-
trino parameters, one of which involves large mixing an-
gles: sin 20=0.6—0.9 at b.m =(10 —10 ) eV [20].
The deficit of the muon neutrinos in the atmospheric neu-
trino Aux can be explained by v„-v, oscillations with pa-
rameters: sin 20=0.5 —0.9, b, m =(10 —10 ) eV
[21].

As follows from (2) the masses of light neutrinos in
these regions correspond to Majorana masses of the
right-handed neutrinos of the order of (10' —10' ) GeV.
This is much smaller than a possible grand unification
scale which may testify for a strong hierarchical structure
in the Majorana mass sector. Such a hierarchy (as we
will show) may result in an enhancement of lepton mix-
ing.

In this paper we assume that the Dirac mass matrices
in the lepton sector are similar to those in the quark sec-
tor and find conditions at which lepton mixing is
enhanced by the seesaw mechanism itself. The paper is
organized as follows. In Sec. II, considering the two-
neutrino case, we formulate general conditions for
lepton-mixing enhancement. Two sets of conditions are
found. In Secs. III and IV we consider two scenarios
which realize these conditions. Section V contains a dis-
cussion and summary of results. Some technical details
are explained in the Appendix.
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II. SEESAW ANGLE.
MECHANISMS OF ENHANCEMENT

We will first explain the mechanism of enhancement
for the two-neutrino case and then generalize the results
for three-neutrino mixing.

The mixing angle for two generations of leptons, 0" ',
can be written in the form tan(Og —OM) & eD, (7)

According to (5) there are two possibilities: (i) all terms in
the denominator of the RHS of the Eq. (5) are very small,
(ii) there is a strong cancellation among two first terms.

(i) The first case corresponds to a strong mass hierarchy
in the Majorana sector I.ndeed, according to Eq. (5), one
obtains tan 20„~ I, when

0"P'=0 —0' +0L L ss' (3) and

The first two terms in the right-hand side (RHS) of this
equation are the direct analogies of mixing angles in the
quark sector: 01 is the angle of rotation of the left
charged lepton components which diagonalizes the mass
matrix of charged leptons; 0L is the angle of rotation of
the left neutrino components vL, which diagonalizes the
Dirac mass matrix of neutrinos, mD (see Appendix). The
last term in (3), 8„, is the additional angle that specifies
the effect of the seesaw mechanism itself. If there are no
Majorana mass terms (M=O), then 8„=0. We will call
0„the seesaw angle.

Let us suggest that the Dirac matrix contribution to
0 I" is of the order of quark mixing angle:
OL

—
OL & Oc = 13 '

(Oc is the Cabibbo angle), and that OL

and OL are separately also small =Qm, /m&. We will
find the conditions at which 0„is appreciably larger than
0L and 01, so that 0""'-g„and the latter may be close
to 45 .

The angle 0„ is determined by the properties of both
the Majorana M as well as of the Dirac ID mass ma-
trices, and it is convenient to write down 0„ in terms of
mixing angles and mass hierarchies that characterize M
and mD. Namely, let 0 and 0~ be the angles of rotation
which diagonalize M and mD correspondingly (see Ap-
pendix). Let us define the mass hierarchies of M and mD
as

Ul i
E M — 1

2
(4)

where m; and M, (i = 1, 2) are the eigenvalues of mD and
M, respectively. Then 8„is determined from (see Appen-
dix)

tan28„= —2 tan(8 —Oz )
D e(1—e )' tan'(OM —Og)+~ —n

' (5)

where 6 is a small term of second order in the Dirac mass
hierarchy:

5=(e ) [1+@ tan (8 —Og)] . (6)

Two remarks are in order. As follows from (5,6), the an-
gle 8„ is precisely zero at 8 =Og (i.e., when the rota-
tions of right-handed components that diagonalize M and
mD are the same), or at e =1 (when the masses of Ma-
jorana sector are degenerate). The angle 8„ is propor-
tional to the mass hierarchy in the Dirac sector (rather
than +e ), and since E is small one obtains typically
small values of 0„,unless the denominator in the RHS of
Eq. (5) is strongly suppressed.

