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Semileptonic decays D; 7r(p)eu and H; 7r(p)eu from +CD sum rules
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We investigate the semileptonic decays of B and D mesons into vr and p mesons, respectively, by
means of +CD sum rules. We find that for the vector form factors involved the pole dominance hy-
pothesis is valid to good accuracy with pole masses in the expected range. Pole dominance, however,
does not apply to the axial form factors which results in specific predictions for the predominant
polarization of the p meson and the shape of the lepton spectrum. For the total decay rates we And
I'(B —+ vr+e v) = (5.1 + 1.1) ~V b x 10 s, I'(D —+ 7r e+v) = (8.0 6 1.7) ~V,q~ x 10 s
I'(B —+ p+e v) = (1.2 + 0.4) ~V b~ x 10 s, and I'(D —+ p e+v) = (2.4 + 0.7) ~Vd~ x 10 s

PACS number(s): 13.20.—v, 11.50.Li, 12.38.Lg, 12.40.Vv

I. INTR.ODUCTION

Semileptonic weak decays of heavy mesons have proved
to be a very important tool in exploring the Higgs sector
of the standard model and, in particular, the strength
of weak decays of quarks, parametrized by the Cabibbo-
Kobayashi-Maskawa (CKM) matrix. Once the relevant
hadronic matrix elements are known, the CKM matrix
can be extracted from experimental measurements of the
decay rates. Whereas the situation (both experimental
and theoretical) now seems rather settled for the dom-
inant decays B ~ D~*~ev and D ~ Kev, at least at
a level of accuracy of 10'%%uo for the CKM matrix ele-
ments [1, 2], the experimental results for the Cabibbo-
suppressed decays B,D ~ m, pev at present still suffer
from large statistical uncertainties. This situation, how-
ever, will improve in the near future, since the explo-
ration of these decays is motivated by the quest for ~V„b~

which of all the CKM matrix elements still is the one
most poorly known [3—5].

There exist several theoretical calculations employing
relativistic [6,7] or nonrelativistic [8] quark models as well
as (for D decays) lattice calculations [9, 10], and, quite
recently, attempts to relate form factors of D decays to
those of the corresponding B decays by means of the
heavy-quark efFective theory [11]. All these models are,
however, for conceptional or, as for lattice calculations,
for economical reasons not capable of calculating the full
dynamics of the decay process, even apart from model
limitations. A quite standard procedure is to determine
a form factor f at some fixed point of t, the momentum
transfer squared to the leptons, and then to assume either
some polelike t dependence,

m 2
poI

where mp i is the mass of the lowest-lying resonance cou-
pling to the corresponding current (e.g. , [6]), or an expo-
nentially increasing form factor as in the nonrelativistic
model of [8]. Indeed, at the level of a desired accuracy
of, say, 20% for the rates, the details of the functional
dependence do not matter as long as t, the maxi-
mum value of t allowed by kinematics, is much smaller

than m i and the form factors vary only slowly (as for

B —+ D(*)ev). A certain deviation from that insensitivity
is noticeable in the decay D ~ K*ev where all "conven-
tional" (quark model and lattice) calculations are not
capable of reproducing either the absolute value of the
rate or the small value of the ratio of rates of longitu-
dinal to transversal polarized K* (cf. [1]). The actual
functional form of the t dependence becomes crucial if
t "jm2

i
—1 as in the decays B —

& vr, pev which in the
future will provide us with the most accurate informa-
tion on V„g. Thus a point seems to be reached where
increased attention should be paid. to the investigation of
the t dependence of form factors.

In fact, there is another method for calculating
hadronic matri~ elements, including nonperturbative ef-
fects, which relies on the field-theoretical aspects and fea-
tures of @CD and was designed to make maximum use
of known manifestations of nonperturbative @CD: the
@CD sum rules method [12]. Originally invented for the
calculation of vacuum-to-meson transition amplitudes, it
soon found application to the calculation of the electro-
magnetic form factor of the pion [13] and other meson-
to-meson transition amplitudes (cf. [14] for a review).
Although this method in general yields less detailed re-
sults than fine-tuned models, it has the advantage that
only a small number of parameters is needed that have
an evident physical meaning (e.g. , quark masses) and/or
characterize the nonperturbative regime of @CD (e.g. ,

the so-called quark condensate, the order parameter of
chiral symmetry breaking). Once these parameters are
fixed from well known processes, they can be used to
calculate, for example, heavy-meson decays.

In previous publications [15—18], we have shown that
the t dependence of the form factors of D + K~*~ and
B + Df*) can reliably be calculated by means of @CD
sum rules. As a general pattern to be followed, form
factors determined by vector currents observe a pole-type
behavior with pole masses in the expected range, those
determined by axial-vector currents in general do not.
In view of the above stated advantages of the @CD sum
rules method, we feel it worthwile to apply it likewise to
the Cabibbo-suppressed decays B,D ~ vr, pev and to go
beyond the existing @CD sum rule calculations [19—24]
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which for reasons to be explained in the next section were
restricted to a determination of the form factors at t = 0.
We expect to gain a reliable picture of the dynamics of
these decays and well founded predictions of their decay
rates within the scope of accuracy to be obtained by QCD
sum rules; i.e. , at the level of 20% at best.

Our paper is organized as follows. In Sec. II we present
the QCD sum rules method, improve the existing calcu-
lations, and collect all necessary kinematics. In Sec. III

I

we evaluate the sum rules and give results for the de-
cays D —+ vr, pev and B ~ m, pev. Finally, in Sec. IV we
discuss the results and compare them to experiment and
to other calculations. Formulas and technical details are
collected in the appendixes.