Let us consider the conditions for g„enhancement.

eM & (eD)2

Note, if e )0, then the maximal value of 0„,
~D

tan 2g
M D 2v'e —(e )

is achieved at tan(Og —8 )=+@ —(e ) . Consequently,
the equality tan28„'"=1 implies e -(e ); the mass
hierarchy in the Majorana sector should be of the order
of the Dirac mass hierarchy squared.

The condition (7) means that the angles 8 and Og are
close to each other: since Og -+e, we get from (7)
gD gM ((gD

(ii) The condition of strong cancellation in the denomi
nator of the RHS of Eq. (5) reads

tan (OM —8 ) ——eM .

Now a strong mass hierarchy is not needed and, more-
over (as we will show), an approximate mass degeneration
in the Majorana sector naturally results in cancellation.
If the equality in Eq. (10) is exact, then, according to (5),

tan20„= D

28M ~M (OD 0) (12)

In turn, Eq. (12) implies the following inequality of the
matrix elements of M:

M))M22 ((M)2 .2 (13}

If M»M22 =0, the equality (12) is exact.
Let us comment on some special cases.
(1) Mii =0, M22&0. (Inequality M22))Mi2 corre-

sponds to the Fritzsch ansatz [22] for M. ) One gets near

Consequently, at e =e, one has tan28„-1/+e ))1;
i.e., the angle g„can be close to the maximal mixing
value. The weaker the hierarchy e, the larger g„and,
consequently, the larger the lepton mixing, in contrast
with the previous case.

Since 0 is determined by the Majorana matrix M
whereas 0~ is determined by the Dirac matrix mD, the
equality (10}implies, in general, the relation between the
structures of these matrices. It is instructive to express
this relation in the following form. Let us define the
Dirac basis of neutrinos, vi, , as the basis of the neutrino
states in which gz =0, i.e., in which the Dirac mass ma-
trix mD is diagonal. Then the condition (10) means that
in the Dirac basis the Majorana mass matrix should satis-
fy the condition
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to maximal mixing according to Eq. (11), and an inverse
mass hierarchy in the light neutrino sector.

(2) M»WO, M22=0. These conditions result in an in-
verse mass hierarchy of the heavy Majorana neutrinos:
e & 1, and in an inequality tan 8 = —I /e . Therefore,
a strong cancellation will take place only at strong mass
degeneration, e =1(M» «M, 2). In this case, the ex-
pression for the angle O„can be written as

26tan28„= 2e M
AM

(14)

III. ENHANCEMENT OF MIXING IN THE CASK
OF STRONG MASS HIERARCHY

IN THK MAJORANA SECTOR

Both conditions of the enhancement —strong hierar-
chy in the Majorana sector (8), and approximate equality
of the rotation angles (7), are satisfied simultaneously if

where AM is the di6'erence in absolute values of Majora-
na masses. [At M» =M» =0 there are no mass splitting
and no mixing; the light components form a Zeldovich-
Konopinsky-Mahmoud (ZKM) neutrino. ]

(3) In the more natural case, M»-M» «M», one
can get both mixing enhancement and a normal mass
hierarchy of light neutrinos (see Sec. IV).

Mixing is enhanced also if the condition (12) is satisfied
at nonzero Oz, but this angle should be small. Indeed
substituting (12) in (5) we get

D
tan20„=

tan8~

i.e., for tan20„ to be of the order of 1, one needs
tanO& ~e =10, which is much smaller than the typi-
cal rotation angle in the Dirac sector. Consequently, a
strong nondiagonality (13) of the Majorana mass matrix
of right-handed neutrinos alone is not enough to get
strong enhancement of mixing.

The above conditions can be immediately generalized
for three-neutrino mixing. In the first case one should
suggest a strong mass hierarchy in the Majorana sector:
Mt ~(m; ) and that the Majorana and the Dirac mass
matrices are diagonalized by approximately the same
transformations of right-handed neutrino components Sz
[Sz =—S(8ii) for two neutrinos]. In the second case, at
least some of the elements of the Majorana mass matrix
in the Dirac basis of neutrinos should satisfy the condition
M~~. && ~M„.MJ~ ~. Note that such a nondiagonality of the
Majorana mass matrix is a generic feature of models
where neutrino components have nonzero lepton nurn-
bers and a symmetry related to this lepton number is
preserved (or approximately preserved) by the Yukawa
couplings and possible bare mass terms.

dlgg
TS~,Dh:—Sl

U

m diag
D

h~ —S~ S
U

Here U is the vacuum expectation value of P and Sz is
some almost arbitrary matrix which may be related to
features of NL interactions. In particular, it can be equal
to I or Sl.

When the fields P and cr acquire nonzero vacuum ex-
pectation values, neutrino masses are generated and the
mass matrix in the block basis (vr, vt, NL ) can be written
as

ized by Sz, i.e., 8 =8+, and e =(e ) for the two-
neutrino mixing. In fact, the equality (15) should be
slightly broken because at 0 =0+ one gets 0„=0.

The relation (15) can be obtained if the right-handed
neutrino components acquire Majorana masses via the
seesaw mechanism too. This implies the existence of new
heavy neutral leptons and the "cascade, " or extended
seesaw (see e.g., [6], where the extended seesaw was used
for another purpose). The first (high-mass scale) seesaw
induced by the interactions of vz with new leptons gives
the Majorana masses to v~'s, and the second one gen-
erates the masses to the light neutrinos.

Let us introduce three (one for each fermion family)
neutral leptons NL =(N, L,N2L, N3L ), singlets of the elec-
troweak symmetry, with bare Majorana masses m& at
some large scale (e.g. , mz can coincide with grand
unification scale MGU). Let us introduce also the scalar
field o singlet-of SU(2) XU(1), which acquires a vacuum
expectation value o.p~ 10' GeV. Then the Yukawa in-
teractions and the bare mass terms of the model are

vt h„v~P+Nt h~vtio+NLC. ' ,'m~NI —+H.c. (16)

Here P is the usual Higgs doublet, and h„and h~ are the
matrices of the Yukawa couplings. We suggest that the
bare Majorana masses of v~'s are small or forbidden by
some symmetry G. For example, one can introduce the
global G=U(1) and prescribe the following G charges:
G(vz)=G(vL )=G(o )=1, G(NL )=G(P)=0. Another
possibility is that the vz enters the doublet of SU(2)i,
syrnrnetry which is broken at the scale V~ «M«. In
this case vz may acquire a mass « V~ [1].

To reproduce the relation (15) one should suggest that
the matrices of the Yukawa interactions, h and h&, are
correlated. The simplest possibility, h =hz, means a
universality of Yukawa interactions: the couplings of v~
with vl and Nl are the same. Such a universality implies
unification; it can be realized if vt and NL as well as P
and o. enter the same fermion and scalar multiplets corre-
spondingly. In fact, the equality of h and h& is not
necessary; the enhancement takes place if the matrices of
the Yukawa couplings have the form

m Tm S (m diag)2ST1 1
D D R D R (15) 0

Here p, is some mass parameter and Sz is the transforrna-
tion which diagonalizes mo. [Strictly speaking, the last
equality in (15) is true for the CP-conserving mD. ] In
case of exact equality (15), the matrix M is also diagonal-

T
m&

Op
S~mD

Oo
mDS~

U
(18)
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It gives the Majorana mass matrix for right-handed neu-
trino components,

Oo T T —1mDS&m@ S~m

and then the Majorana mass matrix for light components:
2

S~m~S~TMRj

oo
(20)

(for real SN). As follows from Eq. (20), at Sbl =I, the ma-
trix m " is proportional to the mass matrix of su-
perheavy leptons, KL. We may suggest that the Yukawa
couplings or/and bare mass terms at the highest mass
scale have no hierarchy; all elements of the matrix m&
are of the same order. The matrix S& with small nondi-
agonal elements gives only small corrections to the above
picture.

Note that at o.o-m~ —10' GeV, the typical mass
scale for the lightest components is about
m —v mz/era= 10 eV. Therefore a small spread of pa-
rameters in m& allows us to explain the scales of both the
solar (m -0.3 X 10 eV) and atmospheric [m —(3—10)X 10 eV] neutrino problems. The Majorana
masses of right-handed neutrinos are naturally in the in-
termediate mass scale region (10' —10' ) GeV.

Two remarks are in order. A Goldstone boson which
could appear due to spontaneous violation of 6 symmetry
by the vacuum expectation of o. has negligibly small in-
teractions with active neutrinos. Moreover, it can ac-
quire a nonzero mass due to explicit violation of this sym-
metry at low scales. Additional scalars can be introduced
to generate m& spontaneously.