II. THE METHOD

We consider the three-point functions

'""*""""'"(olT»i "(o)&~~(y) j~(~) Io)

='(»H +»i)"»&II++. (2 1)

and

I'" =i d z d y e '~ +'(" " )" (olTjl, (0)(vh( —Ag()" (y)j&(x)lo)

='y~"r, —i(p~+ p, )~p„"r, —.~,.+p, rv + . , (2 2)

respectively. Here (Vg~ —Ap, ~)~ = lp~(1 —ps) h is the weak
current mediating the weak decay of the heavy quark
6 with mass m~ into the light quark l with mass m~,
j~ ——qip56 is an interpolating Geld describing the pseu-
doscalar meson H (B or D) built up from h and the light

antiquark q, and j& ——qp (ps)l interpolates the light
vector (pseudoscalar) meson L (a or p). pH and pl, are
the momenta of the heavy and the light meson, respec-
tively. In the above equations, we have made explicit
only those Lorentz structures that actually contribute to
the decays under consideration.

The correlation functions (2.1) and (2.2) are functions
of the scalars p~2, pL, and t = (p~ —pL, ) and can be

I

calculated in perturbation theory for Euclidean values

pH —m&, p& —m& (( 0. On the other hand, the singularity
structure of the correlation functions is known, and thus
we can represent them by double dispersion relations in

2 A 2
pH and p~, e.g. )

p+ (8H, SL t)
11+ —— ds~ dsL, 2

' '
2 +subtractions.

sH pJr sL, pl,

(2.3)

The spectral function p+" ' can be expressed in terms of
physical observables as

7' )7L ~ 3 D3

(2~)s2EI.; (27r)'2EH
b qI, — pl.. h qH — pa& 0 jI, m mVh&n n j00

(2.4)

where one has to take the appropriate Lorentz-structure on the right-hand side and qH ——80 and ql ——8L, . The sum
runs over all m- and n-particle states coupling to the currents jI and j~, respectively. In particular, we shall single
out the ground states and write

p',""- (olj," IL&(Llv„",lH&(IIlj„'lo& + p (2.5)

where p' " contains both the contributions of higher resonances with appropriate quantum numbers and of many-
particle states. The first term on the right-hand side contains exactly the quantities in which we are interested:

(~lv„",lII&=f, (t)(p +p.)„+f (t)(p„—p. )

(p ~l&gi —A~a(l~& = —i(m~+ m. )A~(t)e,*'"'+ (e*'"'p~)(p~+ p.)mQ + mp

'As(t) .( ) 2V(t) „( )+ (e* pa)(pa —», ) + ~p, ~v pH pppo. ~

mH' + mp mH+mp

(2.6)

(2.7)

These are the relevant matrix elements governing the hadronic part of the decays in question, decomposed in terms of'

the form factors f~, A;, and V, where mH and m~ are the masses of the H and the p meson, respectively; A denotes
the polarization state of the p. In the limit of vanishing lepton mass, the form factors f and As do not contribute
to the decay rates and henceforth will not be considered. Expressed in terms of the above form factors, the spectra
with respect to the electron energy E measured in the rest system of H read
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dl (H + sr+ e v)
dE

dI'(H m p+e v)
dE

IIISX
G2 V

dt(2E(m~ —m + t) —mH(t + 4E ))f+(t),
16m mH

0

maxt
G~ Vi.i

'
dtt((1 —cos0) H + (1+cos0) H+ + 2(1 —cos 0)H&)

(2.S)

(2.9)

with the helicity amplitudes

pl/2
H+ = (mH + m, )Ai (t) ~ V(t),

mH +mp

Ho —— (m~ —m —t) (mH + mp)Ai(t)—
1 2 2

2m' t mH +mp

(2.iO)

(2.ii)

t, the maximum value of t, the invariant mass squared
of the lepton pair, is given by

m2
t „=2EI m~-

m~ —2E)
(2.12)

0 is the angle between the p and the charged lepton in
the (e v) c.m. system and given by

cos 0 = (mH —m + t —4mH E)= 1 2 2

A
(2.13)

where A = (m~ + m —t) —4m~m .
Returning to (2.1) and (2.2), it was the idea of Shif-

man, Vainshtein, and Zakharov [12] to account for non-
perturbative corrections to correlation functions by ex-
pressing them via an operator product expansion (OPE)
including terms that vanish in the perturbative vacuum,
but acquire finite values in the QCD vacuum. These
so-called condensates characterize the long-distance be-
havior of the correlation function and we are led to write,
e.g. )

11,(&2„,&2„t) = ) rr~"'(&2„,&2„t)(0
~
O„~ 0). (2.14)

The Wilson coefBcients II+ can be calculated with the
aid of perturbation theory for negative values of p~ —m&
and pl —m& . The ( 0

~
O„~ 0 ) are vacuum expectation

values of gauge invariant operators, the above-mentioned
condensates (cf. Appendix A). The first term in the se-

p' "' = p
'" [1 —O(sl. —sr ) O(s~ —sr')]. (2.i5)

The calculation of pI'" for t ) 0 involves some deli-
cate points connected with the possibility of the spectral
function to become singular. For the discussion of the
additional "non-I andau" contributions caused by these
singularities we refer to [15]. In the numerical analysis
we will tacitly include those contributions whenever nec-
essary.