The above mixing enhancement based on the extended
seesaw mechanism and the universality of the Yukawa
couplings allows us to systematically compensate for the
smallness in the lepton mixing related to the hierarchical
structure of ma. In the extreme case the lepton mixing is
defined by the structure of the mass matrix of superheavy
leptons and does not depend on the Dirac matrix at all.

should obey definite symmetry.
It is possible to formulate these conditions in another

form. Usually lepton symmetry and lepton numbers are
introduced in the Dirac basis of the charged leptons (i.e.,
in the basis where the mass matrix of charged leptons is
diagonal; see e.g. , [7] in context of the seesaw mecha-
nism). Lepton number symmetry introduced in such a
way is violated by neutrino mass terms. In contrast, one
can impose the lepton symmetry in the neutrino Dirac
basis and suggest that this symmetry is violated by mass
terms of charged leptons. These two cases are physically
equivalent if there are only Dirac masses, but they give
different results in presence of the Majorana mass terms.
In the neutrino Dirac basis, the lepton mixing matrix can
be written as

Slept (Sl )+S (21}

where SL is the transformation of the left components
which diagonalizes the charged lepton mass matrix and
S„ is the seesaw transformation which diagonalizes the
mass matrix for light components in the Dirac basis (see
Appendix). In the two-neutrino cases, Eq. (21) corre-
sponds to Eq. (3) at OL =0; by definition, Sl relates the
Dirac and the Aavor bases: vf =Sl' va, SL is similar to the
Cabibbo-Kobayashi-Maskawa matrix of the quark mix-
ing.

Consider neutrino mixing in the Dirac basis, vL, . Let
us suppose that the Yukawa interactions as well as the
bare mass terms obey a global 6=U(1) symmetry. We
prescribe zero 6-charge for the usual Higgs doublet,
6(P)=0, and different 6-charges for different pairs of
left- and right-handed neutrino components: 6 (v;L )

=G(v;R)=G;, 6;AG~ (i,j= 1, 2, 3). Then the Yukawa
couplings of neutrinos with P and consequently the Dirac
mass matrix are diagonal (as is demanded by definition of
the Dirac basis). We will also introduce a scalar field o.

with nonzero charge 6, which acquires nonzero vacuum
expectation value o.

o and thus breaks 6 symmetry. Now
Yukawa interactions and bare mass terms of the model
can be written as

IV. ENHANCEMENT OF MIXING DUE TO
I.KPTON SYMMETRY IN THK DIRAC BASIS.

DEGENERATION OF HEAVY MA JORANA MASSES

dlRg
mD

VL
U

vRP+vR C A vR w+vR C MbvR +H c'T —11 T
2 2

The enhancement of mixing takes place due to the can-
cellation in the denominator on the RHS of Eq. (5). The
condition of cancellation [the relation (12} for the Ma-
jorana mass matrix in Dirac basis of neutrons] implies a
correlation between structures of the Dirac and the Ma-
jorana matrices. The possible deviation from this corre-
lation quantified by the angle 0~ should be small. These
features again imply the universality of the Yukawa cou-
plings. The neutrino family states, at least vz, should
enter both the Yukawa interactions and the bare mass
terms in the same combinations, which coincide with
eigenstates of the Dirac mass matrix: SRvR —=vR. How-
ever, in contrast with the previous case, the couplings of
vR need not be proportional to mD"s/v. To naturally
satisfy the condition (12), the Yukawa interaction of vR

0
d1RgmD

dlRgmD
(23)

The matrix of right-handed neutrino components, I,
should satisfy the cancellation condition [see Eqs. (12)
and (13) in two neutrino case]. According to the seesaw
mechanism the mass matrix for light neutrinos is

m = —m "gM 'm "gm gg
— mD ma (24)

Matrices of the Yukawa couplings h and bare masses Mb
are determined by the 6-charge prescription and in gen-
eral are nondiagonal. The neutrino mass matrix which
results from the spontaneous breaking of the electroweak
and 6 symmetries can be written in the basis (VL, vR) as
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M13

0

h„crp 0

0 M22

0 h 33opM13

(25)

The state vzz decouples and the task is reduced to the
two-neutrino case. At h11o p h33crp(KM, 3, one natural-
ly obtains a direct mass hierarchy in the light sector and
a strong cancellation in the denominator. The seesaw
transformation diagonalizing matrix (24) is

S„=
cosO„O sinO„

0 1 0
—sin O„O cosO„

where, according to (14),

Depending on G and on the charge prescription for vR ..G:—(G„Gz,G3), one gets different realizations of M
needed for mixing enhancement. Let us comment on the
simplest possibilities.

(1) For the charge prescription G, =(1,0, —1), G =2
the Majorana mass matrix is equal to

h $30 o ))M» and according to (14) one has

D h13cro
tan2O„= 2@13

11
(30)

The opposite order of charges G =(2, 1,0) gives strong
enhancement of 1 —3 mixing, but an inverse mass hierar-
chy of light neutrinos. In this case, large mixing angles,
i.e., sin 20) 0.6, are disfavored by SN 1987A data [23].

Changing the neutrino component which has charge
6=1 and, consequently, decouples, one can enhance
mixings of other pairs of neutrinos states.

(4) For G =(2, 1,0), G =1, the Majorana mass matrix

0 h12crp 0
M= h1zo0 0 h 23crp

h 23crp M33

(31)

2 M33h1ztan2O„=—
E12 cr Qh 23

(32)

results in a strong enhancement of 1 —2 (v, -v„) mixing at
M33 h12crp,

2e M(3 2e M13
tan2O„=

[(e )'h„—h((]~o ii o
(26)

and in an inverse mass hierarchy of light neutrinos. At
h, z/hz3 5 e one can get simultaneously the (1—3) mixing
enhancement:

Here t. =m1/m3. The v, -v, mixing turns out to be
enhanced, whereas v, -v„and v„-v mixings induced only
by Dirac matrices are small.

For the charge prescription G, =(1,—1,0), G =2 one
gets similarly an enhancement of 1 —2 and, consequently,
v, -v„mixing. For G, = (0, 1, —1), v„-v, mixing is
enhanced.

(2) For G„=(1,0, —1), G =1 the Majorana mass ma-
trix has a form

0 h 120 Q M13

M = h12crp Mzz h 23cr Q

M13 h 23crp 0

(27)

M11

0

h 13crp

0 h13oQ

hzzcrp

0 0

(29)

The state with charge 6 = 1 decouples and the task is re-
duced again to the two-neutrino case. In contrast with
version (1), here mixing is induced by the Yukawa cou-
plings with cr. The enhancement of mixing implies

A straightforward calculation of the m„according to
(24) gives that at hz3oo))M» the enhancement of 1 —2
( v, -v„) mixing takes place:

2e (M, 3/hz3oo)
tan20 D 2 z (28)

(e ) —(M, 3/hz3cro)

where E =m1/mz ~

D—

(3) For G =(0,1,2), G =2, the Majorana mass matrix
1s

2e (hz3/h, z)
tan2O

1 —(e ) (hz3/h, z)
(33)

V. DISCUSSION AND CONCLUSIONS

(1) The most natural scenario of lepton mass and mix-
ing generation implies that the Dirac mass matrices in
the lepton sector are similar to those in the quark sector.
The difference in the neutrino masses and probably in
mixing follows from the Majorana mass matrix of the
right-handed neutrinos.

(2) The effect of the seesaw mechanism itself in lepton
mixing can be described by the seesaw matrix or the
seesaw angle (when the task is reduced to the two-
neutrino case). The seesaw angle is proportional to the
mass hierarchy in the Dirac sector e, rather than +e .
Therefore, usually the seesaw corrections to lepton mix-
ing are small, or are of the same order as mixing induced
by the Dirac matrices. However, the smallness of the

For G =(0, 1,2), and G =1, v„-v, mixing is enhanced at
M &hcrp.

All elements of the Majorana mass matrix M can be
generated spontaneously by introducing additional scalar
bosons, so that the hierarchy of masses in the Majorana
sector is related to the hierarchy of the vacuum expecta-
tion values of different scalars. Moreover, the extended
global symmetry and/or discrete symmetry can be im-
posed to obtain the needed texture of mass matrices.