The dependence of the sum rule on the continuum
model as well as the error induced by truncating the OPE
series can be diminished by the application of a Borel
transformation. For an arbitrary function of Euclidean
momentum, f(P ) with P = —p2, that transformation
is defined by

I

ries just covers usual perturbation theory, the others are
nonperturbative corrections. In our analysis we will take
into account the lowest-dimensional condensates up to
dimension 6, where we improve existing calculations [25]
by the inclusion of the contribution of the gluon conden-
sate (Appendix A). Equating (2.3) and the OPE (2.14)
yields expressions for the form factors determining (2.1)
and (2.2) in terms of QCD parameters (such as quark
masses) and condensates. Before, however, we can start
to evaluate these sum rules, we have to specify how to
treat p"" in (2.5). As for that, we employ the argument
of quark-hadron-duality (e.g. , [12]) and model p' " by
the contribution of usual perturbation theory above some
thresholds 8~ and 8~.

f=B~2(M)f= ~2 ~+i
(dP2) N+1

)

2/N —M2 fiwe

(2.i6)

where M is a new variable, called Borel parameter. For a typical term appearing in the OPE, the transformation
yields

(2.i7)

Since condensates with high dimension get multiplied by high powers of (p —m ) in the denominator, their contribu-
tions get suppressed by factorials. In addition, the contribution of higher resonances and the continuum, p' ", gets
exponentially suppressed relative to the contribution of the ground state, which is just the desired eKect.

We are now in a position to write down sum rules for the relevant form factors. From (2.1) and (2.2) we find
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m2 m2

H

m2 m'

p ~+ p Hm

mg mH+m ma"~~(t) = "( " ') ex " ' M'M'I (M' M' t)
pm~ mL, h

m m +m m m
~(t)JI~r = "(, ') H ' M'M'I (M', M„', t).

2 ~ pm~ mL h

(2.is)

(2.i9)

(2.2o)

(2.21)

III. EVALUATION OF THE SUM RULES

In the numerical evaluation of the sum rules (2.18) to
(2.21) we use the following values of the condensates at
a renormalization scale of 1 GeV (taken &om [14] except
for the value of the quark condensate, where we take the
average value of the results obtained in [12] and [26]):

(qq) (1 GeV) = (—0.24 GeV),
—G = 0.012 GeV

(qagGq) (1 GeV) = 0.8 GeV (qq) (1 GeV),

16
qp A q qpA q = ——era, qq

'CC ~CEq8

4am, (duud) = 4~n, (qq) 2. (3.1)

We use leading-order anomalous dimensions of the quark
and the mixed condensate to evaluate them at a scale p
which is given by the harmonic mean of the Borel param-
eters, p = QM&2M~. For the four-quark condensates
we assume vacuum saturation. Since their contributions
are tiny, we neglect the scale dependence. In general
the sensitivity of the form factors to the actual values of
the condensates will be smaller than lo%%uo when changing
(—(qq))i~s by 10 MeV and inost pronounced for the ax-
ial form factors A2. The smallness of the contributions
of the contributions of the four-quark condensates indi-
cates that higher order power corrections are well under

Here Mh and M are the Borel parameters that come
from the Borelization of the correlation functions in the
virtualities pH and p& of the heavy and the light quark,
respectively. Parts of the explicit formulas for the corre-
lation functions can be found in [15]. For the present
analysis, we in addition have calculated the contribu-
tions of the gluon condensate and the contribution of
the four-quark condensate to f+, the formulas can be
found in the Appendixes. Note that we have expressed
the vacuum-to-meson transition amplitudes in terms of
the corresponding leptonic decay constants as

2

(0[dzpsb~B') = f~ (2.22)
mb

(O~dp. u~ p+, X) =fpmpe&"l, (2.23)

(0~ d&.~,u ~

~+) = if.p.. (2.24)

The question of how to treat these quantities will be dis-
cussed in the next section.

control. Concerning quark masses, we put the masses of
the u and the d quark to zero, for the heavy quarks we
use the renormalization-group and -scheme invariant pole
mass. Its connection to the running mass in the modified
minimal subtraction (MS) scheme is given by (for scales
& « mMs)

n(p) f4 pm», ——mM»(p) (1+ '
I

—+!»
Ms)

(3.2)

The numerical values are (cf. [14); a recent determination
of mb is given in [27])

mi, = (4.6—4.S) Gev, m, = (1.3—1.4) GeV. (3.3)

= 2. (3 4)

This procedure ensures that perturbative and nonpertur-
bative corrections in both the heavy and the light channel

For the leptonic decay constants we use the experimental
values f = 0.133 GeV and f~ = 0.216 GeV. For f~ and
f~ we employ two-point sum rules (e.g. , [28]), discard-
ing radiative corrections. We expect the accuracy of the
sum rules for the form factors to be increased by that,
since both in the limit of infinitely heavy quarks and for
the matrix-element (B~V„~B), where charge conservation.
fixes the form factor at zero recoil, @CD sum rules yield
the correct normalization independent of the values of
quark masses, continuum thresholds, and Borel param-
eter [17, 29, 30], provided the continuum thresholds in
the two-point and the three-point sum rules are chosen
equal and the Borel parameter in the three-point sum
rule takes twice the value of that of the two-point sum
rule. We will take these prescriptions over to the case
where the outgoing meson is light, and actually the sen-
sitivity of the resulting sum rules to mb or m, is greatly
reduced as compared to the sum rule for f~ or fD. In
addition, the e6'ect of the unknown radiative corrections
to the three-point function should tend to cancel against
the radiative corrections to the two-point function. Con-
cluding, we take both the range of Borel parameters, the
"sum rule window, " and the values of the continuum
thresholds from the two-point sum rules, i.e. , we evalu-
ate (2.18) to (2.21) in the range 7GeV & Mz & 10 GeV
and 2GeV & M & 4GeV and. for continuum thresh-
olds s~ = (6—7) GeV, s~ ——(34—36) GeV, s = (0.75—
1.0) GeV, so = (1.25—1.5) GeV . In addition, we choose
a fixed ratio of the Borel parameters,
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are equally weighted. The sum rules are rather insensi-
tive to the actual value of that ratio, and changing for
example M&/M„ from 3 to 5 results in changes of the
results of at most 10%%uo.