To explain the universality of the Yukawa interactions
one can also develop the scenario of Sec. III. Namely, it
is possible to generate the Majorana mass matrix of v~
via interactions with additional superheavy leptons.
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seesaw angle related to such a proportionality can be sys-
tematically compensated. At definite conditions, the
seesaw angle can be larger than the angles induced by
Dirac matrices and the lepton mixing is determined
mainly by the seesaw angle.

(3) There are two sets of conditions at which the seesaw
angle dominates and the lepton mixing is large. The first
set demands a strong mass hierarchy in the Majorana sec-
tor as well as approximately the same transformations of
the right-handed neutrino components which diagonalize
the Dirac and Majorana mass matrices. The latter im-
plies the universality of the Yukawa couplings of the
right-handed components.

These conditions can be realized in models with addi-
tional superheavy leptons NL, where right-handed neutri-
nos acquire Majorana masses via the seesaw mechanism
induced by interactions with NL. The universality of Yu-
kawa couplings of v~ could be explained by the
unification of vl and NL in one multiplet. As a result of
the extended (cascade) seesaw, the mixing of the light
neutrinos is determined essentially by mixing of NI . The
typical mass scale of light neutrinos, (10 —10 ') eV, al-
lows us to explain both the solar and atmospheric neutri-
no deficits.

(4) The second set of conditions demands definite form
of the Majorana mass matrix of right-handed components
in the Dirac basis of neutrinos (where Dirac mass matrix
is diagonal). Namely, dominance of the nondiagonal ele-
ments is needed and in most natural cases the Majorana
masses of right-handed neutrinos turn out to be degen-
erate. Such a nondiagonality of M (or suppression of the
diagonal elements) is a generic feature of models in which
neutrinos have nonzero charges of some symmetry, G.
For this scenario an enhancement of mixing for two neu-
trinos is typical. Different G-charge prescriptions result
in enhancement of mixing of different components.

(5) Future solar neutrino experiments will be able to
confirm (or reject) the solutions based on large lepton
mixing and therefore check (at least partly) the possibili-
ties considered in this paper.
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mined by a rotation angle 0;:
cosO; sinO, -

S(8;)—:—sinO; cos0,. (A 1)

Let 01 and Oz be the angles of rotations of the left- and
right-handed neutrino components, vL =S(gr )vt and
vz =S(gz )vz, which diagonalize the Dirac mass matrix:

S (81 )m~S(gz )=mD" =diag(m„m2) . (A2)

Here vI, v~ and m„m2 are the eigenstates and the ei-
genvalues of the Dirac mass matrix correspondingly (sub-
script T means transponent). Let 8 be the angle of rota-
tion of the right-handed neutrino components which di-
agonalizes the Majorana mass matrix of right-handed
neutrino components, vz =S(8 )vz ..

S (8 )MS(8 )=M "g—=diag(M„M ), (A3)

XST(gM gD )m diagS( gD )T (A4)

This matrix can be diagonalized by transformation (Al)
with the angle

0 —= OL +0„, (A5)

where 0„ is the angle of rotation which diagonalizes ac-
cording to (A4) the matrix

—m diagS( gM gD )(Mdiag)
—1ST( ghf gD )m diag

SS

(A6)

Now the lepton mixing angle can be written as
0""'=01+0„—OL; here OI is the angle of rotation which
diagonalizes the Dirac mass matrix of charged leptons.
At 0„=0 the form of lepton mixing coincides with that
in quark sector. So, O„specifies the features of the
seesaw mechanism and we wi11 call it the seesaw angle.

In the general case (three-neutrino mixing), one can in-
troduce the seesaw matrix, S„,so that the lepton mixing
matrix can be written in the form

where M, are the eigenvalues of the Majorana mass ma-
trix. Then taking into account that the inverse matrix
M ' is diagonalized by the same transformation (A3) we
can write the Majorana mass matrix for light neutrino
components in terms of diagonalized matrices and rota-
tions in the form

Maj S(gD ) diagS( 8M 8D )(Mdiag )
—1

L D R

APPENDIX: SEESAW ANGLE AND SEESAW MATRIX

In the two-neutrino case, the mass matrix is diagonal-
ized by the unitary transformation S(8;) which is deter-

SlePt (S!)+SDS

where the transformation S„diagonalizes the matrix

m diagS T~ —1S m diagm —mD RmD

(A7)
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