Our aim is to extract the t dependence of the form
factors &om the sum rules, and thus we are restricted to
a range of values where the correlation function can be
expected to be reliable in that variable. That is, we have
to stay approximately 1 GeV below the perturbative cut
starting at t = mb . Thus we can trust the sum rulesb, c

2up to t 20 GeV for the B decays and t = 0.9 GeV
for the D decays. The maximum values allowed by

2kinematics are t = 26.4GeV, t = 20.3
t ~ = 3.0 GeV, and t „~ = 1.2 GeV, so apart from
B —+ p we cannot cover the full range of t. Although
the accessible range is suKcient to determine the shape
of the form factor and the total rate, it is not for the
calculation of the electron spectrum. We thus extrapo-
late the form factors to t „to get the electron spectrum
for large values of the electron energy E. This procedure
does not introduce too large an uncertainty for D ~ p
since according to the above remarks at least 80'%%uo of the
integration range in t is covered, and for D ~ vr and
B ~ vr we will find a pole-type behavior of the form
factors which facilitates the applicability of the extrapo-
lation.

In Fig. 1(a) the form factor f+ (t = 0) is shown
as function of the Borel parameter M . The different
curves correspond to different choices of the set of in-
put parameters. To be specific, we use m = 1.3GeV,
sD ——6GeV, s = 0.75GeV (set Cl), m, = 1.3GeV,
s& ——6 GeV, s = 1 GeV (set C2), m, = 1.4 GeV,
s& ——7 GeV, s = 0.75 GeV (set C3), m, = 1.4 GeV,
sD ——7GeV, s = 1GeV (set C4). The value of sL)
is taken as the best-fit continuum threshold for the sum
rules for fD, s is taken from [12]. In the "sum rule win-

dow" 2GeV & M & 4GeV the f++~~{0) is quite sta-
ble and the dependence on the values of both the mass of
the c quark and the continuum thresholds as represented
by the spread of curves is well under control, yielding
f+(0) = 0.5 + 0.1 where the error is an educated guess
based on both the dependence of the sum rule on the in-
put parameters and the intrinsic uncertainty of the whole
method. Perturbation theory and the quark condensate
give the dominant contribution, the other condensates
contributing at the level of 10'%%uo. Thus the series of
power corrections is well under control.

f ~ (0) as function of the Borel parameter M&2 is+
shown in Fig. 1(b). Here we use the parameter sets
Bl (ms = 4.6GeV, so& ——36GeV, so = 0.75GeV ),
82 (mi, = 4.8GeV, a& ——36GeV, s = 1 GeV ), 83
(mb = 4.8GeV, s& ——34GeV, s = 0.75GeV ), 84
(ms = 4.8 GeV, s& ——34 GeV, s = 1 GeV ). Again the
value is remarkably stable against variation in the quark
mass, in the continuum thresholds, and the Borel param-
eter. From Fig. 1(b) we find f+ (0) = 0.26+0.02. This
value is higher than obtained in [16] which is due to the
contribution of the gluon condensate not included there.

In Fig. 2(a) we show f+D (t) as function of t, nor-
malized to its value at t = 0, which representation em-
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FIG. 1. (a) The form factor f+ (0) as function of the
Borel parameter M, . The parameter sets in the legend are
m, = 1.3 GeV, ski ——6 GeV, s~ = 0.75 GeV (set Cl); m, =
1.3 GeV sr! ——6 GeV, s = 1 GeV (set C2); m, = 1.4 GeV,e ) s~

2 . 0sn = 7GeV, s = 0.75GeV (set C3); m, = 1.4GeV, so =
7 GeV, s = 1 GeV (set C4). (b) f+ (0) as function of
the Borel parameter M& with the parameter sets Bl (mr, =
4.6 GeV ski ——36 GeV, s = 0.75 GeV ), 82 (mr, = 4.8 GeV,e, s&—

0sii ——36GeV, s = 1GeV ), B3 (mb = 4.8GeV, ss
34GeV, s = 0.75GeV ), B4 (rnb = 4.8GeV, ski ——34GeV
s = 1GeV ).

2=phasizes the differences in shape. We have chosen M
3 GeV and give curves for all parameter sets. We find a
rise in t which is very well compatible with a pole-type
behavior as suggested by the pole dominance hypothesis
(1.1). From a pole fit we get m~ i = {1.95 + 0.10) GeV
(including all sets and Borel parameters within the win-
dow). If pole dominance were exactly valid, the pole mass
would be mL!. = 2.01 GeV, so QCD sum rules confirm
pole dominance for D —+ vr.

Pole dominance is likewise valid for the B ~ vr

transition whose normalized form factor is depicted in
Fig. 2(b) as function of t and for all parameter sets at
M = 8 GeV . Pole fits yield pole masses of 5.1 GeVb
for the sets B1 and B2 and 5.2 GeV for B3 and B4.
From that we are forced to exclude the lower value of
the b-quark mass, mb —— 4.6 GeV, from our analysis
(since the form factor would become singular at t „)
and stick to mb ——4.8GeV. The "physical" pole is at
m~. ——5.33GeV which nicely agrees with the fit value
(5.25 + 0.10) GeV from sets 83 and 84.

In Fig. 3 we show the electron spectra dl'/dE as func-
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Let us now turn turn to the decays H —+ pev. In
Fig. 4 we show the form factors of D —+ p at t = 0
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FIG. 2. (a) The form factor f+ (t)/f+ (0) as func-
tion of t for all parameter sets at M = 3 G V A l

of t is t " = 2.96GeV . (b) Like (a) for f+ (t)/f+ (0).
m~ I = (5.25+ 0.10) GeV (for B3 and B4), t " = 26.4 GeV .

1.2

0.8—

[GeV ]

I ~ ~

l
~ I I &~f I I

l
I I I I

l

I I I I

(b)C5
C6
C7
C8

1.6

CL
A

CI

0. 6—

0.4- ~ e e r ~—

1.2 0.2—

0. 8
0

2 2. 5 3 3.5 4. 5

0. 4
[Gev ]

0.2 0. 4 0. 6

E [GeV]
0. 8

~ 2 I I I I

l
I I I I

l
I I I I

l
I I I I

l
I I I I I I I I1

0. 8

2. 5
C3

1-5

(b)— C3

CL
A
I

A

0.6—

0. 4

0.2

C6
C7---.—. C8

iA0

0.5

0. 50 1 1.5 2 2. 5 3
E [GeV]

FIG. 3. The electron spectra dl'/dR as function of the
electron energy E for (a) the decay D m new (set Cl, M, =
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FIG. 4. The form factors of D ~ p at t = 0 as functions
of the Borel parameter M, . The parameter sets are C5 (m, , =
1.3 GeV, sD ——6 GeV, s~ = 1.25 GeV ), C6 (rn, = 1.3 GeV,

s = 1.5 GeV ). (a) A, (0), (b) A~ (0), (c) V (0).
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factors are quite stable and we find Az ~(0) = 0.5+0.2,

A2 ~(0) = 0.4 + 0.1 and V ~~(0) = 1.0 + 0.2 where
as in the previous cases the error is intended to include
systematic uncertainties.

For B —+ p we find from Fig. 5 Az (0) = 0.5 +
0.1, A2 ~(0) = 0.4 6 0.2, V+~~(0) = 0.6 + 0.2 with
the parameter sets B5 (mb = 4.6GeV, s& ——36 GeV,
s = 1.25GeV ), B6 (mb = 4.6GeV, s~ ——36GeV,
s = 1.5GeV ), B7 (mb = 4.8GeV, s& ——34GeV, s

1.25GeV ), B8 (mb = 4.8GeV, s& ——34GeV, s

1.5 GeV ). All these form factors depend only slightly on
quark masses and continuum thresholds and are stable
in the Borel parameter, except for A2 ~(0). Here we
observe for 87 and Bs a rather strong dependence on
M& the reason being the extremely small contribution of
perturbation theory which is only of order 10'Fo.

In I"ig. 6 the normalized form factors of the D —+ p
transition are plotted as functions of t for M = 3 GeV
and all sets of parameters. We And a decrease of
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FIG. 5. The form factors of B ~ p at t = 0 as functions
of the Borel parameter Mb . The parameter sets are B5 (mb =
4.6 GeV, ss ——36 GeV, s~ = 1.25 GeV ), B6 (mb = 4.6 GeV,
s& ——36 GeV, s~ = 1.5 GeV ), B7 (mb = 4.8 GeV, s&
34 GeV, s~ = 1.25 GeV ), B8 (mb = 4.8 GeV, ss ——34 GeV
s = 1.5 GeV ). (a) A, ~(0), (b) A2 ~(0), (c) U ~(0).

I'IG. 6. The form factors of D —+ p, normalized to their
values at t = 0, as functions of f for all parameter sets
and M = 3GeV . A pole Bt is sensible only for the vec-
tor form factor and yields m~ ~

= (2.5 + 0.2) GeV. t
1.21 GeV . (a) A~ ~(t)/A~ ~(0), (b) A~ ~(t)/A2 ~(0),
(c) U (t)/U (0).
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~D-+pr i
Az ~t~ in t which is nearly independent of the parame-
ter set used. This behavior is in clear contradiction with
pole dominance, which predicts an increase determined
b the ly pole mass moi+ ——2.42GeV corresponding to

( )/Ai (0) = 1.21. A similar behavior is encoun-
D —+ptered for A2 where we find a decrease of about 10%

at t = 1 GeV depending on the parameter set used. For
the vector form factor we have an increase in t with a
best-fit pole mass of m~ I = (2.5+ 0.2) GeV, which is a
little bit larger than predicted by pole dominance.

For the normalized form factor A ~t~,~A 0
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FIG. 8. The electron spectrum dI'/dE for D ~ pev as
function of the electron energy E (set C5, M, = 3 GeV ).

shown in Fig. 7(a) at M&2 ——8GeV for all parameter
sets, we And a rather unexpected shape with a minimum
at t 15 GeV . Formally, this minimum is due to the
interplay between decreasing contributions of perturba-
tion theory and quark condensate and an increasing one
of the gluon condensate which becomes efFective at large

For A2 (t)/A2 (0) [Fig. 7(b)t we find a moder-
ate increase in t which at large t is again compensated
by a negative contribution of the gluon condensate. For
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FIG '?IG. 7. The form factors of B —+ p, normalized to their
values at t = 0, as functions of t for all parameter sets
and M& ——8GeV . A pole fit is sensible only for the vec-
tor form factor and yields m~ &

= (6.6 + 0.6) GeV.
&0.3 GeV . (a) Ai (t)/Ai ~(0), (b) A (t)/A (0),
(c) V (t)/V (0).

FIG. 9. (a) The electron spectrum dI'/dE for H —+ pev as
function of the electron energy E (set B8, MI, ——8 GeV ). (b)
Comparison of the spectra ~ && as functions of R as obtained1 dI'

in this paper [parameters as in (a)] with those obtained in the
WSB [6] and the ISGW models [8). The chosen normalization
emphasizes the shape of the spectra.
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TABLE I. The form factors of the c —+ d transitions at t = 0 in diferent models.

Reference

This paper
[19]
[2O]

[6]
[8]'
[9]'
[1o] '
[31]'

0.5+0.1
0.7+0.2
0.75+0.05
0.69
0.51
0.58+0.09
0.84+0.12+0.35
0.79
0 80+0.21

—0.14

1

0.5+0.2

0.78
0.59
0.45+0.04
0.65+0.15++,'
0.55

0.4+0.1

0.92
0.23
0.02+0.26
0.59+0.31++ '

0.28

v D-+p

1.0+0.2

1.23
1.34
0.78+0.12
1.07+0.49+0.35
1.01

QCD sum rules.
" Quark model.

Lat tice calculation.
First error statistical, second systematical.' HQET + chiral perturbation theory; value of f+ taken from experiment.
Experiment (using pole dominance).

V ~(t)/V ~(0) Fig. 7(c) shows the usual increase in
t corresponding to a pole mass of (6.6 6 0.6) GeV, about
1 GeV larger than predicted by pole dominance.

Finally, in Fig. 8 we show the electron-spectrum dl /dE
of the decay D ~ pev as function of the electron energy E
for set C5 and M = 3 GeV, where the form factors are
extrapolated in the range t ) 1 GeV . Figure 9(a) shows
the electron spectrum dI /dE of B m pev as function
of E for set B7 and M& ——8 GeV as quite sharp and
concentrated around large electron energies.

IV. RESULTS AND DISCUSSIQN

In the previous section we have given a careful anal-
ysis of the semileptonic heavy-light decays D —+ vrev,
B ~ aev, D ~ pev, and B ~ pev. We have put some
stress on the calculation of the t dependence of the form
factors which for the vector form factors in general can
well be described by a pole-dominance formula, whereas
the axial form factors tend to decrease in t and even de-
velop extrema. The numerical results of our calculation
as well as other models are collected in the tables. The
form factors at t = 0 can be found in Tables I and II,
the rates in Tables III and IV. The rates were calculated

either using pole dominance (as indicated in the table
notes) or some other model for the t dependence. In ad-
dition to the total rates we give for H ~ pev the ratios
I'I, /I T and I'+/I where the index denotes the polar-
ization state of the p (longitudinal, transversal, positive,
and negative helicity, respectively). The corresponding
electron spectra are shown in Figs. 3 (D, B ~ vrev), 8
(D m pev), and 9(a) (B m pev).

The only decay where a comparison with experiment is
possible so far is D ~ vrev. In addition there exist several
model calculations in literature, using @CD sum rules
[19, 20], quark models [6—8], and some lattice calcula-
tions [9, 10]. One calculation relying on the heavy-quark
efFective theory [11] takes the experimental result [31] as
input to their values of the form factors of B + vr, pev.
The theoretical predicitions of I (D -+ vrev) difFer by a
factor of two, and assuming [V,g[ = 0.22, which can be
inferred &om the unitarity of the CKM matrix with high
accuracy, we find that the central value of our rate is two
standard deviations smaller than the experimental value.
This discrepancy is not strong enough to be conclusive
and might be due to the neglect of radiative corrections
to our sum sules. Still further experimental eKort in im-
proving statistics is to be desired to clarify this point.

TABLE II. The form factors of the 6 —+ u transitions at t = 0 in diBerent models.

Reference

This paper
[21] '
[22] '"
[23]
[24]
[6]'

[11]

0.26+0.02
0.26+0.01

0.23+0.02
0.4+0.1
0.33
0.09
0.89

gB—+p

0.5+0.1

0.96+0.15
0.35+0.16

0.28
0.05
0.21

2

0.4+0.2

1.21+0.18
0.42+0.12

0.28
0.02
0.20

~Bop

0.6+0.2

1.27+0.12
0.47+0.14

0.33
0.27
1.04

QCD sum rules.
Analysis suKering from a missing factor 12 in the perturbative contribution.' Quark model.
HQET + chiral perturbation theory.
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TABLE III. Decay rates of the c —+ d transitions in units ~U q] 10 s . rz, denotes the portion
of the rate with a longitudinal polarized p, I'T with a transversely polarized p, I'+ with a p with
positive, I' with a p with negative helicity.

Reference

This paper
[19]
[20]
[22]
[6)
[7)'
[8]
[9]'
[10] '

[11] '

[31]'

I'(D -+ s e+ v)

0.80+0.17
45+0.95

—0.71
1.66+'"—0.21

1.41
1.41
0.77
p 99+0.34

—0.28
p9+2.24

—1.44
1.9
i0.22/U, gi x (1.9+o"6)

r(D' -+ p e+v)

0.24+0.07

r, /rT
1.31+0.11

1.4+1.0
1.38
1.40
1.35
0.83+0.19
1.09
0.93

1/IU. I'r(D'

0.9
0.91
0.80
1.33
1.86+0.56
1.10
1.40

—+ p e+v) ( 0.71 x 10

r+/r
0.24+0.03

0.19
0.13
0.11
0.16
0.18
0.14

—1s

Rates calculated using pole dominance with m1 — = 2.01 GeV, m1+ ——2.42 GeV.
No values of form factors given.' Values of form factors at t = 0 identical to [6].
Values without errors from central values of Table I.' Value of I'(D ~ vr e+v) taken from experiment.
Experiment.

For D ~ pev experiment only has set an upper bound
for the total rate so far [22]. Our value is a factor of 5
smaller than these. For the ratio I'(D + p)/I'(D b ~)
we get 0.3 which again is smaller than the predictions
in other models which yield a maximum value of 1.8 [8].
We recall that the corresponding ratio for the Cabibbo-
favored decays, I'(D + K*)/F(D —b K), is approxi-
mately 0.5 [1] and that we do not expect Havor SU(3)
to be broken by a factor of 2 or more. The form factors
at t = 0 roughly agree in all models except for the lattice
calculation [10],which predicts vanishing A2 (0) and a
small value of V+ ~(0) yielding a large value of I'I, /I' T.

For the b —+ u decays we do not dare to quote any
experimental upper bound for the total rates due to the
uncertainty in ]V„b] (but cf. [5]). We remark that the
total rates for H ~ vrev summarized in Table IV and
obtained by QCD sum rules [22—24], the quark models
[6—8], and the HQET calculation [11] differ by a factor

of 26. For B ~ pev this value shrinks to,4. That spread
in predictions clearly shows the neccesity for an accu-
rate investigation of the t dependence of the form fac-
tors that we have concentrated on in this paper. With
the t dependence obtained by QCD sum rules we ob-
tain I (B b p+eP) = (1.2 6 0.4) ]V„b[2 x 10~ s where
the p has mainly negative helicity. Furthermore, we find
I'(B b p)/I'(B -+ vr) = 2.4 which is smaller than all
other model predictions ranging from 3.1 to 11 except
for [11] which predicts 0.6. In Fig. 9(b) we give the
electron spectrum 1/I'dr/dE for B -+ pev as obtained
in this paper [same parameters as in Fig. 9(a)], in the
Wirbel-Stech-Bauer (WSB) model [6] (using pole dom-
inance) and the nonrelativistic Isgur-Scora-Grinstein-
Wise (ISGW) madel [8]. The chosen normalization em-
phasizes the difference in shape rather than in the ab-
solute normalization. Although the WSB spectrum is
softer in the end-point region above the threshold for

TABLE IV. Decay rates of the b —+ u transitions in units [U„b] 10 s . I'L, denotes the portion
of the rate with a longitudinal polarized p, I'7 with a transversely polarized p, I'+ with a p with
positive, I' with a p with negative helicity.

Reference

This paper
[»1
[22]
[23]
[24]'
[6]
[7]

[11]

I'(B —+ sr+ e v)

0.51+0.11
0.68+0.23

0.302+ 0.005
1.45+0.59
0.74
0.74
0.21
5.4

r(B —+ p+e v)

1.2+0.4

0.77+0.42
3.3+0.3

2.6
2.30
1.63
3.4

r, /r
0.06+0.02

088+ '—0.20

1.34
0.54
0.75
0.36

I'+ /I'

0.007+0.004

0 12+' "—0.02

0.16
0.02
0.08
0.14

Rates calculated using pole dominance with m1 — = 5.33 GeV, m1+: 5 71 GeV.
Rate calculated using a modified pole dominance with m, 1 = 5.33 GeV.' Values of form factors at t = 0 identical to [6].
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charm production, the only region where 6 —+ u transi-
tions can be observed, our spectrum and that of ISGW
are nearly indistinguishable for E & 2.4GeV. If, how-
ever, a detection of the polarization of the p was feasible,
one could test the considerable deviations of the corre-
sponding spectra in the diferent models. We predict the
p to have predominantly negative helicity (as indicated
by the very small values of I'I, /FT and I'+/I' ) whereas
in other models the ratio I'I, /I'7 is closer to one.

In Fig. 10 we give a comparison of the inclusive 6 —+ u
semileptonic spectrum calculated by means of @CD sum
rules in [32] with the exclusive decay spectra B -+ vrev

and B —+ pev calculated with the same parameters
(mb = 4.8GeV, s& ——34GeV, Mb ——8GeV ). Fig-
ure 10(a) shows the spectrum in the rest frame of the
decaying B meson, Fig. 10(b) in the laboratory system
of an e+e collider operating on the T(4S) resonance.
From both we find that at high electron energies B ~ pev
constitutes nearly the whole differential inclusive rate, so
it is worthwhile to concentrate on measurements of the
exclusive channels, where theoretical predictions are still
not at their best precision, but are much more accurate
than calculations of the inclusive spectrum (cf. [32]).

VI

FIG. 11. Diagrams contributing to the Wilson coefficient
of the gluon condensate. Lines with a cross denote vacuum
expectation values. 0, x, y are space-time coordinates; 6, u,
q denote quark 6avors, q being a light quark (u or d). The
weak vertex is at y.
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APPENDIX A: THE WILSON COEFFICIENT
OF THE GLUON CONDENSATE
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In the following we present a technique for calculat-
ing Borel transformed Wilson coeKcients directly from
the loop integrals. This method does not allow for the
subtraction of continuum contributions, which, however,
does no harm in our case as the total contribution of
the gluon condensate to the three-point sum rule is small
by itself ( 10%), and so is its continuum portion. Be-
sides, one would expect typical continuum contributions
to show up as incomplete I' functions in the Wilson coef-
ficients, which, however, are absent in our formulas (i.e. ,
in the sum of all diagrams, but are encountered in each
diagram separately). Thus one is led to conclude that
those contributions are actually absent in the processes
under consideration.

We calculate the diagrams shown in Fig. 11 that con-
tribute to the Wilson coeKcient of the gluon condensate
(a,G /m) in the fixed point gauge:

(Al)

0. 5 1.5

E jGeV]

2. 5

FIG. 10. Comparison of the spectra dI'/dE as functions
of E of the exclusive decays B —+ vr, pev [parameters as in
Figs. 3 and 9(a)] with the spectrum of the inclusive decay
B ~ X„ev, taken from [32] and calculated with the same
parameters. (a) rest systein of the decaying 8; (b) lab system
of a collider working at the T(4S) resonance.

with the gluon field A„, a E (1,2, . . . , 8j. For massless
light quarks and with the coordinates chosen as indicated
in the first diagram, diagrams I and II evaluate to zero.
Note that for massless light quarks there is no mixing of
the gluon with the quark condensate.

In the evaluation of the remaining diagrams we en-
counter integrals of the type (since the Borel transform
removes UV divergences, there is no need for dimensional
regularization of these divergences and we thus stay with
four-dimensional integrals)
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d'k A:„A:„A:„
(2 )' [I'j [(~+p.)'I'[(k+I )'- (A2)

Although the sum of all diagrams is IR convergent, IR divergent terms occur at each step of the calculation and
need proper regularization. We let the mass of the u quark be finite in the denominator of its propagator, m ) 0
(but let m„= 0 in the traces) and regularize the singularities in the q-quark line (for a = 2) by shifting the power
of the q-quark propagator to 2 —e (which from a technical point of view is simpler than introducing dimensional
regularization). This procedure has the advantage that all integrals with 6, c ) 1 can be obtained from the case
6 = c = 1 by taking derivatives with respect to the quark masses:

1 db —1 dc—1

t &t &"'t ( & 4 ) fz(l )lz( ) d( 2)t4 ] d( 2)4 i t41P2'' t4 ( 4 'I )'

Continuing to Euclidean space-time and employing the Schwinger representation for propagators,

(A3)

1 1
[P2 + m2]~ I'(a)

~—~ ~
—~(&'+m')

(A4)

we find for the scalar integral n = 0 with a = b = c = 1 (with capital letters denoting Euclidean momenta),

I(1,1, 1) = i dndPdp — exp
~

ZK —— P — P& — T —pm&
~

d4K r —
2 nP 2 np 2 Pp

(2~)4 Z ~ E E (A5)

where

K = K + —(PPp + pP~), (A6a)

I

I(1,1, 1) = Bp2 (M„)Bp2 (Mg )I(1,1, 1)

t/(M4, —+M„) E.
( (A8)

&=n+P+p, (A6b) where the exponential integral function is given by

(A6c)
Ei(x) =— (A9)

Bp. (M ) e = b(1 —nM ). (A7)

The above representation proves very convenient for ap-
plying the Borel transformation with and

m„mb t2 2

M2 M2+M2 (A10)

From that, we get
Actually IR divergent diagrams only occur for the scalar
case where we find

2~M mat Mt ] r p2 ~2
I(2 —z, 4, 41 = —+ 4 —2PB —!B

~

— —
~

—1Bz) .16' M M (A11)

(A13)

Here p, is some arbitrary scale introduced to render the canonical dimension of the integral, which, however, cancels
in the complete expressions for Wilson coeKcients, as it should.

For larger values of n, we get

(A12)

I (21 1.)=
~

"'+ "' ie M'™"F'(—)16~2 M2 + M2 ( M2 M2

1 ( 1 1
2 3 —a qMt, M„j

Bp Bg * Bpp BBp + BB Bpp B BBp U (B4B (A14)M4 M M„M~
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where we have continued back to Minkowski space. U is the conHuent hypergeometric function de6ned as

U(i,j;x) = dt(1+t)' ' 't' 'e1""*=
r(') (A15)

In addition, we use

Bps (M„)B&2 (Ms ) [p~]
'

[pJ3] 'I„,„, „(.a. ., b, c)
Qml= [M ] '[M ]

' (. . . [M ] '[M ] 'I, , „„(a..,.b, c). (A16)

We now decompose the Lorentz invariants A occurring in the Borel transformed correlation functions (2.1) and (2.2)
as

A = ) Al"l(O„) (A17)

where (Dq) = (ll) = 1, (Gs) = (qq), (Q4) = (n, G /7r), (Qs) = (qagGq), (Os, ) = pro. , (qp A qP„&, qp A q), and

(Os, ) = 4mo. , (duud) are the condensates taken into account. The formulas for n E (1,3, 5, 6) can be found in [15]
(with the same notations), where vacuum saturation for the condensates with dimension 6 is assumed; the formulas
for n = 4 are new and read for the relevant invariants:

M- (4) mbe-
+ M2M2

b

2 2

I (4) b e
—

rnb /Mb

M2M2
b

M- (4) mbe
+ M2M2u

Mm e—rn~/M~

M2
b

1 1 m~M„(M~ (Mq + 3M„) —mq(Ms + M„))
96M2 48M2 24M (M + M2)2zs

8M& M„+ 4m&M& (M& + 4M& M„+ 2M„) —m&M„(2M&2 + M„)
96M (M +M) z

4M' (M~~ + M„) —ms (2M' + M„)
48M~ (M + M2)z 16Ms(M + M2)2z4

msM„mqM„(M~ (3M' + 10M„) —3mq2M j
4Ms(M2+ M )2zs 16M (M2+ M ) z

mt, M„(m&M& (23M„+ 7M& ) —2M& (13M„+5M& ) —3mt, M j+ 48Ms(M2 + M2) z

M„(8M&sM„(M& + 2M„) + 4m&Mt, (M& —4M& M„—1lM4) —m&sM4)
+

96M~ (M„+M~) z

+ ' " ' " +m4&M„(7M& + 16M„) M„(4M& (2M„—Mt, ) + mz(2M& —9M„))
96M (M + M&2)2z 48M& (M + M62)z

32M'(M2+ M')z 96M4 96M'

1 m M„(M +3M„) M„(4M2 —m2)
+ " " +

96Ms2 24M~4(M2+ M ) zs 48M~(M~ + M2)z

M„(ms —4mt, Mq —8Mt, ) m~M„
96M (M +M) z 16M (M +M) z

m4bM4 mbM„(m~M„—M~~(Mb2 + 3M2) )
8Ms(M2+ M2)~z4 + 12M (M +M ) zs

(A18)

(A19)

(A20)

M2(8M&4M2 —4m&M& (M&2 + 2M„) + m4&M2) 1 2M&2(2M2 —M&2) —m2~M2

48M (M + M2) z 48M 24M (M2 + M )z

(A21)

Note that we have checked our method for calculating Borel-transformed Wilson coeKcients for the matrix element
(B

~
V~

~

B ) at t = 0 where the result is uniquely determined by charge conservation.

APPENDIX 8: THE WILSON COEFFICIENT OF THE FOUR-QUARK CONDENSATE
In addition to the formulas given in [15], we also have calculated the contributions of the four-quark condensate to

as the decays B,D -+ xev which read in the notation of (A17)]
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2 2
m ~™b/Mb

+ M2M2
b

2 2" (62) b
—m„/M,

+ M2M2
b

m2
b

72Mb6

1 t
18Mb4 36Mb4M2

1

(9M' Mz

1 2

i 9M4 9Mz(m~z—t) y

18M~2M4) '
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